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Abstract

In this paper we presenta distributed surveillancesys-
temthat usesmultiple cheapstatic camemnsto tradk multi-
ple peoplein indoor ervironments.Thesystemhasa setof
Camen ProcessingModulesand a Cental Moduleto co-
ordinatethetradking tasksamongthe cameas. Sinceeach
objectin thescenecanbetradked by a numberof cameas,
the problemis how to choosethe mostappropriate cam-
era for eac object. We proposea novel algorithmto allo-
cateobjectsto camemnsusingtheobject-to-cameadistance
whiletakinginto accountocclusion.Thealgorithmattempt-
s to assignobijectsin the overlappingfields of view to the
neaestcamern which canseethe objectwithoutocclusion.
Experimentalresultsshowthat the systemcan coordinate
cameas to track peopleproperly and can deal well with
occlusion.

1 Intr oduction

Rapidadwancedn technologyhave madecheapsensors,
and especiallycameras,available. This haschangedthe
goalsof suneillancefrom building sureillancesystemais-
ing only asingle,powerful camerao building surweillance
systemsleploying multitudesof cheapcamerasin multiple
camerdracking,we have to solve someproblemsin single
camerdrackingsuchasobjectsegmentationpbjectocclu-
sion, andso on. Several robust systemsthat usea single
camerao trackmultiple objectsarepresentedn [13, 4, 6].
We also have to dealwith the new issuesthat arisewhen
there are multiple camerasn the system. Theseinclude
how to identify anobjectwhenit movesbetweerthefields
of view (FOVs) of the camerasand how to coordinatethe
camerago track objectsin the overlappingFOVs. Huang
andRussel[5] provideathreshold-basedpproximatioral-
gorithmto identify objectsobsenedby two spatiallysepa-
ratedsensors. This work is scaledup to multiple sensors
by Pasulaet al [8]. Orwell et al presenta methodto rec-
ognizeanobjectreappearingn the FOV of anothercamera

by usingthe objectcolor distributions[7]. Otherwork of

notein thisfield includesmatchinghumansubjectdbetween
consecutre framestakenby multiple camera$l] andcoor

dinating both static camerasand mobile camerado track
people[12].

Thecurrentscenariove considelis mary cheapcameras
monitoringa large area,dividing up the areaandobjectsa-
mongthemseles. Theproblemis comple giventhelimit-
ed capabilitiesof cameraon-boardprocessingandthe dif-
ficultiesin coordinatingmultiple camerasAssumingthata
numberof cameragansolve the sametasksandthatmary
objectsmay be tracked at the sametime, the issueis how
to choosethe mostappropriatecamerafor eachtask. This
canbe regardedasa coordinationproblemin thatthe goal
is to maximizethe reliability of the tracking systemgiven
thatthereis limited processingapabilityavailablefor each
cameraThekey questionwe seekto answelis: givenover-
lapping FOVs of the camerasand multiple peoplemoving
around,canwe find a good assignmenalgorithmto track
the peoplereliably? The algorithm shoulddeal well with
situationswherea persormovesfrom the FOV of onecam-
erato the FOV of anothercamerapr whena personis oc-
cludedby others.

This paperpresenta distributedsurweillancesystem. It
operatesn indoor ervironmentsand usesmultiple cheap
static camerado track multiple people. Unlike the other
trackingsystemsin this systema novel algorithmis intro-
ducedto allocatepeopleto the cameras.With the help of
this algorithm, the systemcantrack peoplereliably in the
conditionof thelimitation of cameraon-boardprocessing.

2 The distrib uted surveillance system

Our aimis to build a cheapsuneillancesystemto track
peoplemoving in indoor ervironments. The systemcon-
sistsof multiple cameraseachconnectedo a computeron
alocal areanetwork. We usestaticcamerasn the system
becausef theirlow price. ThecamerasFOVs overlapone
another therefore,an object may be viewed from several
camerasatatime. Dueto noise,objectsneedto betracked
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Figure 1. A systemof distributed network of cam-
eras.
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Figure 2. Processingata CPM andattheCM.

The Central Module (CM)

by Kalmanfilters. Therearetwo approacheto trackanob-
ject using Kalmanfilters: (1) it is tracked by all cameras
thatcanseethe object,and(2) it is tracked by only oneap-
propriatecamera. The objectis robustly tracked with the
first approachput more computationatesourcesvould be
requiredfor the systembecausét needsto maintainmore
Kalmanfilters. Moreover, theincreaseof the trackingreli-
ability sometimess notworth theadditionalcomputational
costs. Becauseof the limitation of cameraon-boardpro-
cessing,we choosethe secondapproachfor our system.
With this approachthe systemstill cantrack objectsreli-
ablywith the helpof Kalmanfilters, but it requiresanalgo-
rithm to assigneachobjectto a suitablecamera.

Thedistributedsurnweillancesystemis shovnin Figurel.
With eachcamerawe have a correspondingCameraPro-
cessingModule (CPM) running on the computerthat the
camerds connectedo. Thesystemalsohasa CentralMod-
ule (CM) that maintainsa databas®f objectsin the entire
sceneaandcoordinateshetrackingtasksbetweerthe CPMs.
EachCPM thenneedgo procesghe video streamto track
theobjectsassignedo it by the CM.

Figure 2 shaws the dataprocessingandcommunication
thattakesplacein aCPMandthe CM. Theleft block shavs
thetasksperformedatthe CPM. Theimagecapturedoy the

camerds processethy theblob segmentatiorstepto extract
the motion blobs (the stepA). The CPM alsoinitializes a
setof Kalmanfilters to track objectsthat are assignedo
the camera(the stepB). TheseKalmanfilters are updated
using the blobs’ information. The right block shaws the
tasksperformedat the CM. Theseincludethe maintenance
of an objectdatabasendthe assignmenbf the objectsto
the suitablecameras.

2.1 Blob segmentation

The first processingstepat the CPM is to segmentout
motionblobsin theimagesequencessingbackgroundub-
traction (stepA in Figure2). To do this, we needa back-
groundmodel. Therearenumerousnethodgo build back-
groundmodels[10, 3]. However, thesemethodsare com-
putationallyexpensve. Our systemrunsin indoorerviron-
ments, so for simplicity and fast computation,the back-
groundimageis first computedas the averageof several
imagesandthenupdatedusingexponentialforgetting.

The foregroundpixels arefound by comparingthe cur-
rentimagewith the background We detectthe boundaries
of theseforegroundpixels by a chain-codealgorithm[2].
The blobs of motion are computedbasedon thesebound-
aries.Then,we calculatethe size,positionandaveragecol-
or of eachblob. Dueto the cameranoiseandthe similarity
of the objectandbackgrounctolor, an objectmay be bro-
keninto severalblobs. Thereforewo blobswhicharenear
eachother are memgedinto a single blob. We do this by
memingrecursvely until all blobsarefarfrom oneanother
After meming, blobswhicharetoo smallwill beconsidered
asnoiseanddiscarded.

2.2 Matching blobsto the Kalman filters

Theblobsextractedfrom the blob segmentatiorstepare
the obsenationsof the Kalmanfilters. However, we need
to find theblobthatcorresponds$o the obsenationof aspe-
cific Kalmanfilter. This taskis performedby the blob-to-
Kalman-filtermatchingstep(stepB in Figure2).

The stateof a Kalmanfilter K is representedsthevec-
tor (K4, Ky, Ky, K, Ky, Ky, Kp). (K, Ky) is the esti-
mateof the positionof thebottomedgeof theobjectbound-
ing boxin theimage.(K,,, K}) is the estimateof thewidth
andheightof the objectboundingbox. (X, K,,Kj3) is the
estimateof the averagered, greenand blue color compo-
nentsof the object. All thesevariablesareassumedo have
Gaussiardistributions.

We usethe position,sizeandaveragecolor propertiego
find thematch.Theprobabilisticdistancebetweerablob B
anda Kalmanfilter stateK is definedas:

dl(BaK) = P(B:lzaByaBTaBgaBbleaKyaKTaKgaKb)
1)



where (B, B,) is the position of the bottom edgeof the
blob boundingbox, (B,,, By) is thewidth andheightof the
blob boundingbox, (B,, By, By) is the averagered, green
and blue color componentf the blob. The probabilistic
distanced; (B, K') is computedrom theKalmanfilter state
K. We alsoenforcetwo hardconstraintgo excludeinvalid
matches:

(l)dl (Bﬂ K) < pdiStmaa:

(2)P(BUJ7 BthuH Kh) < pSiZenam
wherepdist, ... andpsize, . arethe probabilisticdistance
thresholdandthe sizethresholdrespectiely. The problem
is to find a setof matchedblob, Kalmanfilter state)pairs,
sothat the total matchdistanceis minimal. Thisis anin-
stanceof the bipartite matchingproblem[11]. In our sys-
tem,we usethe non-iteratve greedyalgorithmto solve this
problem[9]. It worksasfollows:

1. Choosea valid pair (B,K) for which the distance
dy (K, B) is the minimum. Outputthe match(B,K).

2. Remore B from thelist of blobs,remove K from the
list of Kalmanfilter states Returnto stepl if thereare
still valid (blob, Kalmanfilter state)pairs.

2.3 Matching blobsto the lost objects

Becauseof occlusion,a Kalmanfilter may have no ob-
senation. In thatcase,it continuesto estimatethe object
propertiesfor several framesheforebeingremoved. The
correspondingbjectis consideredo have the statusof a
“lost” object. We needto catchthelost objectsagainwhen
theocclusiondisappearsif theblob correspondingo alost
objectexists, it will be in the setof unmatchedlobsre-
sulting from the matchingstepin section2.2. Therefore,
we needto matchtheseblobswith the lost objectsto find
their correspondenced.his matchingis performedby step
E in Figure2. Becausdhe positionandsizeof anobjectin
theimagemay changesignificantlyafterbeinglost, we can
not matchblobsto the lost objectsusingthe sameproper
tiesasin theprevioussection.Noticethat,thecolorandthe
real-world size* of objectsarenearlyconstantegardlessf
their locationsin the scene. Therefore,we candefinethe
probabilisticdistanceébetweera blob B andalost objectO
as:

d2(B, 0) =P(Br;BgaBb|0r70970b) (2)

where(O,, O,4, Op) istheaveragered,greenandbluecolor
component®f thelostobjectO. Theprobabilisticdistance
d»2(B, O) is computedrom thelastestimateof the Kalman
filter correspondingo the lost objectO. We alsohave two
hardconstraintdo prohibitinvalid matches:

(1) d2(B, O) < pcolor,,, .,

1The real-world size of an objectis calculatedfrom the image size
throughcalibration.
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Figure 3. Thestatusof the databaseat a particular
time

(2) |Br'w - Orw| + |B7'h - Orh| S rWSiZenaz
where(B,.,, B,1,) is thereal-world width andheightof blob
B, (O, O.4) is thereal-world width andheightof object
O beforebeinglost, pcolor,, .. andrwsizg,,, arethecol-
or thresholdandreal-world sizethresholdrespectiely. We
have thesamebipartitematchingproblemasin theprevious
section.We alsousethe non-iteratve greedyalgorithm[9]
to computethe (blob, lost object)matches.

2.4 The object databaseat the CM

At the CM, we maintaina databas®f all objectsin the
scene. It storesthe objectfeatureswhich are updatedby
taking the informationfrom the correspondindalmanfil-
ters(stepF in Figure2). Moreover, to supportthe object-to-
cameraassignmenstep (describedn detailin Section3),
thedatabaseeedgo containinformationof which cameras
seeingwhich objects“clearly”. A cameraseesan object
clearly at a particulartime if the systemcanfind the ob-
senation (blob) of the objectin theimagecapturedoy this
cameraat thattime. Thus,a cameracannot seean object
clearlywhenit is occludedor it goesout of the FOV of the
camera.The databas&nows whethera cameraseesan ob-
jectclearly or not by the matchingstepat the CM (stepG
in Figure2). This stepis describedn detailin Section2.5
belov. Table 3 shows the statusof the objectdatabasat a
particulartime.

2.5 Matching blobsto the objectsat the CM

This stepmatcheghe blobssentfrom a camerawith the
objectsin the databasédstepG in Figure 2). The purpose
of this matchingis to let the systemknow thateachcamera
canseewhich objectsclearly Noticethat, with the objects
tracked by the camerausing Kalman filtering, we already
know whetherthe cameracan seethem clearly or not af-
ter the matchingstepsC and E in eachCPM. Therefore,
we canexcludetheseobjectsandthe correspondindlobs
in the matchingstepat the CM. Becauseof this, we send
to the CM only unmatchedlobsresultedfrom stepE (see
Figure2). Then,we matchthemwith theobjectsthatarenot



trackedby thecamera A matchedblob, object)pair found
meanghatthe cameracanseethis objectclearly. Theblob-
s are matchedwith the objectsusing real-world position,
real-world sizeandcolor propertied. Thedistancebetween
ablob B andanobjectO is definedas:

d3(B,0) = ((Bra — Ora)* + (Bry — Ory))'/?  (3)

where(B;;, Bry) and(O,, Oyy) arethereal-world loca-
tionsof blob B andobjectO respectiely. A matchbetween
blob B andobjectO mustsatisfythreeconstraints:

(1) ds (B, 0) < r'Wp0s,,42

(2) |B7"w - Orwl + |B7’h - Orh| S rWSiZenaz

(3) |Br — Oy| + | By — O4| + | By — Op| < COlOrp44
where (O, Orp) is the real-world width and height of
objectO, (O, Oy, 0y) is the averagered, greenandblue
color component®f objectO, rwpos,, .., 'Wsizg,,, and
color,,,, are the thresholds. We have the samebipar
tite matchingproblemasin the previous sectionsand the
samealgorithmis usedto find theblob-to-objectorrespon-
dences.

3 Assigningobjectsto the cameras

In this part, we proposean algorithmto assignobject-
s to the camerasisingthe object-to-cameraistancewhile
takinginto accountheobjectocclusion.We alsointroduce
a functionto measurehe performanceof the trackingsys-
tem. This functionis thenusedto evaluateour assignment
algorithm.

3.1 Quality of service of atracking system

In mary caseswe needto comparethe operationof a
trackingsystemworking with the differentparametersind
algorithms. To do that, we needa function representing
guantitatvely the performancef trackingsystemsWe ter-
m this functionthe Quality of Service(QOS)function. The
QOsSfunctionis definedbasedn the sizesof the objectsin
theimageandthe objectocclusionstatusasfollows:

Qar = QOS(Cy, ..., Crn_1,00, ..., Oy _1)
= Y10 Yoea, QOS(Ci, 0) 4)

where@,; is the QOS of the whole system,QOS(C;, O)
is the QOSwhichcameraC; givesto objectO, (; is theset
of objectscurrentlytrackedby cameraC;.

The QOSthata cameragivesto anobjectequalsthe es-
timatedsize of the objectobtainedfrom the Kalmanfilter.
Thus, the closerthe objectis to the camerathe higherthe
QOShecomesShouldthe objectbe occludedthe Kalman
filtering estimates thenusedfor severalframes,after that
theobjectis consideredslost andthe QOSdropsto zero.

2Real-vorld positionandsizepropertiesarecalculatedrom imagepo-
sition andsizepropertieshroughcalibrationat the CPMs.

3.2 Object assignmentalgorithm

For areliabletrackingsystemwe needanobjectassign-
mentalgorithmto obtainthe highestQOSfor the system.
Fromequatiord, the QO Sof thesystenis maximizedwhen
eachobjectis trackedby thecamerahatcanview theobject
with the largestsize. Usually, in the caseof no occlusion,
the nearestamerawill give the largestview of the object.
If thereis occlusionanobjectneedso betrackedby oneof
thecamerasvhichcanseeit clearly. Thereforewe havethe
assignmenalgorithmasfollows: with eachobject,among
the cameraghat seethis objectclearly, choosethe nearest
camerabo trackthe object. In the casethatno camerasees
theobjectclearly, the objectcontinuego beassignedo the
currentcamera.

The systemgetsthe setof camerasvhich canseeanob-
ject clearly from the databaseat the CM (seeSection2.4).
Thedistancebetweera cameraandanobjectcanbe calcu-
lated using their positionsin real-world space. Therefore,
theassignmenalgorithmdescribedibove canbeeasilyim-
plementedn thesystem.

To seehow thealgorithmworks,assuméhatanobjectO
is beingtracked by a cameraC. WhenobjectO movesout
of theFOV of cameraC, cameraC cannolongerseeobject
O clearly Then,the algorithmwill switch the tracking of
objectO to oneof the cameraghat seesit clearly. Thus,
the systemcanavoid losing the objectin this case. In the
caseof object O beingoccluded,the systemwill attempt
to switch the objectto the camerathatcanview the object
without occlusion. By this switching step,the systemcan
take the advantageof multiple camerago reducethe time
theobjectis not obsenedby thesystem.

4 Experimental results

We implementour algorithmin a suneillancesystemto
track multiple peoplemoving in a room. The goal of the
systemis to find thetrajectoriesof peoplein thescene.

In the systemsetup,we placethree staticcameras’y,
C, and C» in the cornersof the room. The camerasare
calibratedto getthe correspondencbetweerpointson the
floor (groundplane)andon theimageplane. The 3-D po-
sitions of camera<’y, C; andC, are (0,0,3),(0,6,3)and
(7,1,3)respectiely. Theroomhasonly onedoor. Thisdoor
is monitoredby cameraC atall timesto detectheentering
andleaving of objectsto/fromtheroom. Figure4 shovsthe
positionsof the camerasandthe door region viewed from
above.

We let two peopleenterthe roomthroughthe door, one
after the other They walk inside the room for about40
secondsBecausave needto comparethe performancesf
the systemrunningwith differentalgorithms,the scenario
wasrecordedo videofiles from the cameragframerateof
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Figure 4. Thepositionsof camers Cy, C;, C2 and
thedoor region.
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Figure 5. Thetrajectoriesof (a) person1 and (b)
person2.

10framespersecond) Thesefiles aretakenastheinput for
thesystem.

Figure 5 shaws the trajectoriesof the two peoplere-
turnedby thesystem.TheQOSsassignedo eachpersorare
shavnin Figure6. Thisfigureshovsuswhich persoris be-
ing trackedby which cameraandwhena personis switched
from one camerato anothercamera.For example,person
2 is switchedfrom cameraC; to C, at 17.3secondsfrom
cameraC, to Cy at 26.3secondsandsoon. It alsoshowvs
thatthe QOS of the systemincreasesfter eachswitching.
It meansthat the switching helpsthe systemtrack people
morereliably.

To understanchow the systemperformsthe switching,
we examinethe scenaricat 26.3secondgseeFigure?). At
thistime, personl (in dark clothes)is beingtracked by C}
andpersor? (in brightclothes)is beingtrackedby C5 (gray
boxes).Dueto occlusion personl andpersor? arelost. Cy
cannot trackthe objectsbecausehey have beencombined
into oneblob. The QOSsassignedo thesepeopledropto
zeroat this time. Becauseéboth personl andperson2 are
not seenclearly by all camerasthe systemcannot do ary
switching. After severalframes person? is seenclearly by
cameraCy, so this personis switchedfrom cameraCs to
camerdy. After theswitching,the QOSassignedo person
2 increaseg$rom zeroto around7.0 (seeFigure6(b)).
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Figure 7. Roomviewedfromcamens(a) Co, (b) C;
and(c) C; at 26.3seconds.

In ourassignmenalgorithm,whenanobjectis occluded,
the systemwill switchthis objectto anothercamerawhich
views it better To illustratethe efficiengy of this switching
in dealingwith objectocclusionwe comparet with anoth-
er assignmenalgorithm,which is similar to the first algo-
rithm, exceptthat it doesno object switchingin the case
of occlusion.We termthefirst the switchingalgorithmand
thelatterthenon-switchingalgorithm. In the non-switching
algorithm,whenan objectis occluded the systemstill as-
signsthis objectto the camerawhich is currently tracking
it. It meanghateachcamerahasto dealwith the occlusion
withoutthehelpof othercamerasn the system We runthe
two algorithmswith the samescenarioabove and make a
comparisorof their performancaisingthe QOSfunction.

Figure 8 plots the QOS of the systemrunningwith the
two algorithms. As expected,the switching algorithmis
ableto maintaina higherQOS.

Figures9(a) and9(b) plot the QOSsthat the systemas-
signsto eachpersonwhenit runswith the two algorithms.
As canbeseenfrom Figure9(b), at 16.5secondsthe QOSs
assignedo person2 in both casesdropto zerodueto the
occlusion. At 17.5secondsthe QOSfor the switchingal-
gorithm is not zeroary more, becausehe systemswitch-
esperson2 to cameraCy, which canseehim clearly (this
canbeseenin Figure6). In contrastthe QOSfor the non-
switching algorithmremainszerountil 19.5seconds.The
adwantageof the QOSin the caseof using the switching
algorithmalso canbe seenfrom 26.3to 27.2 secondsand
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from 38.7 to 39.6 secondsn Figure 9(b). Theseresults
shaw that the switchingwhenthe objectocclusionoccurs
helpsthe systemtrack the objectsfor longer periodsand
hencegetsa higherQOS.

5 Conclusionand futur e work

In this paper we have presentech distributed sunweil-
lancesystemto track multiple peopleusing multiple cam-
eras.In the systemwe introducedan algorithmto coordi-
natethecameraso trackpeoplemorereliably. Thealgorith-
m allocatesobjectsto cameraausingthe object-to-camera
distancesvhile takinginto accounbcclusion.We alsohave
proposeda QOS function to measurehe efficiency of the
algorithm. Our experimentakesultsshowv the robustnesof
our algorithmin dealingwith the occlusionandits perfor
manceto maximizethe QOSatall times.

Several future researchdirections can be considered.
Firstly, betterimage processingalgorithmsare neededto
estimatethe featuref the objectsin the caseof occlusion.
This will reducethe time thatobjectsarelost becausehey
canbe tracked better Thereis alsothe issueof resource
allocationwhen dealingwith mary objects. With a large
numberof cameragndobjectsinvolving in the systemthe
processingat the camerashouldbe balancedo guarantee
the objectsaretrackedreliably. In this casethe QOSfunc-

tion needgo take into accounttherparametersuchasthe
camerdramerate,the numberof objectscurrentlytracked
by eachcameragetc. Finally, we will scaleup this system
to work in a more complex spatialervironmentsuchasa
completebuildings.
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