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Abstract

In this paper, we investigate the feasibility of using
graph-based descriptions to learn the view structure of 3D
objects. The graphs used in our study are constructed from
the Delaunay triangulations of corner features. The investi-
gation is divided into two parts. We commence by consider-
ing how relational structures can be encoded in a way which
can be used to generate parametric eigenspaces. Here we
investigate four different relational representations derived
from the graphs. The first three of these are vector encod-
ings of the adjacency graph, the weighted adjacency graph,
and the point proximity matrix; the fourth representation is
the edge weight histogram. We study the eigenspaces which
result from these different representations. In addition, we
investigate how multidimensional scaling may be used to
generate eigenspaces from a set of pairwise distances be-
tween graphs.

1 Introduction

View based object recognition has been studied in the
computer vision literature for over three decades [29, 9].
Stated simply, the idea is to compile a series of images of an
object as the set of possible viewing directions is spanned.
The images are then subjected to some form of dimension-
ality reduction [11] or information abstraction [9]. This is a
process of learning [14] that may involve either feature ex-
traction, principal components analysis or the abstraction of
the main structures using a relational description [21]. Once
a condensed image representation is to hand, then the aim
is to embed the different images in a low-dimensional rep-
resentation which can be traversed with viewing direction.
Recognition and pose recovery may be effected by finding
the closest representative view. In other words, the aim is
to embed high-dimensional view based image data in a low
dimensional structure which is suitable for view indexing.

Broadly speaking there are two different approaches to
this problem. The first of these is to construct an eigenspace
[11]. This approach was first introduced by Murase and Na-
yar [11], and has since been refined in a number of different
ways [16, 20]. The idea is to perform principal components
analysis on the images collected as the viewing direction
and illumination direction [1] are varied. This is achieved
by first storing each image as a long-vector. Next the covari-
ance matrix for the long-vectors is found. The eigenvectors

of the covariance matrix define the directions of principal
components in the space spanned by the long-vectors. Di-
mensionality reduction is achieved by projecting the origi-
nal images onto the principal component directions and se-
lecting the components corresponding to the leading eigen-
vectors. The method has mainly been applied to pixel based
image representations.

The second approach to the problem is older and in-
volves constructing a relational abstraction of the features
present in the raw images [15, 29]. The aim here is to ex-
tract surfaces or boundary groupings from 2.5D range data
or 2D image data. From this data the view occurrence of
the different image structures is noted. Hence a group of
images which all yield the same feature configuration are
deemed to belong to a common view [7]. View indexing
can be achieved by matching a relational arrangement of
image structures to the set of corresponding representative
view graphs. This approach to the problem has its origins
in the work of Freeman on characteristic views. It has also
stimulated the study of aspect graphs [9, 19, 27]. The topic
draws heavily on work from psychology [2, 3] and differen-
tial topology [25, 15].

In this paper, we aim to explore a synthesis of these two
methodologies. Our aim is to investigate whether it is pos-
sible to generate view-based eigenspaces using relational
graphs. We study 3D polyhedral objects viewed from dif-
ferent directions. The features used in our study are corners.
Our graphs are obtained by locating the Delaunay triangu-
lations of these point-features. We explore two different
approaches to constructing eigenspaces. The first of these
involves encoding the adjacency matrix as a long-vector and
repeating the Murase and Nayer[11] analysis. Here we in-
vestigate various representations of the adjacency structure
of the graphs. These include vectors of weighted and un-
weighted adjacency indicators, a vector of point proximity
weights and a normalised histogram of proximity weights.
Our second approach to the problem is to use multidimen-
sional scaling to embed a set of pairwise graph-distances
into a low-dimensional space.

We compare the results from the different embedding
strategies and the different adjacency representations on
both synthetic and real-world data. Our aim here is to
determine whether the view-trajectories in the resulting
eigenspaces are well-ordered and can hence be used to in-
dex pose.



2 Image representation

We are interested in learning the view structure from a
set of images
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whose point-features have

been abstracted using Delaunay graphs. Suppose that the
features in the image

�
�
have been abstracted using the

graph � ����������������� . Here
���

is denotes the of nodes,
i.e. the index-set for the point-features and

����������� ���
is the edge-set for the Delaunay graph. The graph index! �#"��
	 	 	 	 $

runs over the set of images in their view-order.
We have experimented in four different representations

of the structure of the graph � � .
2.1 Adjacency matrices

Our first representation is based on the adjacency matrix% �
for the graph � � . This is a & ��� & � & ��� & matrix whose

element with row index ' and column index ( is% ��� ' � ( �)�+* " if
� ' � ( �-,.���/

otherwise
(1)

We adopt a long-vector representation for the adja-
cency matrix. This is obtained by stacking the columns
of the matrix

% �
in order. The resulting vector is 0 �1�� % ���2"��
"3�4� % ���2"��65��4�
	 	 	 	 � % ���2"�� & ��� & �4� % �6��57�
"3�4	 	 	 	 	 � % ��� & ��� & �
"3�4�
	 	 	% ��� & ��� & � & ��� & �28 . Hence, each entry in the long-vector corre-

sponds to a different edge in the graph. This representation
is only meaningful provided that the order of the nodes in
the different graphs is identical and that they contain the
same numbers of nodes.
2.2 Weighted adjacency matrices

Our second representation involves weighting the edges.
We do this by associating a weight with each edge which is
determined by the distance between the pair of correspond-
ing corner features in the image

�
�
. If 9 � ' � ( � is the distance

between the corner features ' and ( , then the weight associ-
ated with the edge

� ' � ( � is% ��� ' � ( �)�:*<;�=�> �2? 9 � ' � ( � ��@�AB� � if
� ' � ( �-,.���/

otherwise
(2)

The columns of the resulting weighted adjacency matrix are
again stacked to form a long-vector 0 � .
2.3 Point proximity matrices

The third relational representation of the corner feature
uses a point proximity matrix. Here we use the weighting
function described above, but apply it to all pairs of corner
features irrespective of whether they are connected by an
edge of the Delaunay graph. The entry in the proximity
matrix for the pair of corners ' and ( is% ��� ' � ( �)� ;�=�> �2? 9 � ' � ( � � @�A � � (3)

2.4 Weight histogram

Our aim is to use the long-vectors extracted from the ad-
jacency representations for the corner features from differ-
ent views to generate an eigenspace. This involves com-
puting the covariance matrix for the different entries in the

long-vectors. However, in order to be statistically mean-
ingful, the entries in the long-vectors must be in correspon-
dence with one another.

To overcome this problem, if correspondence informa-
tion is not available, we have investigated the use of weight
histograms. The weight-function CED �<�GFIH / �
"�J

as-
signs to each edge a weight from the interval

H / �
"�J
. This

interval can be divided into a number of contiguous but
non-overlapping intervals K�L , M �N"��
	 	 	 	 	 ��O

. Hence,H / �
"�JP�RQTSL�U � KPL and KPLWV K�X �ZY if M\[�\] . We can
associate with each interval K�L a bin ^ � M � . For the graph� � , the histogram bin-contents is incremented as follows:

^ � M �_�:` ^ � M �ba % ��� ' � ( � if
% ��� ' � ( �-, KPL^ � M � otherwise (4)

From the bin-contents, we compute a normalised histogram
whose bin-contents isc ��� M �_� ^ ��� M �d S L�U � ^ ��� M � (5)

We convert this histogram into a vector 0 � �� ^ ���2"3�4�
	 	 	 	 	 	 � ^ ���eO����28 .
This procedure can be applied to both the weighted ad-

jacency matrix or the proximity matrix.

3 Learning view structure

In this section we describe two methods from embed-
ding graphs in eigenspaces. The first of these involves per-
forming principal components analysis on the covariance
matrices for the long-vectors of the adjacency matrix or the
weight histograms. The second method involves perform-
ing multidimensional scaling on a set of pairwise distance
between graphs.

3.1 Eigendecomposition of the image representa-
tion matrices

Our first method makes use of the parametric eigenspace
idea of Murase and Nayar [11, 22, 24]. Specifically, we aim
to generate parametric eigenspaces from the representations
outlined in Section 2.

The relational data for each image is vectorised in the
way outlined in Section 2. The

$
different image vectors

are arranged in view order as the columns of the matrix f �H 0 � & 0 � & 	
	
	 & 0 � & 	
	
	 & 0 
�J
Next, we compute the covariance matrix for the elements

in the different rows of the matrix f . This is found by tak-
ing the matrix product g � f)f 8 We extract the principal
components directions for the relational data by performing
an eigendecomposition on the covariance matrix g . The
eigenvalues h � are found by solving the eigenvalue equa-
tion & g ? h � & � / and the corresponding eigenvalues i; � are
found by solving the eigenvector equation gji; �k� h � i; �

We use the first 3 leading eigenvectors to represent the
graphs extracted from the images. The co-ordinate system
of the eigenspace is spanned by the three orthogonal vectors
by
�l�m� i; �3� i; �n� i;3o � . The individual graphs represented by

the long vectors 0 �2� ! �m"��657�
	
	
	4��$ can be projected onto
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this eigenspace using the formula
������ ����
	�� Hence each

graph � � is represented by a 3-component vector
��
� in the

eigenspace.
At this point, it is worth pausing to consider the mean-

ing of the covariance matrix used to construct the different
eigenspaces. When the vector 	�� represents the adjacency
structure of the graph, then the element ����� of the covari-
ance matrix is given by

��� ������� � �� � ��� 	�� � ��� 	�� � ��� (6)

Which is simply the co-occurrence frequency of the edges
indexed � and � in the set of N view graphs.

In the case of the normalised weight histogram, the co-
variance matrix element is��� ������� � �� � ����� � � ��� � � � ��� (7)

Which is correlation co-efficient for the bins � and � of the
weight-histogram over the set of view graphs.

3.2 Multidimensional Scaling

Multidimensional scaling(MDS)[5] is a procedure which
allows data specified in terms of a matrix of pairwise dis-
tances to be embedded in a Euclidean space. The clas-
sical multidimensional scaling method was proposed by
Torgenson[31] and Gower[13]. Shepard and Kruskal de-
veloped another kind of scaling technique called ordinal
scaling[12]. Here we intend to use the method to embed
the graphs extracted from different viewpoints in a low-
dimensional space.

To commence we require pairwise distances between
graphs. There are many ways in which graph similarity can
be measured. The alternatives include graph edit distance
[8, 26, 4, 23], probabilistic similarity measures [6, 30], and
quadratic distance measures [28, 10].Here we use two dif-
ferent methods. The first of these uses a simple matrix
method to compute the distance between pairs of graphs
corresponding to different viewpoints [17] For the graphs� ��� and � �  the similarity measure is! ���#" �  ��%$'&)( * ���� �,+.-0/ � *1�  / �
2 (8)

where
/

is a 3 4 ��� 36573 4 �  3 matrix of correspondence indica-
tors and

+
is a matrix whose entries are all unity.

The second method used to compute the distances be-
tween the graphs makes use of the weight-histogram. Here
the distance between the graphs is simply the Euclidean dis-
tance between the normalised histogram bin-contents for
the two graphs, i.e.! ���#" �  ��98�: ���

; � ��� �,< � - � �  �,< �>=
 

(9)

The pairwise similarities
! �?�@" �  are used as the elements

of an AB5CA disimilarity matrix D , whose elements are
defined as follows

D ���#" �  ��FE ! ���#" �  if G �.H� G?IJ
if G#K � G?I (10)

In this paper, we use the classical multidimensional scal-
ing method to embed our the view-graphs in a Euclidean
space using the matrix of pairwise dissimilarities D . The
first step of MDS is to calculate a matrix $ whose element
with row & and column L is given by$
M#NO� - KI ( !  M#N -QP!  MSR -QP!  R N�T P!  R R 2 (11)

where P! MSRU� KA
�� N>��� ! M#N (12)

is the average dissimilarity value over the & th row,
P! R N is the

similarly defined average value over the L th column and

P! R R�� KA  
��M����

�� N>��� ! MS" N (13)

is the average similarity value over all rows and columns of
the similarity matrix $ .

We subject the matrix $ to an eigenvector analysis to
obtain a matrix of embedding co-ordinates V . If the rank
of $ is ���#�CWFA , then we will have � non-zero eigenval-
ues. We arrange these � non-zero eigenvalues in descend-
ing order, i.e. X �ZY X  [Y]\^\^\_Y Xa`Fb J

. The cor-
responding ordered eigenvectors are denoted by

��c� whereX � is the G th eigenvalue. The embedding co-ordinate sys-
tem for the graphs obtained from different views is V �( �d � � �d  � \^\^\ � �d ` 2 where

�d �e�gf X � ���� are the scaled eigen-
vectors. For the graph indexed G , the embedded vector of
co-ordinates is

������ � V �@" � �SV �@"  �SV �@" h � �
3.3 Contrasting the Methods

Before concluding this section, we pause to compare the
two eigendecomposition methods. Both aim to embed the
graphs in a low-dimensional space. In the case of the pro-
jection method described in Section 3.1, the eigenspace is
generated from the covariance matrix for the individual fea-
tures contained within the graphs over the different views.
These features may be either individual edges, in the case
of the long-vector representation of the adjacency matrix,
or weight frequencies, in the case of the histograms. Hence,
the axes of the representation reflect the most salient distin-
guishing features of the different graphs. The original data
is then projected onto this axis system for the purposes of
constructing the view-space.

In the case of the multidimensional scaling method out-
lined in Section 3.2, the measure used to construct the
eigenspace is one of graph similarity, rather than feature co-
occurrence. The graphs are embedded in the eigen-space in
such a way as to reflect the pattern of pairwise similarities.

4 Experiments

We have used two image sequences in our study. The
first of these is the set of synthetic images shown in Figure
1. This is a set of perspective views of a house as it rotates.
The associated graphs are shown in Figure 2. It is important
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to note that although the number of feature-points in this
sequence remains the same, there are significant structural
differences in the graphs in the different views. In addi-
tion, because we have synthesised these images, the corre-
spondences between feature points in the different views is
known. In Figure 3, we show a second real world sequence
of images. This sequence is taken from the CMU/VASC
data-base. Figure 4 shows the Delaunay graphs for the sec-
ond sequence. Here the feature points have been detected
using the corner detector of [18]. In this sequence there are
different numbers of feature points in the different views. In
addition, we do not know the correspondences between fea-
ture points. Moreover, there are again significant structural
differences between the edge-sets of the graphs.

4.1 Synthetic Images

We commence our experimental study using the syn-
thetic image sequence, where we have access to the cor-
respondences between nodes. In Figure 5(row 1), we show
the result of projecting the unweighted adjacency graph for
the points onto the parametric eigenspace. The trajectory
is well behaved and does not exhibit kinks, or fold back on
itself. In addition, the points corresponding to neighbouring
views are always closer to one-another than views that are
not adjacent. This feature is underlined by the interpoint
distance function which is shown in the right panel of the
figure.

Figure 5(row 2) repeats this analysis for the weighted
adjacency matrix. Here, with the exception of the first and
last views, the trajectory is almost linear. This may prove
an advantage for view indexing since the trajectory can be
interpolated in a linear fashion. From the right panel of the
figure its is also clear that the interpoint distance function is
also smoother than in the case of the unweighted adjacency
matrix.

In Figure 5(row 3) we show the results obtained with the
point-proximity matrix. This provides by far the most uni-
form spacing of points with view number. The trajectory is
also considerably smoother than in the previous two cases.
The interpoint distance function is also very continuous.

Next we turn our attention to the weight histogram rep-
resentation of the points. In Figure 5(row 4), we show the
results with the weight histogram for the edges of Delau-
nay graph. Here the trajectory appears well-ordered, but
it is somewhat erratic and is not smooth. This feature is
supported by the interpoint distance function, which ex-
hibits local maxima and minima. A slightly better picture
emerges when the point proximity histogram is used. In
Figure 5(row 5), the trajectory is slightly less erratic and the
distance function contains less local structure.

Finally, we turn our attention to multidimensional scal-
ing. Figure 6(row 1) shows the result obtained when multi-
dimensional scaling is applied to the graph-distances. Here
the trajectory is well-ordered and relatively smooth. In ad-
dition, the interpoint distance function is also quite smooth.
Figures 6(row 2) and 6(row 3) repeat the MDS analysis for
the adjacency weight histogram and the proximity weight
histogram. The results are comparable to those obtained
with the matrix-based distance measure, and do not require
correspondence information.

4.2 Real World Sequence

Since the numbers of corners in the real world images
vary, and, in addition, we do not have correspondence data
for the detected points, we can only use the histogram-based
method and multidimensional scaling.

Figures 7(row 1) and 7(row 2) show the trajectories
and distance plots for the edge weight and point proxim-
ity weight histograms. From Figure 7(row 1) it is clear that
the edge weight histogram is not suitable for view-based
object recognition. The trajectory is erratic and folds over
on itself several times. Moreover, the associated inter-point
distance plot is very noisy. In the case of the proximity
weight histogram, the trajectory is still quite noisy, but does
not fold-over upon itself.

Finally, we show the results obtained by applying multi-
dimensional scaling. Figures 7(row 3), 7(row 4) and 7(row
5) show the results obtained with the matrix-based graph
distance, the weight histogram distances and the proximity
weight histogram distances. to the graph-distances. Here
the best trajectory is obtained when the matrix-based graph
distance is used. This is considerably less erratic than those
obtained with the two weight histograms.

Figure 1. Model images with feature points

Figure 2. Graph representation of the model
images

5 Conclusions

In this paper, we have investigated various ways for con-
structing view manifolds from graph structures extracted
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Figure 3. House images with feature points

Figure 4. Graph representation of the house
images

from images collected when an object is in different poses.
We have explored two different approaches to the prob-
lem. The first of these is an application of the para-
metric eigenspace method of Murase and Nayar. This
method requires correspondence information and constructs
the eigenspace by measuring the structural correlation of
the graphs for the different views. The second method
uses multidimensional scaling to embed the graphs in a Eu-
clidean space using a matrix of pairwise similarities for the
graphs.

Although the first method gives very promising results
using both weighted and unweighted adjacency matrix rep-
resentations, it requires exact correspondences to be pro-
vided and does not accommodate graphs of different size.
The second method, although it does not return good trajec-
tories, is more flexible in the sense that it can accommodate
graphs of different size.
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