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Abstract 
 
Vision tasks with constrained camera motion have been 
discussed for a long time since Active Vision appeared. As an 
example, Camera under planar motion can often simplify the 
works, like camera self-calibration, scene reconstruction and 
robot self-location. In this paper, we provide detail information 
on the algebraic characteristic and geometric interpretation of 
planar motion. It does help to build up a special vision system 
and make it more feasible for practical use. In this paper, an 
explicit algebraic analysis of the camera planar motion 
detection is first given. A special spatial parameterization is 
used to explain the geometric meaning of planar motions and 
for the detection of such motions.  Three kinds of planar motions: 
non-collinear, collinear and stationary camera motion, are 
considered. According to this, we design a practical simplified 
vision system, which can be easily used for outdoor vision tasks. 
Lastly, we discuss the stability and uncertainty propagation, 
while 2D image matching points project onto a 1D virtual 
camera retina. It is critical for the original image matching 
uncertainty to be carefully handled to avoid the error blowup 
due to 2D to 1D projection. Experiments on camera self-
calibration and scene reconstruction using simulated data and 
real images show the validity and effectiveness of our method.  
 
Keywords: Camera Planar Motion, Uncertainty Projection, 
Camera Self-calibration 
 
1. Introduction 
 
    Planar motion of a camera is a useful motion configuration 
for camera self-calibration and 3D reconstruction. An analysis 
of critical motion sequences, including planar motions, for 
uncalibrated Euclidean reconstruction was given by Sturm [2, 3]. 
Most motion cases of mobile robot self-location problems are 
planar motions. For active vision systems, planar motion is also 
widely used. Image-based modeling and rendering are very hot 
topics in computer vision and graphics society nowadays. 
Different kinds of planar motions of the camera are used in 
many applications, such as the work of Shum and Szeliski [5, 6, 
7]. All these show that the analysis of planar motion is very 
necessary and useful in many computer vision and graphics 
applications. 

In Faugeras et al [1], the non-linear problem of self-
calibration is simplified to a linear process by using a camera 

undergoing planar motions and assuming a 1D camera model. 
This approach avoids the critical convergence problem of the 
Kruppa equation used by many self-calibration methods [8,9]. 
However, it also brings some new problems to be solved. These 
include the detection of planar motions and robust estimation of 
the 1D trifocal tensors under noises, where the uncertainty of 
initial 2D image matching may be magnified by the projection 
of 2D image points to 1D image points. The planar motion 
detection method used by Faugeras et al in [1] is somewhat 
complex to be understood and implemented. These motivated us 
to perform the research reported in this paper. Further more, we 
shall present an explicit analysis of the visual motion when the 
camera is under different planar motion configurations. 
Especially, the 2D visual motion of trifocal lines in different 
image views is our emphasis. 

On the other hand, stratified 3D scene reconstruction, which 
consists in upgrading a projective reconstruction [10, 11, 12, 13] 
to Euclidean reconstruction with camera intrinsic parameters 
information [14, 15, 16], has been realized as an important 3D 
reconstruction approach. The intrinsic parameters of a camera 
also play a critical role in scene modeling from concentric 
mosaics [18]. Camera calibration has significant influence on 
many object modeling related applications.   
    The paper is organized as follows. In Section 2, we review 
the planar motion detection methods proposed in Faugeras et al 
[1]. An analysis of the algebraic and geometric properties of 
planar motions is discussed in Section 3. Robust estimation of 
1D trifocal tensor under three camera configurations is 
discussed in Section 4. Method to eliminate the 1D projections 
with noise magnification is presented in Section 5.  
Experimental results are presented in Section 6.  A   summary 
and a conclusion are given in Section 7. 

 
2. Previous Method on Planar Motion Detection 
 
    Planar motion means that the camera moves on a plane, and 
its rotation axis must be perpendicular to the plane. The plane 
intersects a line with the retinal plane of camera, which is called 
the trifocal line [1]. For a planar motion as shown in Fig 1, the 
camera can have different positions and orientations, and each 
has an intersecting trifocal line with the motion plane. In a real 
experiment, we try to make a camera to move in some planar 
motions. Due to vibration and other mechanical errors, some of 
the motions may be not be on the same plane with the others. So, 
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we must detect the set of motions on the same plane. The 
method (FM) proposed in Faugeras et al [1] is as follows: 
    The locus of all points in space that projects onto the same 
points in two images is the well-known horopter curve. Let F be 
the fundamental matrix and x a point in the first image. So we 
have the epipolar constraint as 0=FxxT , which is the equation 
of a conic (c). The matrix of this conic is TFFG +=  since the 
antisymmetric part of F is irrelevant. Note that we have two 
such identical conics, (c) and (c’), one for each view. From the 
two view projective geometry, we know that the epipoles e and 
e’ belong to conics (c) and (c’) respectively, so the cubic curve 
has to go through the optical centers C and C’ [4]. The 
conclusion is that in the case of a rotation with respect to an axis 
L, the horopter curve (H) splits into a line and a circle in the 
motion plane ∏ . Its image (c) (respectively (c’)) therefore also 
splits into two lines, the image line l (respectively the line 'l ) 
of L and the line ρ  (respectively 'ρ ) of the intersection of ∏  

with the retinal plane. For a set of three views, we consider the 
plane 

12∏  corresponding to the first rotation and the plane 
23∏  

corresponding to the second. The motion is planar if and only if 
the two planes 

12∏  and 
23∏  coincide with the trifocal plane. 

This gives a test for the planarity of a motion. The three 
fundamental matrices yield the three trifocal lines 

il
 

represented by kjiieet ikiji ≠≠=×= ,3,2,1 . The three matrices 

jiFFG T
ijijij ≠+= ,  (note that 

jiij GG = ) define the three conics (
ijC ) 

which must split each into two lines, hence the six lines 
12l ,

12ρ ,
23l ,

23ρ ,
31l ,

31ρ . A necessary condition for the motion 
to be planar is that the six lines 1l , 

2l , 
3l
, and 

12l ,
23l ,

31l  are 

“close” enough. 
 

3. Algebraic Characteristic and Geometric Interpre-
tation of Planar Motion   
 
As we known, at least three different camera views are needed 
for planar motion detection. Generally, the camera’s motion 
plane can be uniquely determined by their three non-collinear 
locations of optical centers. 1 

Motion Plane

1C

2C

O

O

X

X

Y

Y

Camera Pose A

Camera Pose B

2d

1d

 
Fig 1: Different positions and orientations of the planar motion 
cameras.(C1,C2 are the optical centers of cameras, OC1,OC2 are 
the optical axes of cameras and XOY is the coordinates in 

                                                 
1 The optical axis of the camera can never be parallel with the 
normal of the motion plane during moving. Otherwise, the 
trifocal line cannot be detected, under this degenerate case. 

camera retinal planes, d1,d2 are the intersected points between Y 
axis and trifocal lines.)  

 
From a geometric viewpoint, we can give the following theorem: 
Theorem: The motion of a camera is planar if and only if all the 
trifocal lines in different retinal planes have the same 2D image 
coordinates in their respective frames. 
 
Proof: For a general camera pose, we can set up a 3D world 
coordinates as follows shown in Fig 2:  
    Camera’s optical center C is taken as the original point of 3D 
world coordinates. Camera motion plane’s equation is 0=Z , 
and the normal of motion plane is Z axis in the world 
coordinates. Optical axis CO locates in the plane ZCY and the 
inclination between CO and CY is θ=∠OCY . Assume the 
focus length is f , so the principle point O in camera’s retinal 
plane is ))sin(),cos(,0( θθ ff . The camera’s retinal (image) 
plane’s equation is 0)sin()cos( 2 =−×+× fZfYf θθ , and other 
two points in retinal plane, X: ))sin(),cos(,1( θθ ff−  and Y: 

))cos()sin(),sin()cos(,0( θθθθ −+ ff , respectively locate on the 

retinal image’s X, Y axis. Since the trifocal line is the 
intersected line between camera’s motion plane and the retinal 
plane, we can compute any two points on the trifocal line, A: 

)0),cos(/,1( θf  and B: )0),cos(/,1( θf− . In camera’s retinal plane, 

the trifocal line’s equation is definitely parameterized as two 
factors, the inclination α  between the image X axis ( →

OX ) and 
the trifocal line ( →

AB ), and the distance κ  from principle point 
O to the trifocal line. Now the inclination is o0=α  and distance 
is )(θκ tgf ×= . 

f

Optical Center: C

Retinal Plane

Optical Axis

Retinal Plane

O

X

Y

O X

Y

Z

X

Y
Trifocal Lineθ

MOTION PLANE

Fig 2: the world coordinates for a certain camera pose while 
planar motion. 
 
   The relative motion between three different camera poses can 
be decomposed as the translation in the motion plane, the 
rotation with normal of motion plane, the rotation of camera’s 
optical axis and the rotation with the world X axis. Though 
these three rotation axes are not totally orthogonal, they can 
represent any rotation with any axis in the 3D world coordinates 
by linear combination. This kind of parameterization for 
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rotation also enables us to give an explicit geometric 
interpretation for camera. 
 
(1) Translation in the motion plane: 
    Assume the camera’s translation is )0,,( ba , so principle point 
O is ))sin(),cos(,( θθ ffba + , and point X on retinal plane is 

))sin(),cos(,1( θθ ffba +− , then the camera retinal plane’s 
equation is 0)cos()sin()cos( 2 =×−−×+× θθθ fbfZfYf . In a 

similar way, two points on the intersected trifocal line, A: 
)0),cos(/,1( θfba ++  and B: )0),cos(/,1( θfba +− , can be 

computed from the equations of retinal plane and motion plane. 
The inclination α  between the image X axis ( →

OX ) and the 
trifocal line ( →

AB ) keeps o0 , and the distance κ  from principle 
point O to the trifocal line is still )(θtgf × . 

1C

)0,,(:2 baC

O

O

tl

tl

Y

Z

X

MOTION PLANE

Y

Y

X

X

 
Fig 3: Different locations of camera under a pure tanslation on 
the motion plane.  

 
(2) Rotation with normal of motion plane: 
     Assume the rotation angle is ϕ , so principle point O is 

))sin(),cos()cos(),sin()cos(( θϕθϕθ fff , and point X on retinal 
plane is ))sin(),sin()cos()cos(),cos()sin()cos(( θϕϕθϕϕθ fff +− , 

then the camera retinal plane’s equation is 
0)sin()cos()cos()sin()cos( 2 =−×+×+× fZfYfXf θϕθϕθ . In a 

similar way, two points on the intersected trifocal line, A: 
)0)),cos()/(cos(,0( ϕθf  and B: )0,0)),sin()/(cos(( ϕθf , can be 

computed from the equations of retinal plane and motion plane. 
The inclination α between the image X axis ( →

OX ) and the 
trifocal line ( →

AB ) keeps o0 , and the distance κ  from principle 
point O to the trifocal line is still )(θtgf × , unrelated with the 
value of ϕ . 
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Fig 4: Different poses of camera rotating with normal of the 
motion plane. 
  
(3) Rotation of camera’s optical axis: 
    Since the camera is rotating round its normal (optical axis), 
the coordinates of principle point O, the equation of retinal 
plane and the trifocal line are unchanged. However, the 
coordinates of image point X become 

))cos()sin()sin(),sin()sin()cos(),cos(( θϕθθϕθϕ −−− ff . The 
inclination α  between the image X axis ( →

OX ) and the trifocal 
line ( →

AB ) changes to exactly the rotation angle ϕ , and the 

distance κ  from principle point O to the trifocal line still keeps 
)(θtgf × . 
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Fig 5: Different poses of camera rotating with its optical axis. 
(4) Rotation with the world X axis: 
    In this case, it means the inclination θ  between optical axis 
CO and world axis CY is variable. From the initial set up the 
world coordinates and camera systems, we know the inclination 
α  between the image X axis ( →

OX ) and the trifocal line ( →

AB ) is 
unrelated with value of θ , while the distance κ  from principle 
point O to the trifocal line will change, up to )(θtgf × . 



The Fifth Asian Conference on Computer Vision, Melbourne, Australia, Jan 23-25, 2002  

 4

O

Optical Center: C

Z

X

Y

MOTION PLANE

X

X'

tl

Y

Y'

tl

Retinal Plane

O'

 
Fig 6: Different poses of camera rotating with world coordinates 
X axis. 
 
   Until now, we have enumerated the geometric coordinates of 
the trifocal line in the 2D retinal image, under all possible 
motion cases. According to the definition of planar motion, we 
know that case 1 and 2 are valid planar motions, while the 
trifocal lines in different retinal planes have the same 2D image 
coordinates in their respective frames. If the camera’s motion 
violate the planar motion constrain, either the inclination α  
between the image X axis ( →

OX ) and the trifocal line ( →

AB ), or 
the distance κ  from principle point O to the trifocal line 
changes. 
 
Geometric Interpretation: Based on the above analysis, we 
know there are two different kinds of changes of the trifocal 
lines’ image coordinates in their perspective views, while in 
case 3 and case 4. In case 3, camera is rotating around its optical 
axis, which cause the direction α  of the trifocal line changes 
exactly the same angle of camera movement in the image views. 
If camera’s optical axis is not even orthogonal to the retinal 
plane, the distance κ  will also change a little. In case 4, only 
the distance κ  is varying, and the trifocal line is just moving 
parallelly in the image plane.  
    For a general camera rotation, it equals to a linear 
combination of above three kinds of rotation effects. Except the 
valid planar motion case 2, any other camera rotation must have 
non-zero components of case 3 or case 4. Further more, these 
two change effects of the trifocal line’s image coordinates with 
different views cannot counteract.   

If we have more than three camera views, their optical 
centers must lie on the same plane. Then the algebraic and 
geometric properties of planar motion are the same with three-
view case. In real experiments, camera easily oscillates while 
moving. Robust estimation method can be employed to find the 
most stable views, which are coherent with the same planar 
motion.   

 
Remark 1: The trifocal line is taken as the image coordinate 
axis of 1D camera in [1]. From the general 2D camera, we 
know that the image coordinates system is invariant and known 

as a prior knowledge. This invariance is also necessary for 1D 
camera, or it cannot be determined that the unique original 
point in each 1D image coordinates. 
 
4. Robust Estimation of The Trifocal Line on Three 
Different Cases 
 
From the above theorem, we can simplify the planar motion 
detection problem as the collinearity of all image epipoles on 
different camera views under the same planar motion, since they 
must be on the same image trifocal line for a real planar motion. 
This problem will be discussed in the following three different 
cases of planar motion. Here, we only discuss three camera 
views, and more views analysis can be easily extended with a 
similar way.  
     
(1). Three positions of the camera center compose a triangle in 
the motion plane (PM-T method).  

In this case, there exist two epipoles in each image, 
211312 ,, eee ,

323123 ,, eee , which are all used to fit an image trifocal 

line tl  by linear Least-Square method. Then the planarity of 

camera motions can be directly evaluated by the line-fitting 
residual errors.  

jijiedistError
i j

tij ≠== ∑ ∑ ,3,2,1,),( l
 

where ),( tijedist l  means the Euclidean distance between epipoles 

and the trifocal line in the images. 
    From the above, we have got the trifocal line using all the 
information provided by epipoles, so it is more robust than the 
method in Faugeras et al [1]. The unique formulation of the 
trifocal line is also very necessary to be taken as the 1D image 
coordinate axis. And we can see the inconsistent formulations of 
the trifocal line bring large deviations for 1D trifocal tensor 
estimation in Faugeras et al [1].  
      
(2). Three camera positions are on the same line of the motion 
plane (PM-L method).  
    In this case, there exists only one epipole in each image, 

321 ,, eee , which can also be used to fit the trifocal line 
tl
 by least-

square method. In the same way, the planarity of the motion can 
be evaluated this line-fitting residual error. 

3,2,1),(∑ ==
i

ti iedistError l
      

In this case, it is impossible to estimate the trifocal line 
tl
 

from only one epipole in each image, so FM method will 
degenerate. While our method still work well by using all three 
epipoles of different images to estimate the trifocal line, unless 
there are no rotation between different poses of the camera. The 
three epipoles will have the same 2D coordinates if that is the 
case, so the trifocal line cannot be detected.  

 
Remark 2: In the real applications, this kind of camera motion 
configuration is much easier to be implemented, compared with 
PM-T. Actually, we design a simple vision system with a camera 
moving along a bar, which can pan and tilt. Empirically to say, 
the estimation accuracy of the trifocal line is also good, if the 
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relative rotations between different camera poses are well 
handled.  
 
(3). While the camera is undergoing the stationary rotation, both 
methods will fail because the epipoles do not exist in any image. 
However, Hartley’s camera calibration method [19] can be 
applied to this configuration. 
 
5. Analysis of Uncertainty Projections (2D to 1D) 
 

The estimation of the trifocal line is very critical for camera 
self-calibration, since it forms the retinal line for the virtual 1D 
camera. On the other hand, in order to estimate the 1D trifocal 
tensor used by camera self-calibration, the ordinary matching 
points in 2D images must be projected onto the trifocal line as 
new 1D points [1]. For a pair of matching points in one image, we 
link them as a line and the intersected point with the trifocal line 
is taken as a point for 1D virtual camera. In the other image, the 
corresponding pair of 2D points forms a new line, and gets a new 
intersection with the trifocal line in that image. This new 
intersection is exactly the corresponding point for that 1D point. It 
means the virtual 1D points are just determined by the selection of 
a pair of initial 2D image points and the position of the trifocal 
line.  

For a certain matching point, we can assume the correct 
candidate locates within its neighborhood in the image. In Fig. 7, 
the uncertainty of matching points: A1, A2, B1, B2, C1, C2, can 
be described as a circle region around each of them. The 
uncertainty propagation of matching points from 2D to 1D is up to 
two essential factors. One factor is the distance ratio among a pair 
of points, such as A1, A2, and the intersected points A3. The other 
is inclination β  between line: A1A2 and the trifocal line.  

We propose the following criterion for the selection of the pair 
of 2D image points, once the trifocal line has been estimated.  
Case A:      

)3,1()2,1( AADistAADist >  and )3,2()2,1( AADistAADist >  

Case C:  
)3,1()2,1( CCDistCCDist <  and )3,2()2,1( CCDistCCDist <  

Case B: 
)3,1()2,1()3,2( BBDistBBDistBBDist << or
)3,2()2,1()3,1( BBDistBBDistBBDist <<  

   As shown in Fig 7, the uncertainties of 1D points under three 
cases are respectively represented as: )2,1( aaA =φ , )2,1( bbB =φ  
and )2,1( ccC =φ . Only case A is effective for 1D points’ 

projection, which keeps the same level of uncertainty from initial 
matching points. In case B and case C, the uncertainty is 
magnified for 1~2 times and more than 2 times respectively. In 
order to ensure the estimation accuracy of 1D trifocal tensor 

ijkT , 

only matching pairs according to case A are considered valid. 
Then we pick up the pairs, direct ration the inclination β  between 

pair-line, such as A1A2 and the trifocal line. The uncertainty 
range of case A can be computed from )sin(/2 βr , where r is the 

radius of uncertainty circle for initial 2D matching points. Until 
now, we can see that the initial matching error may be ill 

magnified with the 2D-1D projection, but it still can be well 
handled through our analysis.2   

Trif
ocal

 Lin
e

Case C:

Case A:

Case B:

Aφ
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Cφb1
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A2
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B1
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C1

A3

B3

C3

 
Fig 7: the projection from 2D image points to 1D image points. (• 
is the distribution area of the random uncertainty for 2D image 
points. The black lines are the bound of uncertainty for the 2D-1D 
projection. Here, A, B, C are three cases of 2D to 1D projections.)  
     

After the projections from 2D image points to 1D image points, 
we got many triplets of 1D corresponding points from three 
camera views. Any triplet of corresponding points ''' fff ↔↔  

satisfies a tri-linear relation, known as the trifocal tensor 
constraint:  

)2,1,,(0''' == kjifffT kji
ijk  

Then we can linearly estimate the trifocal tensor 
ijkT  by at least 7 

triplets. Once 
ijkT  line is obtained, the two images of circular 

points on the line projection of the motion plane on the infinite 
plane is also got by  

)2,1,,(0 == kjiuuuT kji
ijk   

With five images of circular points corresponding to three 
different planar motions, the image of Absolute Conic [20] can be 
linearly fitted by 0)1,,)(())(1,,( 11 =−− TT vuKKvu , where )1,,( vu  

is the above circular points’ original 2D image coordinates. Then 
the intrinsic parameters K  of the camera are also obtained using 
Cholesky Decomposition [1]. 

 
6. Experiments 
 
We tested our method with both simulated and real images. 
Compared with the results of original method, our experimental 
results show the advantage of robustness of our method. For 
more detail information on trifocal line location and camera 
calibration, please refer to our journal version paper, according 
to the space problem.  

                                                 
2 Here, we do not discuss the probabilistic distribution function 
(PDF) of uncertainty projections. It cannot help us to find more 
robust results. Image matching points in 2D images are the only 
information we have to form new 1D points. The only choice for 
2D-1D projections is to link a pair of 2D points and compute its 
intersected point with the trifocal line. Based on above analysis, 
we want to figure out these good projections, which are used for 
following processes. 
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Fig 8. Our 1D camera self-calibration system: with a straight bar 
mounted on a tripod. 
 
    From Fig. 8, we can see that only a straight bar is mounted on 
the platform of the tripod. Camera is fixed on the bar and can 
move back and forth along the bar direction and rotate around 
the normal of the plat-form. It is exactly the second case PM-L, 
while our approach can still work well. By tilting the platform, 
different planar motions are also achieved. The motion 
configuration is illustrated from geometric view in Fig. 9. 

 
Fig 9. The camera configuration used in the experiments. 
 
7. Conclusion 
 
In this paper, we have proposed an explicit trifocal line position 
analysis for camera planar motion. It is proved using a special 
algebraic parameterization method and is interpreted from a 
geometric view. Our result simplifies the planar motion 
detection problem. We also distinguished the usage of three 
different cases of planar motions: ordinary (non-collinear) 
planar motion, collinear planar motion and stationary planar 
motion. In order to make this approach of camera self-
calibration more feasible, we purposed a method on how to 
determine and avoid the selection of 2D image point pairs, 
whose 1D projection points will have more magnified location 
errors. Experiments using simulated and real images show our 
new method generally out-performs the original method 
proposed in [1].  On the other hand, the proposed practical 
image capture system will facilitate vision applications using 1D 
linear camera calibration in real environments.  
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