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Abstract

Theapplicationof computervision or image processing
technology is typically limited to expensivenadinesin big
facilities. Onereasonfor this phenomenoris the cost of
hardware required by this technolagy. In order to develop
computervision algorithmsrunnableon inexpensivehard-
ware, we look at the vision systemof insects,and discuss
fourideaswecouldtakeinto accountwhendevelopingsut
algorithms.Onthebasisof this discussionwe specifya de-
signfor an approading-cardetectionsystenfor car driver
assistanceThissystenis attachedto therear of a car, and
facesbadkwards. If othercars approadc fromthe rear, the
systeninformsthe driver. We investigatedhe performance
of the systermusingvarious experimentsand demonstated
its effectiveness. The amountof computationthe system
mustcarry out is approximatelyoneten-thousandtiof that
required by a conventionalimage processingalgorithm. It
is executableon a smallandinexpensiveprocessorfor em-
beddingpurposes.

1 Intr oduction

Technologyof computervision or image processings
increasinglybeing appliedto real world problemsand is
utilizedin mary practicaltasks.For instancethanksto that
technologymachinesandetectdefectsof productsin fac-
tories,readpostcodeson letters,andreplaceadwertisement
signswith othersin tennisgameTV programsg[5]. How-
ever, we may alsoobsene that applicationof this technol-
ogyis largelylimited to expensvemachinesn big facilities.
We almostnever seeconsumemachinessuchastelevision
setsor VCRs, being equippedwith computervision tech-
nology. Thebiggestreasorfor this phenomenottiesin the
costof therequiredhardware.

As imagesarelargerepositorie®f data,it is naturalthat
fast,expensve computersarerequired.For theapplications
mentionedabove, it is not a crucial problembecausehe
costis not thefirst priority in suchapplications.However,

for consumeiproducts this problemis crucialbecausdhe
costis very important. Therefore,if we wish to develop
consumeproductsequippedvith computewisiontechnol-
ogy, we have to develop very inexpensie computervision
algorithmsexecutableby smallandslow computers.

Historically speakingcomputewisionresearchasbeen
linkedwith theanalysisof humanvision [4]. This mightbe
the reasonwhy mostcomputervision researctseemdo be
aimed at the realizationof the samekind of functionsas
thoseof humans. However, humansare not the only life
which hasvision. Insectshave vision. This kind of vision
clearly providescrucial informationfor their lives. At the
sametime, thesevision systemsmustbe implementedon
very simple hardwareor neuralsystems.Therefore,if we
look at thosevision systemswe might be ableto getsome
hints asto how we might develop simple computervision
algorithmsrunnableon smallandinexpensvehardware. Of
coursegvenif we find suchalgorithms they would be use-
lessif they donotprovide valuablefunctions.However, it is
known thathousefliestabilizetheir flight andcontrolland-
ing by vision [1]. Theremustbe mary consumeiproducts
to which thesefunctionsareapplicable.

In this paper we discussan approaching-cadetection
systeminspiredby insectvision. This systemis designed
to be seton a car facingbackwards. When othercarsap-
proachfrom thereat it visually detectehemandwarnsthe
driver. The point of this systemis thatit requiresonly very
inexpensve hardware.

2 Atrtificial InsectVision

Therehave beenmary studiesinspiredby insectvision.
Oneof the mostsuccessfuexamplesis the studyreported
in [2]. In thatstudy a mobilerobotwasactuallybuilt, which
wasableto move aroundin a room avoiding obstaclesis-
ing an insect-like vision system. The focus of this study
lies in an attemptto understandhe mechanism®f insect
vision, copying themfaithfully ontoartificial machinesAs
our purposes to make inexpensve vision systemsye con-
siderinsectvision from a somevhatdifferentpoint of view.
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Figure 1. Hardware of the system.

We donotattemptto copy thedataprocessingroceduresf
insectvision. Rather we imitate mechanism®f the insect
vision if they reducethe amountof computation. Specifi-
cally, we reconsidewour vision systemdrom the following
pointsof view.

(a) Utilization of low resolutionimages:

The fact that insectsuse compoundeyes suggestghat
high resolutionimagesare sometimesot essentiako get
valuableinformation from vision. We considerusageof
low resolutionimagesbecausehey reducedrasticallythe
amountof datato beprocessed.

(b) Utilization of imaging devicesother than video cam-
eras:

Video cameraswere originally designedto getimages
akin to thosehumanssee.However, otherimagingdevices
like photo diodeswhosefields of view are controlled by
apertureould provide imagessuitablefor low price sys-
tems.

(c) Utilization of optical image processing:

Optical systemscan also processimages. It is well
known thatfrequeng filtering of imagescanbe easilycar
ried out with a lens system[7]. So, we should consider
whetherwe can useoptical image processingor our sys-
tems.

(d) Utilization of analogcircuits for computation:

Digital circuits are usually usedfor dataprocessingn
computerisionsystemsHowever, analogcircuitscouldbe
adwantageousvhencomputingthe difference sumor time
delayof signalsfrom imagingdevices.

By consideringour computervision systemsfrom the

Figure 2. Receptive fields of apertures.

above pointsof view, we might be ableto designinexpen-
sive systems. Of course,we neednot adoptall of those
ideas. We adoptsomeof themonly whenthey reducethe
costof our systems.We usedthe first two ideasabove for
our approaching-cadetectionsystem.We call this design-
ing strat@y Artificial InsectVisionin this report.

Figure 1 shows the hardwareof the approaching-cade-
tectionsystemwe designedollowing the Artificial Insect
Vision strat@y. A specialimagingdevice, whosefields of
view arecontrolledby cylindrical aperturesprovidesinten-
sity signalsfor car detection. The numberof aperturesor
signalsis severaltens. So, this device reduceghe amount
of datato be processedTheintensitysignalsarecorverted
in digital form by an A/D corverterand are processedy
a microprocessorThis microprocessocanbe a smalland
inexpensve oneusablein embeddedystems.We actually
useddigital circuitsfor this part,butit couldhave beernreal-
ized by analogcircuits. We leave this subjectfor the future
work.

3 Car DetectionSystem

Thebacksidedirectioncanbeadangerougonebecause
it is hardfor the driver to see. If the driver changedane
without noticing othercarscoming, it canobviously cause
acollision. Thereforeasystenthatcouldmonitorthatzone
andwarn of othercarscomingwould be useful. Many vi-
sionsystemsnonitoringthesurrounding®f acarhavebeen
reportedandthey oftenrequirehigh speedprocessorspe-
cially designedor imageprocessing3]. As statedin the
previous section,our systemrequiresonly a small proces-
sor, owing to aninsect-like imagingdevice.

The principle of cardetectionis quite simple.Whenour
carmovesforward,objectsin thebacksideviews move (rel-
atively) backwards.However, if therearecarsapproaching
our car, forwardmovements obsened. Thesystendetects
this movementusingoptical flow andthereforegaugeghe
existenceof othercars.

The aperturef theimagingdevice in Fig. 1 aresetso



thattheir field of view coverthe adjacentane. Theellipses
in Fig. 2, indicatedby W, (x = 0 ... n), shov thefield of

view of the aperturesLet Sj; ,; denotethe intensitysignal
obtainedfrom the ellipse W,, at thetime ¢. Approaching
carsaredetectedrom S, , by thefollowing algorithm.

— Stepl—

We computethe spacederivative Sx|;,,) andthe time
derivative Sty . Of the intensity Sj; ,; by the following
equations.

Sxitngg = lmtl) = Sfta] ¥ Sptiarr] = Seria] g

2
Srg = Sttal ~ Steal ¥ g[t+1,z+11 ~ Site+ ()
— Step2 —

We prepareadataarrayQy, ), which storesstates If the
condition

[Sx1t,2)| < 61 3)

holds, we set@; . to stateA. In the above equation,d;
is athresholdwhichis setto 2.0in the experiments.This
conditionindicatesthat the spacederivative is too smallto
computereliable optical flow [6]. It alsosuggestghatno
carsexist becausearbodiesusuallymake anintensitytex-
tureandalarge spacederivative is obseredin suchthe ar-
eas.For the partwherethe condition(3) doesnot hold, we
applythefollowing procedures.

— Step3—
We computel-dimensionabpticalflow vy ;) by

ST(t,2]
= _ J 4
R (4)
andcheckthe condition
Ult,e] 2 0. (5)

If thecondition(5) holds,we setQ; . to stateB, otherwise
to stateC. StateC indicatesthat "expanding” optical flow
wasdetectedwhich canbeinterpretedasapproachingars
exist. On the otherhand,stateB shows that "contracting”
opticalflow wasdetectedwhich mustbe generatedby pat-
ternsontheroadsurfacesuchasa zebracrossingor slower
carsthanours. We thus summarizethe meaningof each
stateasfollows.

StateA: No cars.

StateB: No cars,or carsgoingapart.

StateC: Approachingcars.
— Step4 —

We look at the partof the array Q) sectionedoy the

currenttime t, anda passedime ¢;, andcountthe number
of statesof type C in that part. If this numberis greater

Figure 3. Gaussian weightings on experimen-
tal images.

thanathreshold,, the systemdecideghe existenceof ap-
proachingcarsand outputsthe warning signal. In the ex-

perimentswe setf, to 60 andthetime spanbetweert, and
t; to 10 frames. The function of this procedurss to inte-
gratethe statesin the array Q[ ) andto provide a stable
output.Individual statesof Q; . areunstablebecausehey

arecomputedusingonly local information.

4 Experiments

We conductedxperimentsn orderto investigatehe ef-
fectivenesf our systemdesign. In orderto gettheinten-
sity signalsSj; ., it is bestto actuallymake theimagingde-
vicein Fig. 1, but asthefirst step,we simulatedhefunction
of theimagingdevice by accumulatingpixel valuesof reg-
ularvideoimageswith Gaussiameightings becausef the
easeof conductingsuchexperiments. The receptve fields
of theimagingdevice, or Gaussiarweightingsin this case,
areshown in Fig. 3. The ellipsesshov the standarddevi-
ation regionsof the Gaussiarweightings. Theratio of the
shortaxisto thelong axis of all ellipsesis 0.2. Thenumber
of ellipsesis 50. We decidedthis shapeandthe numberof
theellipseson the basisof a preliminaryexperiment.

Figure 4 shows the experimentalresult for a daytime
scene. The original image sequencewhich was taken by
aregularvideocameragconsistf 300frames,from which
4 framesare shovn in Fig. 4 (a). Theintensity S ,, the
stateQ[;,,) andthefinal decisionareshavnin Fig. 4 (b), (c)
and(d), respectiely. In theseimagesthehorizontalaxisis
time or framet. White lines markedin the bottomindicate
10 frameintervals. For Fig. 4 (b) and(c), the vertical axis
is the positionz of the receptve field W,. In Fig. 4 (a)
and(c), stateA, B, andC areexpressedy gray, white and
black,respectrely. In Fig. 4 (d), the white regionsindicate
thatthe systemdetectedapproachingars. In this daytime
sceneacarapproachem thefirst partof thesequencehen
goesbackonce,andgetscloseragainto passour car The
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Figure 4. Car detection result 1 (daytime)

systemdetectedhis situationcorrectly

A resultof the processingf night-timeimagess shavn
in Fig. 5. Theimagesin Fig. 5 (a), (b), (c) and (d) shav
the sameinformationasin Fig. 4. In this scenetwo cars
passour car. The headlightsof the carsyield goodcontrast
in theintensitysignalsSy; ), andthe systemstablydetects
theapproachingars.Therearetwo gapsin themiddlepart
of the detectionresultof Fig. 5 (d). In thesegaps,the cars
actuallygo back.

We shav somescenedor whichthesystenfailedto cor-
rectly give a warning. Oneis a twilight sceneshavn in
Fig. 6. In this scenetheroadhasaverylow constanin the
intensity becausehe sky is so bright andthe cameracon-
trols its gainto meetthe sky’s brightness.As a result,the
systenfailsto detecthe passingcar. If we setthethreshold
6; in Eq. (3) to 0.5 insteadof 2.0 in orderto increasethe
sensitvity, thesystemoutputsthe correctresultasshovnin
Fig. 6 (e) and(f). This suggestshatwe cancopewith this
problemby controlling the gain accordingto the intensity
signalsS; a1

The otherexamplewherethe systemfailedis a sceneof
curvedroads,shavn in Fig. 7. The principlefor cardetec-
tion statedin the previous sectionis valid only whenthe
roadis straightand our car goesstraight. Therefore,it is
easilysurmisedthatthe systemwill be confusedwvhenour
car travels on a curved road. In the sceneof Fig. 7, the
systemoutputfalsealarmsfrom the middle of thesequence

Framel40 Frame260
(a) Imagesequence.
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Figure 5. Car detection result 2 (night).

Table 1. Computation time par frame.

Process Timein second
Imagingsimulation 1.22
Cardetection 3.46x10~°
Opticalflow computation 1.44

becauseour car startedto turn right at that point. Thero-

tation of our car generatedapproachingnovementof the
white lines, andthe systemdetectedhis movementasap-
proachingcars.However, we cancopewith this problemby

changingthe positionsof thereceptve fields W, according
to the steeringinformation. We are now working on this

problem,andcanshav only a preliminaryresultin Fig 8.

Figure 8 (a) shows the arrangemenbf the receptve fields
and(b) is thestateQ); . for thelast150framesof thesame
imagesequencén Fig. 7. We obsene thatthe falsemove-

mentof thewhite lines hasdisappeared.

The biggestadwvantageof the car detectionsystempro-
posedin this paperis the small computingcost. In order
to shav this advantagewe measuredhe processingimes,
which are shavn in Table 1. The figuresin the tableare
the times in secondfor processingone frame of the im-
age sequencedy an Intel Pentiumll 400MHz processar
Thefirst row, which s labeled‘Imaging simulation”,is the
time neededo simulatethefunctionof theimagingdevice,
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Figure 6. Car detection result 3 (twilight).

namely to accumulateixel valuesof inputimageswith the
Gaussiamweightingsin orderto obtaintheintensitysignals
S[t,2)- Thesecondrow, labeled“Car detection”,is for the
cardetectionprocesslescribedn Section3, which thepro-
cessolin Fig. 1 is supposedo actuallycompute.The third
row, labeled“Optical flow computation”,is the time for
computingoptical flow at 56x40 (2240) pointson theim-
ageby ausualopticalflow computatiormethod[6] (Fig.9).
We shavedthis figure only comparisorpurposessan ex-
ampleof processingime of cornventionalimageprocessing
algorithms. Comparingthe secondrow with the third one,
we obsenethatthe computingcostof the proposednethod
is smallerin the orderof 10~5 thanthatof the corventional
optical flow computation. This indicatesthat a small and
inexpensve processocaneasilycarryout our method.

5 Summary and Conclusions

In this paper we first discussedvhat kind of hints we
cangetfrom thevision systemof insectsfor the purposeof
developingcomputervision algorithmsexecutableon small
andinexpensve hardware.We summarizedhehintsasfour

Frame230 Frame290
(a) Imagesequence.

(©) Qpt,2] >

@resot. L JULM...

Figure 7. Car detection result 4 (curved road)

pointswe shouldnotewhendesigningsuchavision system.
Then, following sucha designstrateyy, which we termed
Artificial InsectVision,we designednapproaching-cade-

tectionsystem.The experimentsshaw thatthe systempro-

videsa good performanceat a small computingcost. The

amountf computatiorthealgorithmrequiredsin theorder

of 10~5 of thatrequiredoy aconventionalimageprocessing
algorithm.

Therearetwo mainissuedeft for the future researchn
orderto make the systemmorepractical. Oneis the prob-
lem for curvedroads. As mentionedn the sectionfor the
experimentswe aretrying to solve this problemby chang-
ing positionsof the receptie fields of the imaging device
accordingto theinformationfrom the steeringwheelof the
car If we assumehe roadsurfaceis flat, patternson the
roadmove alonganellipseor conicontheimage,whenthe
caris rotating. Therefore,if we align the receptve fields
alongthat ellipse, the systemcan distinguishoptical flow
generatedy approachingcarsfrom that due to road pat-
terns.

The secondissueis to actually constructthe system—
especiallythe imagingdevice. We have found it desirable
that the receptve field of a photo detectorof the imaging
device hasa Gaussian-lik sensitvity, aswe assumedh the
experiments.The problemis whetherwe canrealizethese
characteristicsisinga cylindrical aperture Preliminaryex-



Figure 8. Experiment with curved receptive
fields.

Figure 9. Optical flow by a conventional algo-
rithm.

perimentssuggestheansweris in the affirmative.

Anotherissuefor the futurework, asidefrom approach-
ing car detection,is to investigatewhat otherkind of sys-
temswe can designon the basisof the Artificial Insect
Vision stratgy. We are planning,for instance a collision
avoidancesystemanda rotationsensorbut we cannotstate
muchabouttheseyet, astheresearchhasjustcommenced.
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