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Abstract

This paper describes an efficient algorithm for inexact
graph-matching. The method is purely structural, that is
to say it uses only the edge or connectivity structure of the
graph and does not draw on node or edge attributes. We
make two contributions. Commencing from a probability
distribution for matching errors, we show how the prob-
lem of graph-matching can be posed as maximum likeli-
hood estimation using the apparatus of the EM algorithm.
Our second contribution is to cast the recovery of corre-
spondence matches between the graph-nodes in a matrix
framework. This allows us to efficiently recover correspon-
dence matches using singular value decomposition. We ex-
periment with the method on both real-world and synthetic
data. Here we demonstrate that the method offers compara-
ble performance to more computationally demanding meth-
ods.

1 Introduction
Graph-matching is a task of pivotal importance in high-

level vision since it provides a means by which abstract pic-
torial descriptions can be matched to one-another. Since
the process of eliciting graph structures from raw image
data is a task of some fragility due to noise and the lim-
ited effectiveness of the available segmentation algorithms,
graph-matching is invariably approached by inexact means
[10] An importnnt idea here has been to use edit-distance to
compare graphs [10] and it has recently been shown that the
edit distance is related to the size of the maximum common
subgraph [2]. Another powerful way to deal with inexact-
ness is to model the structural errors present in the graph-
matching problem in a probabilistic way. Wong and You
[15] made one of the first contributions here by defining
an entropy measure for structural graph-matching. Boyer
and Kak [1] also adopted an information theoretic approach,
but worked instead with attribute relations. Using a proba-
bilistic relaxation framework Christmas, Kittler and Petrou
[3] have developed a statistical model for pairwise attribute
relations. Working in the purely structural domain, Wil-
son and Hancock [14] have derived probability distributions
for the relational errors that occur when there is significant
graph corruption. Once a measure of graph similarity is to
hand then the search for the set of correspondence matches
may be posed as an optmisation or energy minimisation
problem.

Another important method which draws ideas from the
field of mathematics known as spectral graph theory [4],
is to cast the graph-matching problem in a matrix set-

ting and to use the eigenvalues and eigenvectors of the
adjacency matrix as a representation of relational struc-
ture. For instance, Umeyama has an eigendecomposition
method that matches graphs of the same size [13]. Bor-
rowing ideas from structural chemistry, Scott and Longuet-
Higgins were among the first to use spectral methods for
correspondence analysis [11]. They showed how to re-
cover correspondences via singular value decomposition on
the point association matrix between different images. In
keeping more closely with the spirit of spectral graph the-
ory, yet seemingly unaware of the related literature, Shapiro
and Brady [12] developed an extension of the Scott and
Longuet-Higgins method which performs multidimensional
scaling on the point-set proximity matrices to extract a
feature-vector for matching. Horaud and Sossa[8] have
adopted a purely structural approach to the recognition of
line-drawings. Their representation is based on the imma-
nental polynomials for the Laplacian matrix of the line-
connectivity graph. By comparing the coefficients of the
polynomials, they are able to index into a large data-base of
line-drawings.

Although formally elegant, the main limitation of these
matrix methods is their inability to cope with graphs of dif-
ferent sizes. This means that they can not be used when
significant levels of structural corruption are present. More-
over, there has been little attempt to render them robust
using probabilistic or statistical methods. Based on these
observations our aim in this paper is to cast the statisti-
cal matching of graphs into a matrix representation and to
exploit singular value methods to efficiently recover cor-
respondences. We commence by developing a likelihood
function for the graph-matching problem. This treats the
graph to be matched (the data-graph) as observed data and
the set of correspondences with the available model (the
model-graph) as hidden variables. Accordingly, we con-
struct a mixture model over the set of correspondences be-
tween the nodes of the data-graph and those of the model-
graph. We adopt a Bernoulli model for the probability
distribution of the correspondence errors encountered in
matching the data-graph to the model-graph. The existence
or otherwise of correspondence errors is gauged using the
edge-consistency of the pattern of matches.

2 Likelihood Function
Our overall goal in this paper is to develop a maximum

likelihood framework for structural graph matching. In
this section we develop the likelihood function underpin-
ning our study. To commence we must define some nota-
tion. We use the notation

���������	��

to denote the graphs



under match, where
�

is the set of nodes and � is the
set of edges. Our aim in matching is to associate nodes�������	��

��������� � � � � � ��� �	��� �

in a graph � ����������� � � �
representing data to be matched against those from the set��!��"�	#$
	��#%����� � � � � � ��#�� �	�&� '

in a graph � !��(����!)� � !*�
representing an available model. Formally, the matching is
represented by a function from the nodes in the data graph� � to those in the model graph � ! . Suppose that the state
of match between the two graphs is represented by the func-
tion +-, ���/.0��!

from the nodes of the data-graph to
those of the model-graph. We will use latin letters to denote
nodes from the data-graph and greek letters to denote nodes
from the model-graph. Hence, the statement +21 3�4 �657�&�98
means that the node

5;:<���
is assigned the label or symbol8=:<��!

.
One of the goals in this paper is to show how the two

graphs can be matched using matrix factorisation methods.
We therefore introduce some matrix notation to represent
the graphs. To this end we define a > ��� >�?@> ��! > matching
matrix AB1 3�4 whose elements are assignment variables which
convey the following meaningCEDGF �IH&J if + �657�K�L8M

otherwise
(1)

We represent the structure of the two graphs using a> ��� >�?N> ��� > adjacency matrix O for the data graph and a> ��! >E?<> ��! > adjacency matrix P for the model graph. The
elements of the adjacency matrix for the data graph are de-
fined as followsO DGQ �IH&J if

�65��SRG�B: � �M
otherwise

(2)

while those for the model graph are defined to beP F
T �IH&J if
�68U��V��W: � !M

otherwise
(3)

Since we are working with undirected graphs, the two
adjacency matrices are symmetric, i.e. O � OYX and P �PZX .

Having introduced the necessary formalism, we now
proceed to develop our maximum likelihood framework for
graph-matching. We seek the matrix of assignment vari-
ables that maximises the conditional likelihood of the ob-
served data-graph given the available model graph. Hence,
we seek the matrix of assignment variables which satisfies
the condition A �L[�\^]`_a[
bcdfe � � � > � !)��gA � (4)

Next we construct a mixture model over the set of possible
correspondences. We follow the standard approach to con-
structing the likelihood function for a mixture distribution.
This involves factorising the likelihood function over the
observed data (i.e. the nodes of the data-graph) and sum-
ming over the hidden or unobserved variables (i.e. the cor-
responding nodes in the model-graph). As a result we write

e � � �h� � ! > A �K�jiD	k �	lnmF7k �	�po �q� D > # F � A � (5)

where o �q� D > # F � A � is the probability that data-graph node5
is in correspondence with the model-graph node

8
under

the matrix of assignment variables A .
In order to proceed, we require a model for the obser-

vation density o �q� D > # F � A � . We commence from the as-
sumption that the observation density is factorial over the
parameters of the mixture model, i.e. the set of assignment
variables. If this is the case, then we can write

e �q� D > # F � A �K��iQrk �	l iTsk �	�*e �q� D > # F � CEQqT � (6)

Next we develop a model for the probability distribution for
the observed set of correspondences between the nodes of
the data and the model graphs given the current set of as-
signment parameters, i.e e �q� D > # F � CEQqT � . Our model draws
on the recent work of Wilson and Hancock [14] and as-
sumes that the observed data-graph nodes are derived from
the model-graph nodes through a Bernoulli distribution.
The parameter of this distribution is the probability of cor-
respondence error e`t . The idea behind this model is that the
modal-graph node

� D can emit a symbol
# F drawn from the

set of model-graph nodes. The probability that this symbol
is the correct correspondence is J u e`t while the probabil-
ity that it is in error is e`t . To gauge the correctness of the
emitted symbol, we check whether the nodes

5
and

R
of the

data-graph are matched to a valid edge
�68U��V��v: �xw of the

model-graph. To test for edge-consistency, we make use of
the quantityO D	y Q P F
T�CEQqT �IH&J if

�65��SRG�B: � � and
�68U��V��W: � !M

otherwise
(7)

Using this switching property, the Bernoulli distribution be-
comese �q� D > # F � CEQqT �K�z� J{u e2t � �`|�}r!x~G�%�r}�� e 
S���`|�}r!x~G���r}��t (8)

With the factorial assumption and the distribution rule to
hand, the observation density becomese �q� D > # F � A �K��iQrk �	l iTsk �	� � J%u e2t � �`|�}r!x~G���r}�� e 
S���`|�}r!x~G���r}��t

(9)
This expression is exponential in character. It can be re-

written in as a natural exponential functione �q� D > # F � A �K�N�Z�Gb7����� mQrk �	l mTsk �	� O DGQ P F
T�CEQqT7� (10)

where
�)�L� � 
S�������� and

�/� e � �	lK� ��� �	���t . Finally, the cor-
responding log-likelihood function for the assignment ma-
trix is� � A �K� (11)

mD	k �	l � �%]�� mF7k �	� ���Gb7����� mQrk �	l mTsk �	� O DGQ P F
T�CEQqT7�2�
Unfortunately, because of the mixture structure the di-

rect estimation of the matrix of assignment variables A from
the log-likelihood function is not tractable in closed form.
For this reason, in the next section we explain how the
expectation-maximisation algorithm may be used instead.
3 Expectation-Maximisation

Having developed our computational model which poses
the graph-matching problem in a maximum-likelihood
framework, in this section we provide a concrete algorithm
for recovering the parameters of the underlying mixture-
model. We choose to use the EM algorithm originally in-
troduced by Dempster, Laird and Rubin [5]. The utility
measure underpinning the algorithm is the expected log-
likelihood function. The basic idea underlying the algo-
rithm is to iterate between the interleaved expectation and
maximisation steps until convergence is reached. Expecta-
tion involves updating the a posteriori probabilities of the
missing data using the most recently available parameter
estimates. In the maximisation phase, the model parame-
ters are recomputed to maximise the expected value of the
incomplete data likelihood.
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3.1 Expected log-likelihood function
For our graph-matching problem, maximisation of the

expectation of the conditional likelihood is equivalent to
maximising the weighted log-likelihood function������� �	��

��� ��� �	�
���

(12)�������� ���������� � � � � ! ��" � � �	� ��# $ � � ! � � � �%" � � �	��

� �
where

� � �	�
indicates the matrix of assignment variables

taken at iteration & of the EM algorithm. Hence, the a pos-
teriori correspondence matching probabilities computed at
iteration & , i.e. � � � � � ! ��" � � �	� �

are used to weight the iter-
ation &('*) contributions to the log-likelihood function.

With the expected log-likelihood function to hand, the
maximum-likelihood matrix of assignment variables is the
one which satisfies the condition��� �	��

�+�*,	-/.102,4356 ���87�9� ��� �	�
�

(13)

One way to realise the update process is by parallel it-
erative local gradient ascent. In the next section we show
how the expected log-likelihood function can be recast in a
matrix framework. This allows us to realise the update pro-
cedure more efficiently using singular value decomposition.
3.2 Matrix Representation

To commence, we note that when the distribution func-
tion for the assignment variables is substituted from Equa-
tion (10) the expected log-likelihood function becomes:�;=<�> ?A@CB�DFE <�> ?ADHGJI �K�L MON P�L Q%R > ?ADKSPUT�V W�XZY\[^] K�M/_(P4Q�` > ?A@CB�DM Qba (14)

where we have introduced the
� c^de��fg� c^hi�

matrix j � �	�
whose elements j � �	��k� � � � � � � ! �l" � � �	� �

are set equal to the
a posteriori probability of correspondence match between
the data-graph node m and the model-graph node n at itera-
tion & of the EM algorithm.

The critical quantity in determining the update direction
for maximum likelihood matches is7�o��� � �	��

� � � � �	� ��� ���p qOr ��p s j � �	��k�ut �kq/vg�4s^w � �	��

�q s (15)

In matrix form the expected log-likelihood is7������� �	��

�k� ��� �	�
�1�*x9y�z t|{ j � �	� v ����� �	��

�
� {%} (16)

3.3 Maximisation
The maximisation step of the EM algorithm can be stated

as that of recovering the set of correspondence indicators� � �	��

�
which satisfies the condition��� �	��

�+�~,	-/.+02,436 x9y�z t|{ j � �	� v � {%} (17)

In other words, the utility measure gauges the degree of cor-
relation between the edge-sets of the two graphs under the
weighted permutation structure induced by the correspon-
dence probabilities.

To locate the updated set of correspondence indica-
tors we use the extremum principal reported by Scott and
Longuet-Higgins [11]. Their result is as follows. Suppose
that � is a positive definite

� c^d��1f�� c^hi�
matrix. They

have shown how the
� c^de��f�� c^h��

orthogonal matrix �
that maximises the quantity

x9y�z �U� { } may be found by
performing singular value decomposition. To do this they

perform the matrix factorisation � ��c��2� { , where
c

is a
� c8d��Jf�� c8de�

orthogonal matrix,
�

is a
� cChi��f�� c^h��

orthogonal matrix and
�

is a
� c^de��f�� c^hi�

matrix whose
diagonal elements

��� p � ���
if ������

and whose “diag-
onal” elements

��� p � are non-zero. Suppose that � is the
matrix obtained from

�
by making the diagonal elements��� p � unity. The matrix � which maximises

x9y�z �U� { } is� ��c � � { . This extremum principle may be applied to
our graph matching problem if we make the substitution� � t { j � �	� v and perform the singular value decom-
position t { j � �	� v ��ce�2� { to obtain � . This matrix
satisfies the condition� �*,	-/.102,435� x9y�z t|{ j � �	� v 7� {%} (18)

Provided that the matrix t { j � �	� v is positive-definite,
then the elements of � are real.

Although this extremum principle is useful, it is not en-
tirely suited to our needs. The reasons for this are that the
elements of � can not be interpreted as probabilities since
they are neither guaranteed to be positive, nor are they nor-
malised. Furthermore, they can not be interpreted as as-
signment indicators since they are not binary in nature. To
overcome these difficulties, we follow Scott and Longuet-
Higgins by testing the elements of � to obtain a matrix of
binary correspondence indicators

� � �	��

�
. If the element� ��p � is the maximum value for both the row and column

that contains it, then the assignment indicator w � �	��

���p � is set
to unity. Otherwise it is set to zero. As a result the updated
set of correspondence indicators isw � �	��

��k� ��� ) if � �k� �~,	-/.+02,43 q s � q s�

otherwise
(19)

3.4 Expectation
In the expectation step of the EM algorithm, the a poste-

riori probabilities of the hidden data are computed from the
component densities appearing in the mixture-distribution.
This is done by applying the Bayes theorem. At iteration&|'*) we have

� � � � � ! �l" � � �	��

� �1� � � ! � � � �%" � � �	� �O� � �	��� ������� � � ! � � � �%" � � �	� �O� � �	�� (20)

where � � �	�� � )� c8de� ���������� � � � � ! �l" � � �	� �
(21)

4 Experiments
In this section of the paper, we provide some experimen-

tal evaluation of the new graph-matching technique. There
are two aspects to this study. We commence with a sensi-
tivity study using synthetic data. The aim here is to eval-
uate how the new method performs under controlled struc-
tural corruption and to compare it with some alternatives
reported elsewhere in the literature. The second part of the
study evaluates the method on real-world data.

4.1 Sensitivity Study

Our sensitivity study is divided into two parts. We com-
pare our method with some alternative methods for inex-
act graph-matching which rely on matrix factorisation tech-
niques. These methods do not work when the graphs are of
different size. Here we keep the graphs of fixed equal size
and investigate the effect of corrupting the pattern of edges.
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4.1.1 Inexact Graph Matching
We commence by studying the effect of controlled struc-
tural error on the graphs being matched. The graphs used in
our study are the Delaunay triangulations of randomly gen-
erated point-sets. The effects of structural error are simu-
lated by deleting a predefined fraction of randomly selected
nodes and re-triangulating the remaining points.

We compare the performance of our new matching
method with three alternatives. These are the dictionary-
based relaxation scheme of Wilson and Hancock [14], the
quadratic assignment method of Gold and Rangarajan [7]
and the non-quadratic graduated assignment method of
Finch, Wilson and Hancock [6]. Figure 1 compares the four
algorithms. Here we show the fraction of correct correspon-
dences as a function of the fraction of nodes deleted from
the graphs. The main feature to note is that the new graph
matching method delivers performance that is intermediate
between the discrete relaxation method and the non-linear
graduated assignment method. This is an interesting ob-
servation when we compare the computational overheads
associated with the three methods.
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Figure 1. Sensitivity study for graphs of dif-
ferent size.

4.1.2 Factorisation Methods

In this subsection we provide comparison with two meth-
ods for weighted graph-matching which share with our own
method the feature of relying on matrix factorisation. The
methods selected for this comparison are� Umeyama’s weighted graph-matching method which

seeks the permutation matrix
�

that minimises quan-
tity ��� �����
	 	 ���
����	 	

[13]. The method performs
the singular value decompositions

����������������
and

����������� ���� , where the
�

’s are orthogonal
matrices and the

�
’s are diagonal matrices. Once these

factorisations have been performed, the required per-
mutation matrix is

�!�"�������� .� Shapiro and Brady’s [12] weighted graph-matching
method which uses the modal structure of the two
weighted adjacency matrices

�
and

�
. The modal

structure of the two adjacency graphs is found by solv-
ing the eigenvalue equation

�$# �% �'& % # �% . where
& %

is the (*),+ eigenvalue of the adjacency matrix
�

and# �% is the corresponding eigenvector. The eigenvec-
tors are ordered according to the size of the associated
eigenvalues and are used as the columns of the modal

matrix - �.��/0# � 1 2 # �342 # �54276 6 6 6 6 8
. This procedure is

repeated to construct a second modal matrix - � for
the model-graph adjacency matrix

�
. The column in-

dex of these two modal matrices refers to the order of
the eigenvalues while the row-index is the index of the
nodes in the graphs. Shapiro and Brady find correspon-
dences by locating pairs of rows which have minimum
distance, i.e.9;:=< >@?BA�C if D ?FEHGJILK4M N >PORQTSU VXWXY Y Z�[]\_^a`Jb_cXdeZ�fg\ DXh `Jb_c;Y Y ij

otherwise
(22)

These two methods rely on weighted adjacency matrices
rather than the binary ones defined earlier. To conduct our
experiments, we have generated random 2D point-sets. We
use the positions of these points to generate the weights of
the adjacency matrix. Suppose that kl �m and kl �n represent
the co-ordinate vectors associated with the nodes indexed o
and p . The weight associated with the edge connecting the
nodes is � m n �rqHsat4uv� wx	 	 kl �m � kl �n 	 	 3zy (23)

These two methods are not effective when the graphs
under study contain different numbers of nodes. To com-
pare with our method we have therefore kept the number
of points fixed and have added Gaussian errors to the point
positions. The parameter of the noise process is the stan-
dard deviation of the positional jitter. In our experiments,
we express this parameter as a fraction of the average min-
imum distance between points (the relative standard devi-
ation). It is important to stress that the methods compared
here use different representations of the arrangement of the
points. The Shapiro and Brady, and Umeyama methods use
the weighted adjacency matrix. Our method, on the other
hand, uses a binary adjacency matrix to represent the De-
launay triangulation of the points.
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Figure 2. Comparison of the four eigende-
composition methods for graphs with the
same number of nodes.
In Figure 2 we show the fraction of correct correspon-

dences as a function of the relative standard deviation for
our new method (bold curve), Umeyama’s [13] method
(solid curve) and the method of Shapiro and Brady [12]
(dotted curve). The main feature to note is that our method
outperforms the two alternatives. There is little to distin-
guish the performance of the Shapiro and Brady [12], and
Umeyama [13] methods. Both fail abruptly once the rela-
tive standard deviation exceeds 0.2, i.e. the noise standard
deviation is greater than 20% of the average closest point
distance. Our method, on the other hand, degrades almost
linearly with the noise standard deviation. However, it must
be stressed that the results are not completely comparable.
In the case of Shapiro and Brady, and Umeyama [13], we
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are measuring the sensitivity of the method to noise on the
entries of the weighted adjacency matrices. In the case of
our method, we are measuring the sensitivity of the method
to errors in the edge-sets of the graphs used for matching.

Finally, we illustrate the results obtained when we apply
our method to the weighted adjacency matrix rather than the
binary adjacency matrix. The dot-dashed curve in Figure 1
shows the fraction of correct correspondences as a function
of the relative standard deviation of the point-position jitter.
The method performs considerably better than the Shapiro
and Brady, and Umeyama methods. However, there is little
to distinguish its performance from that obtained with the
binary adjacency matrix.
4.2 Real-world data

We commence our real-world evaluation of the graph-
matching method on images of indoor scenes. Here we
are concerned with matching the Delaunay triangulations
of corner-features. We use the corner detector recently re-
ported by [9] to extract point features. Figure 3 shows two
examples of the indoor images used in our study. Superim-
posed on the images are the detected corners and their asso-
ciated Delaunay triangulations. The two images are taken
from different viewpoints. There is rotation, scaling and
perspective distortion present. Moreover, several of the ob-
jects in the scene are at different depths and move relative
to one-another. As a result there are significant structural
differences in the two Delaunay graphs. Figure 4 shows the
correspondences between the corners as lines between the
two images. After checking by hand, the fraction of correct
correspondences is 77%.

Figure 3. Test images overlayed with Delau-
nay graphs.

Figure 4. Correspondences.

We have performed our experiments using images taken
from the CMU/VASC model-house sequence. The images
used in our study are shown in Figure 5 and correspond to
different camera viewing directions. The detected corner
features and their Delaunay triangulations are overlayed on

Figure 5. Delaunay graphs overlayed on the
toy house images.

Figure 6. Correspondences for pairs of im-
ages with increasing difference in viewing an-
gle.

the images. There are clearly significant structural differ-
ences in the graphs. Figure 6 shows the results obtained
when pairs of images in the sequence are matched. The re-
sults are summarised in Table 1. Here we list the number of
detected corners in the images being matched, the number
of corners that are in correct correspondence, the number
of corners that are in error, and the number of corners for
which there are no correspondences (i.e. there is no row
and column maximum). The method breaks down after the
4th image in the sequence.

To provide some comparison, we have selected a pair
of images which contain the same number of corner points
(image 2 and image 4). Although the number of corners
is the same, there are differences in the both identities of
the detected points and their structural arrangement. For
these images we compare the matches returned by the un-
weighted and weighted versions of our algorithm (referred
to as Luo), the method of Umeyama and the method of
Shapiro and Brady. The results are shown in Figures 7 and
8 and the numbers of correct matches are summarised in
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Table 2. From these results it is clear that the new method
returns considerably better matches.

Images Corners Correct False Unmatched
house 1 30 – – –
house 2 32 29 0 1
house 3 32 28 1 1
house 4 32 23 5 2
house 5 34 11 10 9
house 6 33 5 16 9

Table 1. Summary of experimental results for
the house sequence images.

Methods Correct False Unmatched
Luo(Weighted) 22 6 4

Luo(Unweighted) 22 6 4
Umeyama 6 11 15
Shapiro 6 11 15

Table 2. Summary of the comparison of the
three matching algorithms.

Figure 7. Correspondences from the
Umeyama (left) and Shapiro (right) algo-
rithms.

Figure 8. Correspondences from the un-
weighted (left) and weighted (right) variants
of our algorithm.

5 Conclusions
Our main contributions in this paper are twofold. First,

we have cast the problem of graph-matching into a max-
imum likelihood framework by constructing a mixture
model over the set of hidden correspondences and adopt-
ing a Bernoulli model for the distribution of edge-matching
errors. Second, we have used the apparatus of the EM al-
gorithm to show how the problem of estimating the corre-
spondence indicators may be cast into a compact matrix set-
ting. This allows us to use singular value decomposition to
estimate the correspondence indicators in the M-step. The
result is an efficient algorithm that can be used to accurately

match inexact graphs under considerable levels of structural
corruption.

When viewed from the perspective of recent work on
matrix-based graph-matching, the important contribution of
this paper is to show how point-sets of different sizes can be
matched using singular value decomposition.
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