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RankDeficieng Conditionof the Multiple View
Matrix for MixedPointandLine Features

Yi Ma, JanaKoSecka andKun Huang

Abstract— Geometric relationshipsgoverning multiple imagesof points
and linesand associatedalgorithms have beenstudied to a large extentsep-
arately in multiple view geometry In this paper we presenta universalrank
condition on the so-calledmultiple view matrix M comprised of arbitrar -
ily combined point and line featuresacrossmultiple views. The proposed
formulation is shown to be equivalent (but superior) to the multilinear (or
multif ocal) constraints basedapproach. For the first time, it allows us to
carry out global geometricanalysisfor multiple images,aswell as system-
atically characterizeall degenerateconfigurations, without breakingimage
sequenceinto pairwise or triple-wise setsof views. The additional advan-
tage behind this formulation is that it allows to utilize all incidence condi-
tions that govern all featuresin all imagessimultaneouslyfor a consistent
recovery of motion and structure from multiple views. Simulation results
are presentedo validate the multiple view matrix basedapproach.

Keywords—multiple view matrix, rank condition, mixed features

|. INTRODUCTION

HARACTERIZATION of the existing geometric con-

straintshas a long history both in computervision and
photogrammetnandhasimportantimplicationsfor a variety of
applications.The geometriaelationshipgjoverningobsenable
featureprimitivesin multiple views provide astartingpointfrom
which onecandeterminethe choiceof primitivesto represena
3-D sceneandconsequentljormulateandsolve the problemof
motionandstructurerecovery from multiple views.

Thebasicformulationof the geometricconstraintgyoverning
perspectiveprojectionof pointfeaturesn two views originated
in photogrammetryvhich canbetracedbackto the beginningof
lastcentury[8] andthenwasrevivedlaterin thecomputewision
communityin early eighties[10]. Natural extensions(of the-
oretical importanceand with profound practicalimplications)
hadbeenthoseconsideringmultiple views anddifferentfeature
primitives. In the computervision literature,fundamentaknd
structureindependentelationshipdetweerimagefeaturesand
cameralisplacementwerefirst describedy theso-calledmul-
tilinear matchingconstraintd4], [14], [7]. Most of the previ-
ouswork focusedon the algebraicaspectof thesemultilinear
constraintsalongwith the algorithmswhich followed from the
sameormulation. Thisline of work culminatedrecentlyin pub-
lication of two monograph®n this topic[6], [2].

The constraintsamongmultiple views and associatedlgo-
rithmsweremostly developedseparatelyor pointandline fea-
turesandfor differentnumberof views. A distinguishedole
in that developmentwasthe useof the so-calledtrilinear con-
straintsandtheir associatedrilinear tensors.Theinitial formu-
lation of the constraintsbetweenthreeviews of point andline
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featureds dueto [13]. Furtherdevelopmentsandextensiongo

multiple views relied on the useof tensorialnotation,wherethe
multilinear constraintswvere obtainedby algebraicelimination
of someof the unknavnsto renderotherwiseintrinsically non-
linearrelationshipsaslinearones.Trilinear constraintgevealed
certaingeometricrelationshipsetweenpoint andline features
amongthreeviews [12], [5] andwereusedextensiely for fea-
turematching point-linetransferto a new view andmotionand
structurerecovery from threeviews. In orderto apply the tri-

linearconstraintso morethanthreeviews, onehadto typically

resortto a cascadingschemeasin [1]. Given that the choice
of cascadings by no meansuniqueandmary degeneratecon-
figurationsmayoccuramongthe chosertriplets, it wasdifficult

to draw consistentconclusionson the global geometryfor the
multiple views altogether

The main contribution of our work is the derivation of a new
generalrank deficiengy condition on a formal multiple view
matrix M, which combinesmeasurementisom multiple views
of point andline features. This conditiongeneralizesecently
proposedrank deficieng conditionsdevelopedseparatelyfor
points,linesandplanarfeatureq11]. Ourtreatmencompletes
previous efforts to useboth line andpoint featuredfor structure
from motion recovery from multiple views [9], [5], [13]. Fur
thermore,the rank condition of the newv multiple view matrix
M clearlyrevealsthe relationshipamongall previously known
or even someunknonvn multilinear constraints. Therefore the
matrix M generalizepreviously studiedtrilinear constraintsn-
volving mixedpointandline featuredo amultiple view setting,
andit allows a geometricallymeaningfulglobal analysisof ar
bitrarily mary imageswith arbitrarily mixed featureswith no
needto cascadgairwise triple-wiseor quadruple-wisémages.
Its linear structuredirectly facilitatesfeaturematching,feature
transferacrossmultiple views and motion and structurerecov-
ery. An additionalappealof this approachis the sole use of
linearalgebraictechniqueswith no needto introducetensorial
notation,or projective geometry

Overview of the paper: Sectionll introducesotationused
in this paperaswell asbasicconceptsandequationdor thefor-
mulation of multiple view geometry In Sectionlll, we give
(without proof) a rank conditionon someformal multiple view
matrix M, from which all multiple view constraintsamong
points and lines can be instantiated. The geometricinterpre-
tation of the rank conditionof the matrix M is givenin Section
IV. In SectionV, we outlineideashow to usethe multiple view
matrix of mixedfeaturedo incorporateall incidenceconditions
in ascendor a consistentnotionandstructurerecovery. Simu-
lation resultsin SectionVI will demonstratéhe benefitsof the
proposedapproach.



Il. MULTIPLE VIEWS OF A POINT ON A LINE

An imagex(t) = [z(t),y(t),1]T € R® of apointp € E?,
with coordinatesX = [X,Y,Z,1]T € R* relative to a fixed
world coordinateframe,takenby a moving camerasatisfiesghe
following relationship:

At)x(t) = A(t)Pg(H)X D
whereA(t) € Ry is the (unknonn) depthof the point p relative
to the cameraframe, A(t) € SL(3) is the cameracalibration
matrix (attimet), P = [I,0] € R*** is the constanprojection
matrixandg(t) € SE(3) is thecoordinatgransformatiorfrom
theworld frameto thecamerdrameattimet. In theaboveequa-
tion, all x, X andg arein homaeneousepresentation Now
supposehat p is lying on a straightline L c E?, definedby
L={Y|Y =X+ av}, wherev = [v1,v5,v3,0]" € R* isa
non-zerovectorindicatingthe directionof theline, anda € R.
Animagel(t) = [a(t),b(t), c(t)]T € R® of L takenby themov-
ing camerahensatisfieghefollowing equation:

16)"y(t) =1)T A Pg()Y =0 (2
for the imagey(t) of ary point on the line L. In a realistic
situation,we usuallyonly obtain“sampled”imagesof x(t) or
1(t) at sometime instances:t;, ta,. .. ,tm. FOr simplicity we

denote
i = Mt), xi = x(t;), 1; =1(t;), I; = A(t;)Pg(t;). (3)
We thenhave thefollowing systemof equations:
ix; = I, X (4)
7x; =1TTL,Y =1] v =0 (5)
fori =1,...,m. Wefirst obsene thattheunknowvns, A, X, Y

andv, which encodeheinformationaboutlocationof the point
p or theline L in R® are not intrinsically available from the
images.Henceit is naturalto eliminatethemfrom theseequa-
tionsfirst. The remainingrelationshipswvould be betweenx, 1

andII only, i.e. betweertheimagesandthe cameraconfigura-
tion. Of coursetherearemary different,but algebraicallyequiv-

alent,waysthatonecaneliminatetheseunknownns. This hasin

factresultedn differentkinds (or forms)of multilinear(or mul-

tifocal) constraintghat exist in the computervision literature.
We hereintroducea moresystematiavay of eliminatingall the
above unknowvnsthatresultsin a completesetof conditionsand
a clearcharacterizatiorf all constraints.Consequentlyaswe
will soonsee,all previously known and even someunknavn

relationshipganbetrivially deducedrom our results.

I1l. MULTIPLE VIEW RANK CONDITIONS

Withoutlossof generality we mayassumehatthefirst cam-
eraframeis choserto be the referencedrame? That givesthe

150 definedl is in fact the vector orthogonalto the plane spannedby the
imagesof pointsontheline. Strictly speaking]l shouldbecalledthe“coimage”
of theline.

2Dependingon the context, the referencerame could be eithera Euclidean,
affine or projective referenceframe. Without lossof generalitythe projection

matrix for the first image becomesthe standardprojectionmatrix [I, 0] €
R3x4_

projectionmatricesll;,s = 1, ... ,m thegeneraform:

O, =[1,0], ..., Ipn=[RmTn] €R&** (6)
whereR; € R3*3 4 = 2,... m is thefirst threecolumnsof
II; andT; € R3,i = 2,...,m is the fourth column of II;.
Although we have usedthe suggestie notation (R;,T;) here,
they arenot necessarilthe actualrotationandtranslation. R;
couldbe anarbitrary3 x 3 matrix. Only in the casewhenthe
camerais perfectlycalibrateddoesR; correspondo the actual
cameraotationandT; to thetranslation.

For them imagesx,, ... ,x,, of apointp onaline L with

itsm imagedy, ... ,1l,, wedefinethefollowing setof matrices
formally:3

D, = [xi]x €eR¥>*® or 17 €R3,

Df = x,eR or [L]L € B**?,

wherethetransposen [1;]7 is purelystylistic. Then,depending
onwhetherthe available (or chosenmeasuremerftom the i**
imageis the point featurex; or the line featurel;, the D; ma-
trix choosesa corresponding/alue. That choiceis completely
independenof theotherD;’sfor j # i. The“dual” matrix D;-
canbe viewedasthe orthogonal supplemento D; sincefor all
u € R®, therow vectorsof [u] areorthogonato v.* Usingthe
above definitionof D; and Df, we now alsoformally definea
universal multiple view matrix:

DoRyDE DuTh

DsR;D+  DsT;
M= . . (7
DpRmDt DT

Dependingon the particularchoicefor eachD; or Di-, the di-
mensionof the matrix M may vary. But no matterwhat the
choicefor eachindividual D; or Di- is, M will alwaysbe a
valid matrix of certaindimension.Thenaftereliminationof the
unknavns A, X, Y andw in the systemof equationsn (4) and
(5), we obtain;

Theoem1 (Multiple view rankconditions) Considera point
p lying on a line L and their imagesxy,... ,xm € R® and
Li,...,1,, € R relativeto m camen frameswhoserelative
configumation s givenby (R;, T;) for i = 2,... ,m. Thenfor
any choiceof D; and D{- in the definition of the multiple view
matrix M, the rank of theresulting M belongsto and only be-
longsto thefollowing two cases:
1. If D{ = [1]Z and D; = [x;]« for somei > 2, then

|1 <rank(M) < 2.| (8)

2. Otherwise

‘0 <rankM) < 1. ‘ 9)

3For athreedimensionalvectoru € R3, we use[u]x € R3*3 to denote
the skew symmetricmatrix associatedo « suchthatfor ary vectorv € R3, we
have: [u]xv = u X v. Noticethat[u] x is skew-symmetricj.e.[u]l = —[u]x.

41n fact,therearemary equivalentmatrixrepresentation®r D; andDiJ-. We
chooselx;]x and[L;]Z herebecausehey arethe simplestforms representing
theorthogonakubspacesf x; andl; andalsolinearin x; andl; respectiely.



A completeproof of this theoremcan be found in [11]. Es-
sentially the above theoremgivesa universaldescriptionof the
incidenceconditionbetweera pointandline in termsof theirm
imagesseenfrom m vantagepoints.

As aresultof Theoreml, ary previously known or unknowvn
constraintsamongmultiple imagesof point or line featuresare
simply certaininstantiationsof the Theoreml. It is worth not-
ing that the rank conditionis far more generaland universal
thanthesespecialconstraintssincerestrictingthe constraintgo
triple-wiseviews mayintroducecertainartificial degeneracies.
Theoreml alsoimpliesthattherewould be no furtherrelation-
ship amongquadruple-wiseviews, even in the mixed feature
scenarid Therefore quadrilinearconstraintsand quadrilinear
tensorsdo not really exist. To make a connectionwith existing
work, we demonstratéy the following exampleshow to obtain
differenttypesof constraintdy instantiatingM .

Examplel (Epipolarconstraints)Let us chooseDi- = x;
and Dy = [XQ] N thenM = [[Xg] « Rax1 [Xz] XTQ] S R3%2,
rank(M) < 1 is exactly equivalentto the epipolar constaint
xJ [Ts]x Rox; = 0 betweertwo views.

Example2 (Trilinear constraints)Let us choose Di-
x1,Dy = [x2]x, D3 = [x3]x. Thenwe geta multiple view
matrix:

[X2] x Raxy
[x3] x R3x1

[Xz] xTh
[x3]x T3

Thenrankconditionrank() < 1 gives:

M= € R6X2, (10)

[[xa]x Rox1][[x3]x T3] — [[X3]x Rax1][[x2] x T2]" =0 € R3*3.

Thisis thewell known trilinear constrainamongpoint features.
Similarly, if we chooseDi- and D; to beline featuresonly, we
getan M matrix of size2 x 4, its rank conditionis exactly the
trilinear constrainffor lines.

Example3 (Point-line-lineconstraints)Let uschooseD;- =
x1, Dy =1, D3 = 1I'. Thenwe geta multiple view matrix:

lgT2 2X2
11T, e R°*“.

lgRg X1

lgRg X1 (1 1)

|

Thenrank M) < 1 condition:
1 Roxi |12 T3] — 13 Rsx4 |3 1] =0 €R

givesthetrilinear constraintin a mixedfeaturecase.

Example4 (Line-point-pointconstraints)LetuschooseDi- =
)%, Dy = [x2]x, D3 = [x3]x. Thenwe geta multiple view
matrix:

M= [XQ]XRQ[ll]z: [XQ])(TQ
[x3]x Rs[li]L  [x3]xT3
Thenrank M) < 2 impliesthatall 3 x 3 sub-matriceof M

have determinantzero. They are the line-point-pointtype of
constraintonthreeimages.

€ RE*4, (12)

5For example,somethreeviews may form a degenerateconfigurationbut no
longersoafterputtingthemtogethemwith mary otherviews.

81n fact, thisis quite expected:While therank conditiongeometricallycorre-
spondsto the incidenceconditionthatlines intersectat a point andthat planes
intersecataline, incidenceconditionthatthree-dimensionaubspacemtersect
ataplaneis avoid conditionin 3

Similarly, otherchoicesof D; and Di- will giveriseto all possi-
ble typesof constraintsamongany humberof views with point
andline featuresarbitrarily mixed. In fact,otherincidencecon-
ditions suchasall featuresbelongingto a planein R? canalso
be expressedn termsof the samerankcondition:

Corollary 1 (Planarfeaturesandhomography) Supposéhat
all featuresare in a planeand coordinatesX of anypointonit
satisfythe equationt?' X = 0 for somevectorm € R*. Denote
7 = [t 7?] with 7! € R®,#2 € R. Thensimplyappendthe
matrix

[7'Di 7] (13)

to thematrix M in its formal definition(7). Therankcondition
onthenew M remainsexactlythesameas Theoem1.
The rank conditionon the new M matrix thenimpliesall con-
straintsamongmultiple imagesof theseplanarfeaturesjnclud-
ing a specialconstraintpreviously studiedas homayraphy|[3]
(se€[11] for details).

Remarkl (Featurestinfinity) In Theoreml, if the point p
andline L arein theplaneatinfinity P3 \ E?, therankcondition
onthemultiple view matrix M is justthesame Hencetherank
conditionextendsto multiple view geometryof the entire pro-
jective spacdP?, andit doesnotdiscriminateagainsEuclidean,
affine or projective assumptioron the underlyingspace.

Remark? (Occlusion) If ary featureis occludedn aparticu-
lar image,the correspondingow (or a groupof rows)is simply
omitted from M ; or if only the point is occludedbut not the
entire line(s) on which the point lies, then simply replacethe
missingimageof the pointby thecorrespondingmage(s)f the
line(s). In eithercase the overallrank conditionon M remains
unafected In fact, the rank conditionon M givesa very ef-
fective criterionto tell whetheror not a setof (mixed)features
indeedcorrespondo oneor another If the featuresare miss-
matched either dueto occlusionor errorsduring establishing
correspondenceherankconditionwill beviolated.

IV. GEOMETRIC INTERPRETATION

For the first time, the multiple view matrix providesa tool
which allows us to carry out global geometricalanalysisfor
multiple imagessimultaneously without breakingthem into
pairwise or triple-wise ones. Since there are practically in-
finitely mary possibleinstantiationf the multiple view matrix
for arbitrarily mary views, it is impossibleto provide ageomet-
ric descriptionto eachof them.Insteadwe aregoingto discuss
oneclassof themwhichwill givethereaderaclearideahow the
rank conditionworks geometrically Understandinghesecases
would be sufficientfor thereaderto carry out a similar analysis
to ary othercase.

Let us considemultiple view matricesarisingfrom the case
2in Theoreml. In this casewe have 0 < rankM) < 1. So
thereareonly two interestingsub-casedependingn thevalue
of therankof M:

1. ranKM) =1, and 2. rankM) =0. (14)
Thecaseof rank M) = 1 correspondso the genericsituations,
whenregardlessof the particularchoice of featuresin M, all
thesefeaturessatisfy the incidencecondition. For exampleall



thepointfeaturegif projectiondn morethen2 viewsarepresent
in M) areform a unique3-D point p, linesfeatureg(if in more
than3 views presentn M) arefrom aunique3-D line L. If both

point andline featuresarepresentthe point p thenmustlie on

theline L in 3-D. Thisis illustratedin Figurel.

Fig. 1. Genericconfiguratiorfor thecaserank M) = 1. Planesxtendedfrom
theimagesly, l2, 13 intersectat oneline L in 3-D. Lines extendedfrom the
imagesx1 , x2, X3 intersectatonepointp. p mustlie on L.

But what happensin the mixed case, where there is not
enoughpoint or line featurespresentn M, but we have some
mixtureof them?Consideffor examplematrix M with only one
pointfeaturex; presentandtheremainingaretheline features.
Still rank(M) = 1 meanghataline L is uniquelydetermined
byl,,...,1, andthepointp is consequentlyleterminedy the
L andits firstimagex;. Ontheotherhand,if thereis only one
line featurespresentin someM but morethantwo point fea-
turesin M, L canthenbe a family of lines (on a planein fact)
passingthroughthe point p. In ary case,if a point or line is
underdeterminedn the caserank(M/) = 1, it is only because
thereis notenoughdatain thegive imagesnotbecaus¢he con-
figurationis degenerate.

The casewhentherank(}/) = 0 meansall the entriesof M
arezeros. It is easyto verify that this correspondgo a set of
degeneratecasesvhenthe 3-D locationof the point or the line
cannotbe uniquely determinedrom their multiple images(no
matterhow mary), or theincidenceconditionbetweerthe point
p andtheline L nolongerholds.In thesecasesthe bestwe can
dois: 1. Whentherearemorethantwo point featurespresent
in M, the 3-D locationof the point p canbe determinedup to
aline which connectsall cameracenterqrelatedto thesepoint
features);2. Whenthereare morethanthreeline featuresare
presenin M, the 3-D locationof theline L. canbe determined
up to the planeon which all relatedcameracentersmustlie;
3. Whenboth point andline featuresarepresenin M, we can
usuallydeterminghepointp upto aline (connectingall camera
centergelatedto the point features)wvhichis lying onthe same
planeonwhichtherestof thecameracentergrelatedto theline
featureslandtheline L mustlie. Let usdemonstratehis on a
concreteexample. Supposehe numberof viewsis m = 6 and

we choosehematrix M to be:

1;R2X1 lng
1;R3X1 lng
M=| U'Rx, UT, | eR*.  (15)
[xs5]x Rsx1  [X5]xT5
[x6]x Rex1  [X6]xT6

Geometricconfigurationof the point and line featurescorre-
spondingto the conditionrank(A/) = 0 is illustratedin Figure
2.

Fig. 2. A degenerateggeometricconfigurationfor the caserank M) = 0: a
point-line-line-linepoint-point scenario Fromthegivenrankcondition,theline
L couldbeary whereon the planespannedy all thecameracentersthe point
p couldbe ary whereontheline througho1 , 05, 0.

Similar geometricanalysiscanbe performedin the casel of
Theoreml. Oneshouldnoticethatthereareonly two sub-cases
theresincetherankof M canonly beeither2 or 1. Similarly,
theupperbound2 correspond$o genericconfigurationsut the
lower bound1 correspondso all degenerateones. For details,
thereadercanreferto [11].

As a summaryof the above discussionwe seethatthe rank
condition without doubt extendsprevious methodswhich use
multifocal tensorsbut canonly analyzeup to threeviews at a
time.” Sincethereis yetno systematiaway to extendtriple-wise
analysisto multiple views, the multiple view matrix seemso
be a more naturaltool for multiple-view analysis. Notice that,
from examplesin the precedingsection therankconditionsim-
ply impliesall previously known multilinearconstraintsbut not
vice versa(sincethe useof algebraicequationamay introduce
certainartificial degenerayg that makesa global analysismuch
morecomplicatecandsometime®venintractable) Ontheother
hand,therank conditionhasno suchproblem:All thedegener
ate casessimply correspondo a further drop of rank for the
multiple view matrix.

V. MOTION AND STRUCTURE RECOVERY

Theunifiedformulationof contraintsn termsof therankcon-
dition allows us to solve the problemof motion and structure
recoveryfrom multiple views usingbothpointandline features.
Thereare certainadvantagedor using point and line features
together Incidenceconstraintamongpointsandlinescannow
beexplicitly takeninto accountwhenaglobalestimationof mo-
tion andstructuretakesplace. To demonstratéow this works
betterthanexisting methods|et usconsideranimageof a cube
asshavn in Figure3. For the j** cornerp’, it is the intersec-
tion of thethreeedgesL'/, L%/ and L%, j = 1,...,8. From

7 Analysisusingquadrifocattensoravould simply bevoid.
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Fig. 3. A standarccube. ThethreeedgesL!, L2, L3 intersectat the corner
p. Thethreecoordinatesndicatethat threeimagesaretaken at thesevantage
points.

threeimagesof the cube,we have the multiple view matrix M
associatedo p’:

_[Xg_] x R X{ [Xé] T
léJ.TRQ Xi léJTTQ
12T Ryxd 1277,
L | BTRyxd 1¥TT
M = 2 2487 2 2 6]R12><2 16
] Raxd ] T (16)
1§{TR3xi 1§{TT3
T Rex] LTy
| BT Rex! 17T |

wherex! € R?® meansthe imageof the j** cornerin the it

view andlfj € R® meangheimageof the k** edgeassociated
to the j** cornerin the i** view. Theoreml says(M) = 1.
Onecanverify thata/ = [M,1]7 € R? is in the kernel of
MJ. In additionto the multiple imagesx],x3,x3 of the jt*
cornerp’ itself, the extra rows associatedo the line features
lf],z’, k =1,2,3 alsohelpto determinethe depthscale)] .

We can alreadyseeone advantageof the rank condition: It
cansimultaneouslyhandlemultiple incidenceconditionsasso-
ciatedto the samefeature® In principle, usingCorollary 1, one
canfurthertake into accounthatthe four verticesandedgeson
eachfacearecoplanar Sincesuchincidenceconditionsamong
pointsandlinesoccurfrequentlyin practice especiallyfor man-
madeobjectssuchashbuildings andhousesthe useof multiple
view matrix for mixed featuresis goingto improve the quality
of overallreconstructiorby explicitly takinginto accountall in-
cidencerelationshipsamongfeaturesof varioustypes.

In orderto estimatea’ we needto know the matrix M7,
i.e. we needto know the motion (Rz, T>) and(Rs3,T3). From
the geometricmeaningof o/ = [X!,1]7, o/ canbe solved al-
readyif we know only the motion (R»,T>) betweenthe first
two views, which canbe estimatedusing the standardB point
algorithm.Knowing o’’s, the equations

Mol =0,j=1,...,8 (17)

becomelinear in (R3,T>) and (Rs,T5). We can usethem
to solve for the motions (again). Define the vectorsR; =
8|n fact,ary algorithmextractingpointfeatureessentiallyrelieson exploiting

local incidencecondition on multiple edgefeatures. The structureof the M
matrix simply revealsa similar factwithin alargerscale.

[F11,712,713, 721,722, 723,731, 32, 733). € R andT; = T; €
R3, i = 2,3. It is thenequivalentto solve the following equa-
tionsfori = 2, 3:

M Beox g Bel]i]
AHT yx! T 0T
AT s x] T2 7
AT o x! T 1317

| p—— |
|

~

]=o eR®  (18)

N[ " [x]
ASIIST 4 x87 1187
AB128T 5 x87

| AB138T 5 58T 1387 |

28T
li

whereA x B is the Kroneder productof A andB. In general,
if we have morethan6 featurepoints(herewe have 8) or equiv-

alently12featurelines,therankof thematrix P; is 11 andthere
is auniguesolutionto (ﬁi, T}).

LetT; € R® andR; € R3*3 bethe (unique)solutionof (18)
in matrix form. Sucha solutioncanbe obtainednumericallyas
the eigervectorof P; associatedo the smallestsingularvalue.
Let R; = U;S;V;T betheSVD of R;. Thenthesolutionof (18)
in R® x SO(3) is givenby:

T — sign(det(U;V;"))
t N det(Si)
R; = sign(det(U;V;1)) U;ViT € SO(3).

T; € R3, (19)

(20)

We then have the following linear algorithm for motion and
structureestimationfrom threeviews of a cube:

Algorithm1 (Motion andstructurefrom mixedfeatures)Given
m(= 3) imagesx], ..., xJ ofn(= 8) pointsp’, j = 1,...,n
(as the corners of a cube),and the imageslfj, k=1,230f
thethreeedgesintersectingat p?, estimatehe motions(R;, T;),
i =2,...,m asfollows:

1. Initialization: s =0

(a) Compute(R,,T») usingthe 8 pointalgorithmfor thefirst
two views[10]. ' _

(b) ComputeaZ = [A]/A},1]T wheee )] is the depthof the
4t pointrelativeto thefirstcamern frame
2. ComputgR;, T;) astheeigervectorassociatedo the small-
estsingularvalueof P;, i = 2,... ,m.
3. Compute R;, T;) from(19) and (20)fori = 2,... ,m.
4. Computethe new a§+1 = o from (17). Normalizeso that
)‘%,s—i-l =1
5. If ||as — asy1]|| > €, for apre-specified > 0, thens = s+1
andgoto2. Elsestop.

Thecameranotionisthenthecorveged(R;, T;),i = 2,... ,m
andthe structureof the points(with respecto the first camera
frame)is thecorvergeddepthscalarA],j = 1,... ,n.

We have a few commenton the proposedalgorithm:
1. Thereasorto set)} ., = 1isto fix theuniversalscale. It
is equivalentto putting the first point at a relative distanceof 1
to thefirst camereacenter
2. Althoughthealgorithmis basedon the cube,considersonly
threeviews, andutilizes only onetype of multiple view matrix,
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Fig. 4. Simulationsetup

it canbe easilygeneralizedo ary otherobjectsandarbitrarily
mary viewswheneerincidenceconditionsamonga setof point
featuresandline featuresarepresentOnemayalsousetherank
conditionson differenttypesof multiple view matrix provided
by Theoreml. Thereademayreferto [11] for the casewhen
Di ischoserto be[l;]%.

3. Theabore algorithmis a straightforward modificationof the
algorithmproposedor the pure point case[11]. All the mea-
surementf line featuresdirectly contribute to the estimation
of the cameramotion andthe structureof the points. Through-
out the algorithm, thereis no needto initialize or estimatethe
3-D structureof lines.

VI. SIMULATIONS AND EXPERIMENTS

We carriedout extensive simulationsto determinethe perfor
manceof the proposedalgorithmsasthe noisein the measure-
mentsand the numberof featuresand views vary. The simu-
lation parameterare asfollows: the cameras field of view is
90°, imagesizeis 500 x 500, everythingis measuredn units
of focal lengthof the cameraandfeaturestypically are suited
with a depthvariationis from 100 to 400 units of focal length
away from the cameracenter i.e. they locatein the truncated
pyramidspecifiedby the givenfield of view anddepthvariation
(seeFigure4).

Cameramotionsare specifiedby their translationand rota-
tion axes. For example,betweena pair of frames,the symbol
XY meansthat the translationis along the X -axis and rota-
tion is alongthe Y-axis. If n suchsymbolsare connectedoy
hyphens,it specifiesa sequencesf consecutie motions. We
always choosethe amountof total motion suchthat all feature
pointswill stayin the field of view for all frames. In all sim-
ulations,independenGaussiamoisewith a standarddeviation
(std)givenin pixelsis addedto eachimagepoint, andeachim-
ageline is perturbedin a randomdirectionof a randomangle
with a correspondingtd givenin degrees.® Error measurdor

T ~
rotationis arccos (%) in degreeswhere R is an esti-

mateof the true R. Error measurdor translationis the angle
betweerl” and7 in degreeswhereT is anestimateof the true
T. Error measurefor the scenestructureis the percentagef
|la — @||/||e|| whered is anestimateof thetrue a.

A. Simulationson a structuedscene

In this simulation,we apply the algorithmto a scenewhich
consistsof (four) cubesonly. Cubesare good objectsto test

9Sinceline featurescanbe measureanorereliably thanpoint featuresjower
noiselevel is addedo themin simulations.

the algorithmsincethe relationshipsetweenrtheir cornersand
edgesareeasilydefinedandthey represena fundamentastruc-
ture of mary objectsin real-life. The length of the four cube
edgesare 30, 40, 60 and 80 units of focal length, respectiely.
The cubesare arrangedsuch that the depth of their corners
rangesfrom 75 to 350 units of focal length. The threemotions
(relative to thefirst view) arean X X-motionwith -10 degrees
rotationand20 unitstranslationa Y'Y -motionwith 10 degrees
rotation and 20 units translationand anotherYY -motion with
-10degreegotationand20 unitstranslationasshovn in Figure
5.

View 2

Fig. 5. Four views of four 3-D cubesin (normalized)imagecoordinates.The
circle andthe dottedlines arethe original images,the dotsandthe solid lines
arethenoisyobsenrationsunder5 pixels noiseon pointfeaturesand0.5degrees
noiseon line features.

We run the algorithmfor 1000trials with the noiselevel on
the point featuresfrom 0 pixel to 5 pixelsanda corresponding
noiselevel on the line featuresfrom 0 to 1 degree. Relatve to
thegivenamountof translation 5 pixelsnoiseis ratherhigh be-
causewe do wantto comparehow all the algorithmsperform
over a large rangeof noiselevels. The resultsof the motion
estimateerrorsaregivenin Figure6. The“Point featureonly”
algorithmis the one for pure point featuresproposedin [11]
which essentiallyusethe multiple view matrix M in (17) with-
out all therows associatedo the line features;andthe “Mix ed
features’algorithmusesessentiallthesamel asin (17). Both
algorithmsareinitialized by the standard pointalgorithm.The
“Mix ed features”algorithmgivesa significantimprovementin
all theestimatessa resultof theuseof bothpointandline fea-
turesin the recovery. Also notice that, at a high noiselevels,
eventhoughthe 8 point algorithmgivesratheroff initialization
values thetwo iterative algorithmsmanageo cornvergebackto
reasonablestimatesThe structureestimateerrorsshov a sim-
ilar patternastheerrorsfor motionestimates.

B. Simulationson a randomscene

Herewe run the algorithmfor 500trials on a randomlycho-
senscenefor eachtrial. The scenecomprisesof 24 randomly
generategbointsin thetruncatedpyramidasshowvn in Figure4.
They arethenconnectedy 40 randomlychoserlines. Thetwo
consecutre X X-motion and Y'Y -motion with an incremental
10 degreesrotationandthetranslationis givenby the so-called
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Fig. 6. Motion estimate®rrorversuslevel of noises.“Motion x-y” meanshe
estimateor themotionbetweerimageframesx andy. Sincetheresultsarevery
muchsimilar, we only plotted“Motion 1-2" and“Motion 1-4".

T/ R ratio, which is the ratio betweenthe magnitudeof trans-
lation ||T'|| androtationangled comparedat the centerof trun-
catedpyramid(seeFigure4). In following simulationstheratio
is 2. Comparingto the motionwith previoussimulationson the
cubes herethe amountof translationis muchbigget This re-
sultsin improved estimatedor translationas shovn by Figure
7. And the structureestimatesare similarly improved (datanot
shawvn) asexpected.See[11] for details.
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Fig.7. Motion estimate®rrorversudevel of noisedor randomscenes:motion
x-y" meangheestimatefor the motionbetweerimageframesx andy.

VIl. DISCUSSIONS AND CONCLUSIONS

This paperhas proposeda unified paradigmwhich synthe-
sizesresultsand experiencesn the study of multiple views of
point andline features.It is shavn thatall relationshipsamong
multiple imagesof a point on a line arecapturedhrougha sin-
gle rankconditionon a so-calledmultiple view matrix. All pre-
viously known constraintson multiple imagessimply become
its instantiations. To a large extent, this condition simplifies
and unifies multiple view geometry In addition, we can now

carry out meaningfulgeometricanalysisfor arbitrarily mary
imagesaltogethemwithout goingthrougha pairwise triple-wise
or quadruple-wis@nalysis.Comparedo corventionalmultiple
view analysishasedn trifocal tensorsthe multiple view matrix
basedapproactclearly separatesneaningfulgeometricdegen-
eraciesfrom degeneraciesvhich may be artificially introduced
by the useof algebraicequationsor tensors. In particular as
shawn in this paper ary configurationwhich causesa further
dropof rankin the multiple view matrix exactly correspondso
certainglobal geometricdegenerag. Combinedwith previous
resultson point, line andplanarfeatureg11], resultsin this pa-
per give rise to a coherentbut simple geometrictheorythatis
genuinefor multipleimages.

The proposedapproachaims to provide a new perspectie
to multiple view geometry It will certainly have impacton
both theoreticalanalysisand algorithmdevelopment. The lin-
earalgorithmsgivenin this paperandothers[11] only showv a
straight-forvard (hencenaive) way of usingthe rank condition.
Thereare mary otherwaysto improve them: 1. Onecanuse
bettererror measuresn the 2-D imageto recover the motion
andstructureoptimally subjectto the rank condition; 2. Slight
changeof the algorithm may handleocclusions;3. Betternu-
merical methodsshouldbe investigatedon how to imposethe
rank condition;andso on. While we arestill in the processof
investigatingthe full potentialof this new approachthereare
plentyof reasongor usto believe thatwe arestill ataveryearly
stageof understandinghe full extentof multiple view geome-
try: eitherits theoryor its practice.
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