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ABSTRACT 
A method of rotation invariant texture 
classification based on spatial frequency model is 
developed.  Features are derived from the multi-
channel Gabor filtering method. The classification 
performance is first tested on a set 1440 samples 
of 15 Brodatz textures rotated in 12 directions (0 
to 165 in steps of 15 degrees). For the 13-class 
problem reported in [13] we got better 
classification with our features. The total Brodatz 
album is tested using the same features. 10752 
samples from Brodatz album are classified (each 
texture rotated in 12 orientations). The percentage 
correct classification is 84.92 for Brodatz album.   
Keywords: rotation invariance, Gabor wavelets, 
and texture classification 
 

1. Introduction 
 

Texture classification is very important in image 
analysis. Content based image retrieval, inspection 
of surfaces, object recognition by texture, OCR are 
few examples where texture classification plays a 
major role. Multi-channel filtering method [1-9] 
offers computational advantages over other 
methods for texture classification and 
segmentation. Most of these algorithms make an 
implicit assumption that all images are captured 
under the same orientation. In many practical 
applications this assumption is not valid. 
Therefore rotation invariant texture classification 
becomes necessary in such applications. For 
feature-based approaches, using anisotropic 
features rotation invariance can be achieved. Porat 
and Zeevi [10] use first and second order statistics 
based upon three spatially localized features, two 
of which are derived from Gabor filtered image 
i.e. dominant spatial frequency and orientation of 
dominant spatial frequency.  Greenspan et al. [12], 
Haley and Manjunath [13], T. N. Tan [14] use 

rotation invariant features obtained via mu lti-
resolution Gabor filtering.  In our scheme almost 
complete spatial-frequency plane is covered nearly 
uniformly, and rotation invariance is achieved by 
transforming Gabor features into rotation invariant 
features using DFT magnitudes. The motivation 
for covering total spatial frequency plane nearly 
uniformly is for conserving spatial, spectral and 
directional information. Gabor wavelets are used 
because of their following properties: 

• Gabor Elementary Function (GEF) 
achieves the minimum space-frequency 
bandwidth product. 

• GEFs form a non-orthogonal basis for 
exact signal reconstruction. 

• A narrowband GEF approximates an 
analytic signal. 

• The magnitude of GEF in frequency 
domain has no sidelobes. 

• Gabor decomposition only represents the 
lowest level of processing in the visual 
system. It mimics the image coding from 
the input (cornea and retina) to primary 
visual cortex, which is seen as the input 
stage for further and more complex 
cortical processing [17]. 

Section 2 explains Gabor wavelets. In section 3 
rotation invariant texture features are explained. 
Section 4 describes the experiments performed. 
Lastly conclusion and future extensions of this 
work are discussed. The 15 Brodatz textures used 
for the first experiments are:  crocodile skin (D10), 
bark of tree (D12), straw (D15), herringbone 
weave (D17), reptile skin (D22), pressed calf 
leather (D24), netting (D34), water (D37), 
oriental straw cloth (D53), straw matting (D56), 
handwoven oriental rattan (D65), wood grain 
(D68), oriental straw cloth (D80), oriental straw 
cloth (D82), raffia (D84).  Figure 1 shows the 
samples of these Brodatz textures. This is a mixed 
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set of artificial and natural textures and used by 
tan [14] in his experiment. It is necessary to test 
oriented textures for rotation invariance and D15, 
D37, D68 are included in set for that purpose. 
Haley and Manjunath [14] use another set of 13 
textures and they report 96.4 percent correct 
classification for 13-class problem. This texture 
set is D12, D29, D92, D112, D9, D24, D19, D84, 
D17, D37, D68, D15, and D95. Six textures are 
common to first set and remaining 7 textures are 
shown in figure 2. Our features give 100 percent 
classification for the set used in [13]. In [13] phase 
information is added to magnitude information. 
We experienced that phase information plays less 
role in texture discrimination; sometimes for 
difficult textures the classification performances 
degrades if phase information is used.  
 

2. Gabor wavelets 
 

Gabor Elementary Functions are Gaussians 
modulated by complex sinusoids. In two 
dimensions they are represented by [16] 
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For localized frequency analysis it is desirable to 
have a Gaussian envelope whose width adjusts 
with the frequency of the complex sinusoids. We 
have considered a class of self-similar functions, 
referred to as Gabor wavelets. Let ),( yxG  be the 
mother Gabor wavelet, then this self-similar filter 
set can be obtained by appropriate dilations and 
rotations of mother wavelet through the generating 
function: 
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where K
nπθ =  and K  is the total number of 

orientations. The scale factor ma −  in equation (3)  
ensures that the energy is independent of m .  
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This ensures that all filters in the set have the same 
energy. The non-orthogonality of Gabor wavelets 
implies that there is redundant information in the 
filtered images, and the following  strategy is used 

to reduce this redundancy. Let hl UU ,  denote the 

lower and upper center frequencies of interest 
respectively. Let K be the number of orientations 
and S be the number of scales in the multi-
resolution decomposition. Then the design 
strategy is to ensure that the half peak magnitude 
cross-sections of the filter responses in the 
frequency spectrum touch each other. This results 
in the following formulas for computing the filter 
parameters  σu and σv (and  thus σx and σy). 
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Here m is scale. In order to eliminate sensitivity of 
the filter response to absolute intensity values, the 
real (even) components of the 2-D Gabor filters 
are biased by adding a constant to make them zero 
mean. This can also be accomplished by setting 

0)0,0( =H . Imaginary components of Gabor 
filter are zero mean and do not need this 
correction. Figure 3 shows the spatial frequency 
plane coverage of the chosen filter set. 
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3.Rotation invariant texture features 
 
Gabor Elementary Functions give significant 
response at zero and very low frequencies. This 
results in undesirable response to interimage and 
intraimage variations in contrast and intensity and 
may cause misclassifications. The response to a 
zero frequency input relative to the response to an 
input of equal magnitude Gabor center frequency 
can be computed as a function of octave 
bandwidth. The response at zero frequency 
depends on bandwidth and not on Gabor center 
frequency. To take care of this aspect the octave 
bandwidth is kept one where the zero frequency 
response is 30 db below center frequency 
response. Each channel is formed by a pair of real 
Gabor filters. Let the output of each channel is 
given by 
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where ),(1 yxG  is 2D Gaussian and  * denotes 2-
D linear convolution.. The channel output 

( )yxC ,  is computed as 
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Practical implementation is done in frequency 
domain for better computational efficiency. The 
mean value ( )θ,UM  of a channel output 

( )θ,;, UyxC  is computed by 
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where 21NN  is the area of ( )θ,;, UyxC . This 

value depends on the filter center frequency U  
and orientation θ . The mean values provide 
powerful features for texture classification. These 
features are rotation dependant since 

( )iUM θ, ≠ ( )jUM θ,  for ji ≠ . ( )iUM θ,  

is computed from ( )yxi ,  and ( )jUM θ,  from 

( )yxi ,  rotated by an angle θ∆ . 

( )iUM θ, = ( )jUM θ,  if θθθ ∆=− ij  .  A 

rotation of input image ( )yxi ,  by θ∆  is 
equivalent to a translation of the average channel 
output ( )θ,UM  by the same amount θ∆  along 
the orientation axis. Conjugate symmetry gives 

( )iUM θ, = ( )iUM θπ +, . This implies 

( )iUM θ,  is a periodic function of θ with a 

period of π. ( )θ,UM  contains information 

about the amplitude and amplitude modulation 
characteristics of texture’s periodic properties 
within the band. Presently phase is not taken into 
account. Since rotation of input image ( )yxi ,  

corresponds to the translation of ( )θ,UM ,  

DFT of ( )θ,UM  would be rotation invariant 

feature. Equation (11) shows this operation 
mathematically 
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Total number of features required can be 
calculated easily. Let there be n orientations and s 
scales. The features are calculated by taking DFT 
over all rotations for each scale. Using the DFT 

property kk ff −= , n/2 number of  features are 

obtained for each scale. Thus the total number of 
features will be (sn)/2. Practically the number of 
orientations for each scale is determined by 
keeping in view the computational complexity. 
Texture feature vector F is formed by taking the 
DFT at all scales. Thus in this case for 5 scales we 
get a 20-element feature vector. A texture may be 
modeled as a vector valued random field of 
features F. It is assumed that F is stationary and 
has a multivariate Gaussian distribution. For 
classification purpose, a texture  t is modeled as a 
vector valued Gaussian random vector F with the 
conditional probability density 
function
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are mean and covariance of F, respectively, N is 

the number of features and F̂  is an estimate of F 
based on a sample of texture t. The parameters 

Ftµ  and  FtC  are estimated from statistics over 

M samples for each texture t. 
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where mF̂  is estimate of F based on sample  m of 

texture t. 
 

4. Experimental Results 
 

The number of scales chosen is 5 and orientations 
are 8. The center frequencies for the Gabor filters 
are 0.3536, 0.1768, 0.0884, 0.0442, 0.0221 and 
frequency bandwidth is one octave. The 8 
orientations are 0, 22.5, 45, 67.5, 90, 112.5, 135, 
157.5 degrees. Thus 40 Gabor filters are used in 
the experiments, which give 20 rotation invariant 
features for texture classification. The features are 
classified using the pattern recognition toolbox 
PRTools version 3.0 developed by R. P. W. Duin 
[15].   The four classifiers used are normal 
densities based quadratic (multi-class) classifier,  
normal densities based linear classifier (Bayes’ 
rule), uncorrelated normal densities based 
quadratic classifier and k-nearest neighbour 
classifier (find k, build classifier). For first 
experiment only 4 classifiers  are used and qdc 
gives the best performance amongst all. For all 
other experiments qdc classifier is used. All 
texture images are rotated in steps of 15 degrees 
from 0 to 165 degrees to form the training and test 
images. An  256256 ×  image is divided in 16 
subimages of 6464×  size, half the samples are 
used for training and other half for testing the 
performance of the classifier. Thus each image has 
equal images for training and test phase. The 
number of images for testing can calculated as 8 
images per rotations per texture. The images per 
texture for training and test phase are 96 each. For  
a 15-class problem this number becomes 1440. 
Table 1 gives the results of the 15-texture 
classification without feature reduction.  Table 2 
gives the comparison of performance with 13-
texture set of [13]. Table 3 gives the results for 
total Brodatz album using normal densities based 
quadratic (multi-class) classifier. Using ldc 
classifier 13-texture classification accuracy is 
98.72%. If number of scales is reduced to 16 (i.e. 
4 scales as in [13]) % correct classification for  ldc 
and qdc are 99.56 and 99.68 respectively. But for 
complete Brodatz album ldc gives 78.39% correct 
classification.  

5. Conclusion  
 
The proposed rotation invariant features give very 
good performance for the Brodatz textures. The 
textures for which classification error is more than 
50 percent are really very hard to classify, there 
are 7 such textures. Phase information is not used 
in this classification scheme. Overall classification 
rate for Brodatz album is 84.92 percent. Figure 4 
shows the textures from Brodatz album, for which 
misclassification arte is more than 50 percent. 
Figure 5 shows the textures from Brodatz album, 
which are classified correctly all the times, 4 
samples of such images are given. 

 

 
Figure 1: Samples of Brodatz textures used in 
first experiment. Row1: D10, D12, D15; row 2: 
D17, D22, D24; row 3: D34, D37, D53; row 4: 

D56, d65, D68; row 5: D80, D82, D84 
 

 
Figure 2: 7 Textures in the set of [13] (row 1: 

D29, D92, D9, D112; row 2: D24, D19, 
D95) other 6 are in figure 1. 
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Figure 3: Spatial frequency coverage of filter 

set 
Short forms for classifiers in table. 

qdc :  normal densities based quadratic (multi-class)  classifier 
ldc:  normal densities based linear classifier (Bayes’ rule) 
udc:  uncorrelated normal densities based quadratic classifier 
knnc: k-nearest neighbour classifier (find k, build classifier) 
 

Table 1: Results of 15-texture classification 
Sr. 
No. 

Classifier Percent correct 
classification 

1 qdc 99.86 
2 ldc 99.38 
3 udc 99.10 
4 knnc 98.68 

   
 

 
Figure 4: Textures having below 50%  correct 

classification rate: D7, D31, D58, D89, 
D90, D98, D99 (right to left and top to 
bottom). 

 
 

Table 2: Comparison with 13-class 
classification of [13] 

Texture 
% correct 

classification for 
proposed features 

% correct 
classification 

reported in [13]   
Bark (D12) 100 87.5 
Sand (D29) 100 97.9 

Pigskin (D92) 100 95.8 
Bubbles (D112) 100 100 

Grass (D9) 100 95.8 
Leather (D24) 100 93.8 
Wool (D19) 100 91.7 
Raffia (D84) 100 100 
Weave (D17) 100 100 
Water (D37) 100 97.9 
Wood (D68) 100 97.9 
Straw (D15) 100 100 
Brick (D95) 100 100 

 100 96.8 
Table 3:  Brodatz Classification  using qdc 

Texture % 
classi. 

Texture % 
classi. 

Texture % 
classi. 

Texture % 
classi. 

D1 100 D29 97.92 D57 95.83 D85 100 

D2 77.08 D30 67.71 D58 27.08 D86 73.96 

D3 100 D31 45.83 D59 58.33 D87 100 

D4 91.67 D32 92.71 D60 56.25 D88 55.21 

D5 70.83 D33 96.88 D61 63.54 D89 44.79 

D6 100 D34 100 D62 72.92 D90 33.33 

D7 41.67 D35 100 D63 58.33 D91 53.13 

D8 96.88 D36 100 D64 98.96 D92 87.5 

D9 82.29 D37 92.71 D65 100 D93 97.92 

D10 89.58 D38 98.96 D66 91.67 D94 96.88 

D11 97.92 D39 84.38 D67 100 D95 100 

D12 100 D40 67.71 D68 98.96 D96 88.54 

D13 54.17 D41 67.71 D69 82.29 D97 86.46 

D14 100 D42 94.79 D70 95.83 D98 42.71 

D15 100 D43 72.92 D71 95.83 D99 33.33 

D16 95.83 D44 91.67 D72 82.29 D100 79.17 

D17 100 D45 81.25 D73 70.83 D101 86.46 

D18 90.63 D46 96.88 D74 97.92 D102 92.71 

D19 92.71 D47 98.96 D75 89.58 D103 70.83 

D20 100 D48 72.92 D76 100 D104 62.5 

D21 100 D49 100 D77 100 D105 92.71 

D22 100 D50 100 D78 100 D106 85.42 

D23 57.29 D51 100 D79 100 D107 69.79 

D24 93.75 D52 98.96 D80 97.92 D108 83.33 

D25 86.46 D53 100 D81 98.96 D109 76.04 

D26 96.88 D54 89.58 D82 100 D110 83.33 

D27 50 D55 98.96 D83 100 D111 85.42 

D28 81.25 D56 100 D84 98.96 D112 61.46 

Overall % Correct Classification rate = 84.92 
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Figure 5: Four textures with 100% 

classification accuracy 
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