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Abstract

In this paper, we propose a new efficient algorithm to
construct a multiresolution polygonal mesh as a topology
estimation method. The proposed algorithm initially seg-
ments the range data into a finite number of patches us-
ing the K-means clustering algorithm. Each patch is then
approximated by an appropriate polyhedron and divided
into triangles, yielding finally a triangular mesh model. By
controlling the tolerance of the modeling error, multires-
olution representation of the estimated topology also can
be established efficiently. Moreover, in order to improve
the equiangularity of each triangle, we employ the dynamic
mesh model [3], so that the mesh adaptively find its equilib-
rium state, according to the equiangularity constraint. Ex-
perimental results demonstrate that satisfactory equiangu-
lar mesh models are constructed efficiently at various reso-
lutions, while yielding tolerable error.

1 Introduction

In computer vision and computer graphics, range data
plays an important role in many applications, since it pro-
vides an explicit geometrical information on the surface of
an underlying 3-D object. Recent progress in range-finding
techniques, such as laser range scanner and space encoding
range finder, allow us to acquire dense range data with toler-
able error. In addition, by employing proper registration and
integration techniques [8], multiple range data of an object
obtained in different views can be transformed into a com-
mon coordinates system, so that a complete 3-D range data
of the physical model can be reconstructed.

However, since the range data is in itself merely a set
of dense points, an explicit 3-D model for the underlying
object should be obtained for further high level process-
ing. In this context, the modeling technique to convert the
raw range data into a suitable surface model is quite an im-
portant issue, and much efforts have been made to develop
such technique [5][12]. Applications of this technique can

be found in the field of 3-D modeling including rapid pro-
totyping, reverse engineering, virtual and augmented envi-
ronments.

So far, a number of algorithms have been proposed by
several researchers to construct a surface model from a set
of range data, which can be roughly categorized into two
groups based on their approaches: polygonal mesh based
[5] and B-splines based methods [12]. In this paper, we fo-
cus on the techniques using polygonal mesh model. Note
that triangular mesh has been used most widely in 3-D
graphics and vision, since it can represent complex free-
form objects efficiently.

In this paper, we propose a new algorithm to estimate
the underlying topology using triangular mesh, which is
achieved in a top-down strategy. This paper is organized
as follows. The problem is defined and the proposed ap-
proach is briefly introduced in Section 2. In Section 3, � -
means clustering technique is discussed, with which point
patches are generated. In Section 4, the topology estimation
algorithm, including polygonal approximation and triangu-
lar mesh generation, is described in detail. In Section 5, we
introduce the dynamic mesh briefly and present the mesh
adaptation algorithm. Next, experimental results are pro-
vided in Section 6. Finally, we give the conclusive remark
in Section 7.

2 Problem Statements and Overview

In our approach, it is assumed that the input data for-
mat could be either points cloud or dense polygonal mesh.
For the different choices of the input format, the problem of
topology estimation is defined as follows.� Topology estimation of points clouds: If the input is a

points cloud, the problem is to estimate the underlying
topology of the object by constructing polygonal mesh.� Topology estimation of dense mesh: If the input is a
dense mesh, the problem reduces to a accelerated and
memoryless mesh simplification, in which the low res-
olution mesh is obtained quickly.
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Figure 1. Overview of the proposed algorithm.

Note that, in topology estimation of dense mesh, initial
dense mesh is not simplified in the iterative manner as the
previous algorithm. Instead, it creates a low level mesh
without any prior knowledge of other levels.

In constructing triangular surface model, the common
measure for the ‘good’ triangulation is the approximation
error and the equiangular property. The approximation er-
ror is directly affected by the resolution of the mesh model,
and this can be efficiently adjusted by the number of initial
patches in the proposed algorithm. In our work, we prefer
equiangular triangle rather than sharp and narrow triangle,
since it has less distortion in shaded rendering and is more
useful in further processing including mesh editing and tes-
sellation. Equiangular mesh is also known to increase upper
bound on the curvature of sampled surface, assuming that
the shape is locally sphere-like.

The proposed modeling algorithm consists of three
stages: � -means clustering of the input data, polygonal
approximation and triangular mesh generation, and mesh
adaptation. The overall block diagram is shown in Fig-
ure 1. In our approach, firstly by using the � -means cluster-
ing technique, the input range data is partitioned into point
patches. Each pair of point patches is then tested to retrieve
the adjacency information. And using this adjacency rela-
tions, each point patch is approximated by a polygon, yield-
ing the initial polyhedral surface model. Then a triangular
mesh is obtained from this polyhedral model by means of
polygonal division. In this procedure, note that the resolu-
tion of the initial polyhedral model and eventually that of
the final triangular mesh can be controlled by varying the
number of clusters in � -means clustering stage. In mesh
adaptation, in order to increase the equiangular property of
the estimated topology in our approach, the mesh configura-
tion is updated iteratively to converge to the reference mesh,
yielding finally an equiangular mesh. Note that the mesh is
modeled as dynamic spring model and the reference mesh
is configured to be most equiangular deformation.

3 Voronoi Partitioning

The proposed mesh construction algorithm begins with
partitioning of the range data using the � -means clustering
technique. � -means clustering is performed based on the
nearest neighbor criterion, yielding Voronoi partitioning of
the range data.

3.1 � -Means Clustering

The � -means clustering [6] algorithm clusters multidi-
mensional data, by minimizing the sum of the distances
between each point and the cluster centers. This is useful
technique in clustering unorganized data, especially when
no additional information is provided, except the position
of the data. In our approach, the � -means algorithm is
adopted to partition 3-D range data into point patches for
the polygonal approximation. In order to find the center
of the point patches, we use the LGB algorithm [1] to de-
termine the center of each cluster, �����
	���
�	���

������
�	���� ,
where � is the number of clusters. The LGB algorithm can
be summarized as follows.

(1) Choose an initial set of centroids������	 � 
�	 � 
��
����
�	 � � .
(2) Determine the Voronoi region for

each 	�� .
(3) Compute the centroid of each Voronoi

region.

(4) If it has not converged, go to step
2. Otherwise stop.

In determining the Voronoi region, each range data is clus-
tered into � point patches � � �"! �$#�
&%'
��
���(
)�+* , using the
following minimum distance criterion.

�,�,� �
-/.10 � -�
�	�23*5460 � -�
�	'7)* for all 8 ��9� ! *&� (1)0 � -�
�	 2 *:�6-;�
	 2=< #% > 	 2 > �@? (2)

In LGB algorithm, the choice of the initial set of cen-
troid is important, since the algorithm would converge to a
local minimum depending on the initial selection. In our ap-
proach, we use the splitting technique, in which the number
of clusters is increased from 1 to � . The centroid of point
patch with largest variance is split into two by choosing two
centroids as random perturbations.

There are several advantages in applying the � -means
clustering algorithm. First, by using the divide-and-conquer
method, the computation burden can be reduced signifi-
cantly in further processing. Note that since a set of range
data is very large, the conventional point-wise manipulation
requires enormous amount of computational cost. On the
other hand, by partitioning the data into a number of patches
and manipulate them, our algorithm can reduce the search
space drastically and alleviate the computational cost. Sec-
ond, the resultant patches are regular in shape, due to the
characteristics of Voronoi region. Thus, in turn, the approx-
imated polygon becomes also very regular, which is one of
the desirable features in constructing the mesh structure.
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Figure 2. Subclustering of a point patch. (a)
Non-minifold point patch ( ACB ). (b) Removing
non-manifold patch by creating a new patch
( AED ). (c) Removing non-manifold patch by
neighborhood-reclustering ( AGF and AGH ).

3.2 Subclustering of Point Patch

Since the distance measure in (2) is Euclidian distance,
the resultant point patch can be non-manifold structured1.
For example, when the object is relatively thin compared
with the radius of the point patch, some of the resultant
patches could consist of points which lie on opposite side
of the thin surface, as shown in Figure 2 (a). In further
processing, this produces folded polygons which are topo-
logically incorrect.

The problem can be solved by adopting different dis-
tance measure, i.e., geodesic distance. However, the
geodesic distance computation is computationally costly.
Even though fast algorithm is available, it is definitely im-
practical in this application due to the large size of the range
data. In our approach, in order to solve the problem, non-
manifold patch is subclustered, yielding two manifold point
patches, as shown in Figure 2 (b). On the other hand, if
the new patch has few points, the relative size would be too
small, which causes irregular topology in further process-
ing. Therefore, in this case, the smaller part (lower subclus-
ter of AEI in Figure 2 (a)) is reclustered to the neighboring
clusters as shown in Figure 2 (c).

4 Triangular Mesh Construction

In this section, we describe the proposed algorithm to
estimate the underlying topology by constructing initial tri-
angular mesh from the point patches. Algorithms are de-
veloped for points cloud, since the dense mesh structure is
eventually a special case of points cloud. Note that much of
the details can be simplified by using the connection infor-
mation of mesh if the input is dense triangular mesh.

4.1 Finding the Adjacency between Point Patches

Consider two point patches � � and ��J , which consists ofK and L points, respectively, as� � ����- �NM 
�- � � 

���
��
�- �PO1Q � � (3)
1A point patch is called manifold structured when all the point in the

patch is geodesically adjacent.

��JR� �
-SJ M 
�-SJ � 
����
��
�-SJ)T Q � � (4)

Let UWV � -X* be a openball centered at - with radius Y , and
define URV � � � * and UWV � ��J�* using the openballs as (6).

UWV � � � *Z�[UWV � - �\M *X]^URV � - � � *�]_���
��]^UWV � - �PO�Q � * (5)U V � � J *Z�[U V � - J M`*�];U V � - J � *�]+���
�
];U V � - J)T Q � * (6)

Assume that �a� and � J are adjacent each other. Then, for
some Y , at least one point of � J is included in U V � �,�b* and
also at least one point of �a� is included in U V � � J * . In other
words, if the proposition (7) is true, then ��� and � J are con-
sidered to be adjacent.

� URV � � � *�cd��J 9�fe�*�g � URV � ��J�*Xch� �i9�fe�* (7)

If the radius, Y , is too large, there would be false alarm
for the patches which are not actually adjacent. On the con-
trary, if Y is too small, the adjacency could not be detected.
In this research, we found empirically that one fourth of the
mean radius of �a� and � J results in good performance, such
that Yj� #kl��m �Sn m J% *(
 (8)

where the radius of a point patch is defined as the maximum
distance between patch points and the centroid,

m � � > - < 	 � >�o 
 for all -qp;� � (9)

4.2 Polygonal Approximation of a Point Patch

After clustering the data, based on the adjacency infor-
mation to neighboring patches, each point patch is then ap-
proximated by a proper polygon. This can be done easily,
by constructing the Patch Adjacency Table (PAT), which de-
scribes the adjacency relations between every pair of point
patches. For the detail, refer to our previous work [15].

4.3 Mesh Generation

The triangular mesh structure can be constructed by con-
necting each vertices of polygon and the centroid of the
point patch. Note that the vertices of polygon and the cen-
troid of the point patch are exactly on the sampled surface,
thus the nodes of the triangular mesh is also coincide with
the sampled data.

4.4 Multiresolution Triangulation

Multiresolution description technique have been widely
used to control the visual description in multiple levels of
detail (LOD), according to the graphic performance in the
field of computer graphics, vision and virtual environments.

In our proposed 3-D surface modeling approach, the
multiresolution description can be easily implemented, by
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controlling the number of the clusters for the initial poly-
hedral model. In general, there exists a trade-off relation-
ship between the resolution of modeling and the approxi-
mation error. Thus, by increasing or decreasing the number
of polygonal patches, it is possible to control the resolution
and approximation error. Note that, in our approach, the
number of polygonal patches can be adjusted easily by the
number of clusters, � , in the � -means algorithm.

Therefore, if the approximation error of the initial model
is above a specified error bound, we can reduce the error to
be under the bound, by increasing � appropriately.

5 Mesh Adaptation Using Dynamic Model

Adaptive mesh [3] has been proposed for nonuniform
sampling and reconstruction of the intensity and range im-
age data. It is a dynamic model assembled as topologically
regular collections of nodal masses connected by adjustable
springs. The dynamic mesh automatically updates itself un-
til the equilibrium state, driven by the nodal and data forces.

In our approach, we employ the adaptive dynamic mesh
technique to improve the equiangularity condition of the re-
constructed triangular mesh. Consider a node rs� which is
connected to node r J by a spring with natural length tu� J and
stiffness v . Then, the force that the spring exerts on rE� is
defined as wx � JR� v�y�� J> wz � J >

wz � J (10)

where, wz � JR� w-SJ < w-SJy � JW� > wz � J > < t � J ? (11)

In (11),

w- � and

w-SJ are the positional vector of r � and r{J ,
respectively. Due to the nodal and external forces, the posi-
tion of each node with mass | and the damping coefficient} is governed by following second-order nonlinear ordinary
differential equation, given by

| 0 �
w- �0�~ � n } 0

w- �0@~ n
w� �X� w� � (12)w� � ��� J

wx � J�
 (13)

where

w� � is external force at node r � . Note that the conver-
gence speed can be controlled, by adjusting | and } , and it
becomes slower as | and } increase.

Equation (13) can be solved numerically by using the
Euler time-integration method, and the corresponding itera-
tive equations can be derived asw�������� �

w� ��< } w� ��< w� � (14)w� ������ �
w� ������ | (15)w� ������ � w� ��n�� ~ w� ������ (16)w- ������ � w- ��n�� ~ w� ������ 
 (17)

(a) (b)

Figure 3. Movement of a node. (a) Determine
the tangential nodal force

w���� first by project-
ing

w� � onto the tangent plane. (b) then locate
the new position r ������ by projecting the tan-
gential displacement on the sampled surface.

where � ~ is the time step. We observe that as � ~ increases,
although the convergence rate is accelerated, the probability
of converging to local minima also increases. By using (17),
the initial mesh is updated iteratively to be stabilized, with
proper choice of | , } , and � ~ .

In order to improve the equiangularity of the initial mesh
using the adaptive mesh technique, we first establish a vir-
tual reference mesh to which the initial mesh should con-
verge. Each triangle of the reference mesh is equiangular
and has the same area of the corresponding triangle of the
initial mesh. Now, in order to assure the convergence, the
natural length, t3� ��� , of each spring in the initial mesh is
set to be the length of a side of the corresponding equian-
gular triangle in the reference mesh. However, note that
since a spring is essentially shared by two triangles, t"� ���
is not uniquely determined. Thus, to overcome this non-
uniqueness problem, we choose the mean of two candidates
for the natural length. Let � � and ��� be the area of triangles
which share a common spring. Then, the natural length t � ���
is defined as t � ��� � t � n t �% 
 (18)

where the length tu� is given by

t3�,�
� k�� ������ , ! � #@
)% ? (19)

Note that since the shape of adjacent triangles is similar
enough, the mean natural length, t � ��� , of shared spring is
possibly expected to improve the equiangularity of both tri-
angles simultaneously.

In general, since the approximation error is significantly
affected by the nodal movement, due to the data force, mod-
eling and determining the external force, i.e., data force

w� � in
(13) is another important issue in designing dynamic adap-
tive mesh. Usually, this problem becomes more difficult
when we deal with scattered range data, rather than inten-
sity or range image. Thus, in order to solve the problem, in
our approach, we constrain the movement of the nodes to be
only on the sampled surface, so that the modeling error, and
thus the data force at each node become zero. In Figure 3,
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a two dimensional illustration of our approach is shown, in
which the dotted curve denotes the sampled surface. Let
the total nodal force at rG� by the attached springs to be

w� � .
Then,

w� � is projected onto the tangent plane, resulting in the
tangential nodal force

w� �� , which is the effective nodal force
is in this case. Now, as shown in Figure 3 (b), the node rs�
is moved to the position of r �� by the tangential force, and
then the new node r ������ is finally localized on the sampled
surface through the projection of r �� onto it. Since the nodal
position is tied on the sampled surface, the approximation
error varies not much during the iteration process, while the
equiangularity is greatly improved.

6 Experimental Results

In order to evaluate the performance of the proposed al-
gorithm, we have carried out the experiments on several
range data set. Multiresolution topology estimation is per-
formed for the models in Figure 4 (a) � (c), while polyhedral
and triangular mesh with different choices of � are con-
structed. The results are shown in Figure 4 (d) � (r). In
Figure 4 (d) � (h), the position of the codebook vector is
shown. After � -means clustering and polygonal approx-
imation of each point patch, the polyhedron model is ob-
tained as shown in Figure 4 (i) � (m), in which � is set
to 800, 100, 1500, 100, and 1500, respectively. The con-
structed triangular mesh model is shown in Figure 4 (n) � (r).
It is observed that the triangles on the reconstructed mesh is
quite equiangular, because of the mesh adaptation.

Note that the purpose of the mesh adaptation is to max-
imally increase the equiangularity of the initial mesh. Fig-
ure 4 (s) � (u) show the histogram change before and after
the mesh adaptation. Each initial mesh of the model is mod-
elled as the dynamic mesh and updated iteratively for 50
times. It is observed that the equiangularity is sufficiently
improved. Note that the triangular mesh in Figure 4 (n) � (r)
has gone through this adaptation procedure. It is visually
clear that the resultant mesh has quite regular structure.

7 Conclusion

In this paper, based on a combined statistical and dy-
namical methods, we proposed an efficient algorithm to es-
timate the underlying topology of 3-D range data in forms
of the equiangular triangular mesh model. Unlike the con-
ventional methods, by adopting a top-down approach, the
proposed algorithm can not only manipulate unorganized
and scattered 3-D range data efficiently, but also reduce
the computational cost required in modeling, especially for
large and dense data set. By using the � -means clustering
algorithm sequentially, multiresolution topology estimation
is effectively achieved, and also the triangulation can be ac-
complished efficiently. Moreover, in order to increase the

equiangularity of the constructed triangular mesh, the ini-
tial mesh is modeled as a dynamic mesh structure, so that
it refines itself iteratively through the stabilization process,
driven by the nodal forces and the equiangular constraint.
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Figure 4. Multiresolution topology estimation results. (a) Bunny data ( r�� �@� 
)� k'� ). (b) Teeth data
( r�� �`� 
 ���@� ). (c) Venus data ( r���� � 
�# �1� * . (d) Codebook vector ( � � ���@� ). (e) Codebook vector
( �¡��# ��� ). (f) Codebook vector ( ����#�
 �`�@� ). (g) Codebook vector ( ����# ��� ). (h) Codebook vector
( �¢�£#�
 �`��� ). (i-m) Polyhedral model. (n-r) Triangular mesh model after mesh adaptation. (s) Angle
histogram of Bunny model before and after the mesh adaptation. �¤� ���@� , |¥� � ? � # , } � � ? % , vj�¦# ,� ~E� � ? �§� . (t) Angle histogram of Teeth model ( �¨�¥#@
 ����� ). (u) Angle histogram of Venus model
( �©� #@
 ����� ).
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