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Abstract

Correspondence is a fundamental part of three dimen-
sional (3D) model building. It is the process of using sur-
face features to determine correspondences between range
images. Ideally, we desire a fully automatic system to cre-
ate 3D models from range data. However, the automatic
correspondence part of the model building procedure has
proven very difficult. In this paper we present a nomen-
clature to categorise correspondence methods. A variety of
methods are reviewed and classified, including classic ex-
amples such as iterative closest point matching and more
recent techniques such as bitangent curve matching. A new
automatic correspondence algorithm, which combines ex-
isting techniques with the novel approach of searching the
correspondence probability matrix space, is presented. Fi-
nally, results for the algorithm are shown for 2D range pro-
files.

1 Introduction

Many industrial applications require 3D models of ob-
jects and scenes taken from range images. Some exam-
ples where these models are used are 3D recognition sys-
tems, virtual reality map creation, terrain mapping, indus-
trial model inspection, medical imaging and mining.

The 3D model building process consists of four steps:
1. data acquisition: using a sensing device to obtain sets of
range images;
2. correspondence: identifying features in different views
which correspond to the same physical surface features;
3. registration: bringing the corresponding features in dif-
ferent views into alignment; and
4. reconstruction: merging the aligned views to build a 3D
model.

Ideally, we desire a system that automatically creates 3D
models from range images, using the steps outlined above.
In this paper, we focus on the automatic correspondence
process. The automatic data acquisition, registration and
reconstruction problems are more or less solved, yet the
problem of correspondence has proven difficult. This paper

addresses automatic correspondence by reviewing existing
techniques and by introducing a novel approach to solve the
problem.

We first define important correspondence terminology in
a novel nomenclature. Key correspondence techniques are
reviewed in Section 2, then in Section 3 our novel auto-
matic correspondence algorithm, the Automatic Probability
Matrix-based Intrinsic Correspondence Algorithm (APM-
based ICA), is proposed. Results from testing 2D range
profiles are presented in Section 3.7. We conclude by dis-
cussing future work in the area of automatic correspon-
dence.

2 Review and classification

In this section we define correspondence and present
a nomenclature to distinguish between classes of cor-
respondence techniques. We also present a review of
widely used correspondence techniques such as the Itera-
tive Closest Point (ICP) and Random Sample Consensus
(RANSAC)-based Data-Aligned Rigidity-Constrained Ex-
haustive Search (DARCES) algorithms.

2.1 The correspondence nomenclature

The different roles of correspondence and registration
are often not clearly defined in the literature. Also, corre-
spondence algorithms are not distinctly classified according
to the methods used to obtain correspondence between data
sets. This section introduces a unifying nomenclature to de-
scribe correspondence techniques.

Correspondence vs registration
As mentioned, there is often no clear distinction made
between the termscorrespondenceand registration. Al-
though both are fundamental in 3D model building, they
are separate and distinct processes. Surfaces cannot be reg-
istered without first determining the correspondences be-
tween them.

Correspondenceis the process of identifying features in
different views which correspond to the same surface fea-
tures. This can be done using a number of different meth-



ods, such as matching signatures from one view onto an-
other [4]. Registrationis the process of bringing those cor-
responding features into alignment. Numerous registration
methods exist. The most recent ones presented in the liter-
ature are multiview techniques that incorporate error mod-
elling for greater alignment accuracy (e.g. see [16, 17]).
Some techniques combine correspondence and registration
so that correspondences are updated to iteratively determine
alignments between views.

In this paper we focus on the process of correspondence.
The following sections present a novel terminology to dis-
tinguish between different correspondence methods.

Extrinsic vs intrinsic methods

A number of different correspondence methods have been
proposed in the literature. We have noted that each tech-
nique falls into one of two categories, which we define as
extrinsicand intrinsic. Extrinsic is defined as “relating to
the space in which the bearer of the property is embedded”
andintrinsic as “relating only to the bearer of the property
and not to the space in which it is embedded”. These terms
appropriately categorise correspondence techniques for the
reasons discussed below.

Extrinsic methods depend upon the orientation of sur-
faces to determine the correspondences between them.
These methods are iterative, with the estimated correspon-
dences depending on the existing orientations of the views.
They usually require good initial estimates to avoid being
stuck in local minima. The ICP algorithm [2] is the classic
extrinsic method.

Intrinsic methods are based upon properties of the sur-
faces themselves, rather than the orientation of those sur-
faces in space. Unlike extrinsic methods, the intrinsic ap-
proaches are generally non-iterative, one-step procedures.
Thus, the correspondences yielded by intrinsic methods are
a function only of the surfaces, and not of any prior transfor-
mation or orientation between these surfaces. An example
is the RANSAC-based DARCES method [5].

Table 1. Key correspondence techniques.
EXTRINSIC INTRINSIC

iterative closest point [2] geometric histogram matching [1]
ICP derivatives (e.g. [13, 15, 19]) RANSAC-based DARCES [5]
rangefinder calibrations [3] graph matching[7]
signature search [4] 3-tuple matching [8]
Chen & Medioni [6, 9] force functions [10]
mutual information [14] spin-images[11]

bitangent curve matching [18]
spherical image matching [12]

A variety of correspondence techniques are presented in
Table 2.1. These techniques have been categorised as ei-
ther extrinsic or intrinsic and cover numerous approaches
for solving the correspondence problem. The methods are
reviewed in the following sections.

2.2 Extrinsic methods

The classic extrinsic method, the ICP algorithm [2], was
proposed by Besl and McKay in 1992. In this section, we
discuss the ICP and its derivatives. We also review other
extrinsic methods such as correspondence by maximising
mutual information and spherical image matching.

The ICP method [2] determines transformations between
two surfaces by considering the Euclidean distance between
nearest points, line segments, curves, triangle sets or other
shapes defined on the views. The nearest points or shapes
are chosen as correspondences, which are used to calcu-
late the required transformations between the views. The
matches and alignments are progressively updated in an it-
erative procedure. The ICP algorithm originated as a so-
lution to the object recognition correspondence problem.
Therefore, it only works under the assumption that one sur-
face, of the two surfaces being aligned, is a subset of the
other. Several modifications in constraining thetypes of
matches allowedhave been developed, so as to align mutu-
ally partially overlapping surfaces. Proposed solutions in-
clude disallowing matches with boundary points [15], lim-
iting the maximum distance between corresponding points
[19] and selecting only a certain percentage of best corre-
spondences [13].

Chen and Medioni proposed an algorithm which im-
proves the rate of convergence of the ICP algorithm. In-
stead of minimising the distance between pairs of matched
points, their algorithm minimises the distance between the
points on one view and tangent planes on the other [6]. A
proposed improvement to this technique investigates the ac-
curacy of the surface normal estimation of noisy data [9]. A
minimum variance estimator for computing the transforma-
tion parameters was utilised to increase the effectiveness of
the algorithm.

Rangarajanet al. presented a mutual information algo-
rithm that also follows minimum Euclidean distance point
matching. The key difference to the ICP and Chen and
Medioni methods is that the weighted distances between
each point on one surface and each point of the other are
considered as matches [14]. These correspondences define
the amount of mutual information between two views in a
particular orientation with respect to one another. The algo-
rithm iteratively brings the two surfaces into alignment by
maximising the mutual information.

Several extrinsic algorithms that do not apply a mini-
mum Euclidean distance type algorithm have also been pro-
posed. One such technique uses signature search meth-
ods. Burtnyk and Greenspan [4] proposed an extrinsic algo-
rithm whereby the pose correction in matching range pro-
files of two surfaces is iteratively minimised. Reversing
rangefinder calibrations [3] to determine correspondences
is another unconventional extrinsic method. The first stage
of the algorithm determines the locations of points with re-
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spect to the rangefinder, so that initial correspondences can
be formed between views. The second stage utilises the
more conventional extrinsic approach of minimising a Eu-
clidean distance measure between the surfaces.

In the following section, we discuss key intrinsic tech-
niques, which concentrate more on surface properties,
rather than surface orientations and transformations with re-
spect to one another.

2.3 Intrinsic methods

Unlike most extrinsic methods, intrinsic techniques are
generally not iteratively converging. They are often one-
step correspondence procedures, which may be repeated a
set number of times to find the best matches between views.
We review some key intrinsic methods such as 3-tuple and
bitangent curve matching.

Geometric histogram matching is a typical intrinsic tech-
nique [1]. Pairwise geometric histograms are generated for
each triangular mesh facet of the surfaces being matched.
First, local correspondences, between individual facets, are
hypothesised by matching their histograms. Global cor-
respondences are determined by applying a probabilistic
Hough transform to the collection of local hypotheses to
find the optimal correspondences between two the surfaces.
Guestet al.proposed a similar intrinsic technique [10]. Cor-
respondences are hypothesised by matching a selected point
from one surface to several points on the other surface, us-
ing a Euclidean distance based force function. Then small
movements are applied to the match point, and the matches
are re-estimated for each perturbation. This creates a distri-
bution of tentative correspondences, from which the optimal
match can be calculated.

Direct surface matching techniques have also been pre-
sented in the literature. 3-tuple matching [8] is a geometric
approach whereby three dispersed seed points (a 3-tuple)
are selected on one surface, and the other surface is searched
for compatible 3-tuples. Transformations are calculated for
each 3-tuple match and a heuristic search is used to select
the optimal transformation.

A related technique, the RANSAC-based DARCES al-
gorithm [5], selects a triangle on one surface and attempts
to find a compatible triangle on the other surface. Again,
the transformations for each compatible triangle are calcu-
lated and the best transformation is chosen as the one with
the most points within a close predefined distance of one
another. RANSAC (random sample consensus), a robust
estimation technique, is used to randomly select a primary
control point on one view and determine a consensus of the
best matches of regions on the other.

Graph matching [7] is another geometric-based tech-
nique. A graph is constructed over the vertices of each sur-
face and correspondences are determined by matching the
vertices of the graphs. However, this technique is extremely

computationally expensive.
Vanden Wyngaerdet al.proposed a signature-based cor-

respondence technique that uses bitangent curves as sig-
natures [18]. This intrinsic technique is automatic, how-
ever heavy smoothing is required to generate good bitan-
gent curves, and the level of smoothing is data dependent,
making the algorithm application specific.

Another method of matching surfaces without directly
comparing the geometric properties of the range data, uses
spherical images. Range image vertex curvature data is
mapped onto spherical images (under the assumption that
the surfaces are homeomorphic to a sphere), and these
spherical images are correlated with one another to find the
best matches between them. A similar technique uses spin-
images [11]. They are created by transforming oriented 3D
points onto local 2D bases, and contain information of the
entire surface, which ensures a more discriminating match-
ing procedure. The spin-images are compared with one an-
other and the matches are ranked using a correlation co-
efficient. Highly ranked matches are used as initial corre-
spondences. Final correspondences are established using
an ICP-type technique.

3 The APM-based ICA

In this section, we present our novel correspondence
method, the Automatic Probability Matrix-based Intrinsic
Correspondence Algorithm (APM-based ICA). From the
review, we noted that the key to developing an automatic
correspondence technique is to ensure that it can determine
good initial correspondences. Many suitable extrinsic tech-
niques exist, which can bring surfaces into final alignment,
yet no widely applicable fully automatic intrinsic corre-
spondence algorithm has been proposed. In this section we
propose a novel technique, the APM-based ICA, and show
how it relates to the existing literature. Section 3.1 looks at
the correspondence problem from the broader view, where
we consider a Correspondence Probability Matrix (CPM)
space that contains all possible matches between two sur-
faces. Section 3.2 then considers developing an algorithm
that chooses the best match between two surfaces. Sec-
tions 3.3 - 3.5 explain the stages of the algorithm in more
detail and show how our algorithm actually uses a syn-
ergy of ideas from existing correspondence techniques. The
APM-based ICA algorithm is presented in Section 3.6 and
results from testing the algorithm on 2D range profiles are
discussed in Section 3.7.

3.1 The CPM space

The correspondences between two surfacesX andY can
be defined by a correspondence probability matrixPc. The
CPM represents of the probability of a correspondence be-
tween every point onX and every point onY :

Pcij = P (corr(Xi; Yj)) : (1)
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Assuming a match exists, all possible correspondences be-
tweenX and Y exist within the CPM space. An auto-
matic correspondence algorithm is utilised to search the
CPM space, to retrieve the best possible match between two
views.

A key step in an automatic correspondence algorithm is
to define exactly what is meant by a correspondence be-
tween the points on different views. Correspondence matri-
ces are built using these definitions. An ICP for example,
uses an exclusive binary process: a point inX can match
with exactly one or zero points inY . These matches are
placed in the probability matrixPc, with the MI algorithm
on the other hand,Pc depends on the distances between
each point onX and each point onY , and a weighting ex-
ponent. An example of the differences is shown in Figure 1.
In summary, two important concepts must be understood to
develop an automatic correspondence algorithm. Firstly, all
possible correspondences between two surfacesX andY
can be defined in a CPM space, and secondly, each CPM in
the space is built using a unified definition of a correspon-
dence between two points.
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Figure 1. ICP and MI results of partially over-
lapping curves

3.2 Developing an automatic correspondence al-
gorithm

A large number of CPMs make up the CPM space for
each surface pairX andY . It would therefore be compu-
tationally inefficient to search the entire space for the best
CPM. We address this problem by proposing a random pro-
cedure whereby CPMs are created for randomly selected
regions onX andY . EachPc is then evaluated, and after
running the algorithm a set number of times, the bestPc is
chosen as the best match between the views.

Correspondences are determined by finding regions on
surfacesX andY which exhibit the same geometric prop-
erties. The first step in a correspondence algorithm is to
specify a small control region on one surfaceX and de-
termine whether or not it matches a selected region onY .
Various methods for specifying the small control segment
are given in the literature. For example, geometric [5] and
signature-based [18] techniques are often employed to char-
acterise these segments. The geometrical properties or the
signatures of both the segment onX and the one onY are
compared to determine how well the two regions match. If
the initial match is significant, a larger region around the

initial control segment can be evaluated. However, before
a larger region is evaluated, the control points are used to
seed the CPM, so thatPc can be used to apply an initial
transformation of one surface onto the other.

After the transformation, we allowPc to grow, so that
points around the control segment onX are evaluated
against those onY . This can be done using a number of
properties. For example, probabilities of correspondences
can be evaluated by considering the difference in distance
between the two surfaces, such as in an ICP or MI algo-
rithm. Pc can be built using numerous properties, provided
that each selected alignment is evaluated using the same cri-
teria.

After Pc has been created, the correspondence needs to
be evaluated using a match metric. This quantitative analy-
sis is required to compare a large number of CPMs, so the
best one can be selected to determine the best correspon-
dences betweenX andY . A number of techniques can
be used to determine how well two surfaces match. In an
ICP-based CPM for example, the number of points onX ,
which are within some small preset threshold distance of
their closest neighbours onY , are counted (e.g. [5]).

The steps described above outline the basic procedure re-
quired to develop our automatic correspondence algorithm.
This type of algorithm produces good initial correspon-
dences between surfaces by creating numerous CPMs and
selecting the one with the best match. The following sec-
tions describe the steps of the algorithm in greater detail.

3.3 Defining search regions

The first step in our algorithm is to define an initial con-
trol region onX and determine whether or not it matches
a selected region onY . The segments are chosen using the
geometrical properties in a small region of both views. This
step in our algorithm is inspired by the DARCES technique
which selects three points, forming a triangle, on viewX ,
and then searchesY to find a triangle with similar geometric
properties.

In our algorithm, we choose a control pointxP1 ran-
domly onX , and create a triangle using two other points,
xP2 andxP3, in the region. We then randomly select a point
yP1 on Y and determine whether or not a matching trian-
gle can be found. The matching triangle is determined by
searching the region aroundyP1 using the geometric prop-
erties of the triangle formed byxP1, xP2 andxP3 (refer to
[5] for a more detailed explanation). If a suitable triangle is
found, the algorithm proceeds to further evaluate the match
between the two regions.

3.4 Building the CPM

If two suitably matching triangles have been found onX

andY , the CPMPc is created. The initial control points
seed the CPM. The CPM is then used to estimate a trans-
formation betweenX andY . Once the transformation has
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been applied,Pc is ’filled’ by considering the probabilities
of correspondences between every point onX and every
point on the transformed surfaceY .

The probabilities of correspondences are formed using
the following definitions. The first probability assignment is
based on differences in distances [14], which is an effective
method for formingPc. Each element inPc is given by:

Pcij (f) =
exp(��D2

ij(f))P
ij exp(��D

2

ij(f))
; (2)

where� is the weighting exponent, andD2

ij is a matrix
representing the squared Euclidean distance between each
point xi onX and each pointyi onY . This is used to ini-
tialise the entirePc. Additional constraints are then placed
on the CPM to eliminate as many false matches as possi-
ble. We address this issue by using ICP-based constraints
discussed in Section 2.2 (e.g., [13, 15]). Once these con-
straints have been applied,Pc is complete.

3.5 The CPM match metric

It is necessary to evaluate the CPM after each repetition
of the algorithm so that it can be compared with otherPc
matrices. The evaluation must indicate how well two sur-
facesX andY correspond under a given CPM. A current
correspondence technique has been utilised to demonstrate
how mutual information is maximised for the best corre-
spondences between two views [14]. Hence, we utilise MI
to rankPc in our automatic correspondence algorithm.

The equation for MI is given by:

MI(Pc) =
NXX

i=1

NYX

j=1

Pcij log
PcijPNX

n=1 Pcnj
PNY

l=1 Pcil

; (3)

where
PNX

n=1 Pcnj and
PNY

l=1 Pcil are the marginal proba-
bilities, andNX andNY are the number of points inX and
Y respectively. Equation 3 is maximised when optimal cor-
respondences between the two views are formed. Based on
this principle, we note that MI is a suitable match metric for
evaluating each CPM in every repetition of our algorithm.

3.6 The algorithm

Algorithm 1 presents details of our proposed method,
based on the ideas discussed in Sections 3.3 - 3.5. The in-
trinsic method is utilised to automatically obtain the best
correspondences between two partially overlapping sur-
faces.

Algorithm 1 is completely independent of initial esti-
mates. The search procedure is non-iterative and can there-
fore be run in a parallel fashion. Results of the APM-based
ICA are presented next.

Algorithm 1 The APM-based ICA
1. Randomly select a point on the viewX and one on the view
Y

2. Apply a DARCES type algorithm to match the points
3. If the points match successfully, apply the following proce-
dure:
� Define a probability matrixPc using the control
points
� TransformY ontoX usingPc
� Apply MI constraints to consider the matches of
all points onX and all points onY
� Apply additional ICP-based constraints to further
refine the probability matrix
� RankPc using Mutual Information

Select the best correspondences betweenX andY by choosing
thePc yielding the highest MI.

3.7 Results

The algorithm proposed in the previous section can be
applied to a variety of range profiles. A variety of 2D range
data is utilised to test the capabilities of the APM-based
ICA. The range data consists of partially overlapping 2D
curves. During the preliminary tests, percentage of over-
lap, number of repetitions of the code and the mutual infor-
mation are utilised to analyse the algorithm. We also test
the robustness of the algorithm by using relatively noisy in-
put data. The results of our automatic correspondence tech-
nique are shown in Figure2.

The first dataset (X1, Y1), shown in Figure 2, consists of
two curves with approximately 75% overlap. These over-
lapping segments are brought into almost perfect correspon-
dence within three thousand repetitions (of correspondence
matches in the algorithm). The algorithm responds well to
this input because of the large percentage of overlap, and
the good variation in curvature of the profile. The MI of
this match is 2.24.

The second dataset (X2, Y2) required that a greater num-
ber of correspondence matches are evaluated to provide
good matches between the surfaces. Ten thousand repeti-
tions were performed to ensure good correspondences were
found between viewsX2 andY2. Although the curvature of
the profiles varies significantly, the amount of overlap be-
tween the two segments is only about 50%. This reduces the
probability of finding two initial matching regions, hence
the need for more repetitions. The MI for this match is 2.34.

The third dataset (X3, Y3) was incorrectly matched by
our algorithm. This is due to a number of important rea-
sons. Firstly, profileY3 only contains one small distinctive
feature which is highly embedded in noise. Secondly, the
amount of overlap between the two segments is only 25%,
and there are no distinctive features in the overlapping re-
gions. Even after ten thousand correspondence matches, the
maximum MI (2.80 in this case) could not match the noisy,
featurelessY3 profile in its correct place. It must be noted
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that no algorithm could matchX3 andY3 due to these noise
levels and the non-distinctive features onY3.

From the results discussed, it can be seen that mutual in-
formation is a good match metric for a variety of data. In
future, we will consider determining the number of corre-
spondence matches required to produce a high MI.
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Figure 2. APM-based ICA results.

4 Conclusions and future work

In this paper, we discussed the problem of automatic cor-
respondence for range images and developed a nomencla-
ture to distinguish between correspondence techniques. A
variety of extrinsic techniques (e.g., ICP matching) and in-
trinsic techniques (e.g., RANSAC-based DARCES method)
were reviewed. We presented a novel automatic correspon-
dence algorithm, the APM-based ICA, which is a synergy
of existing methods and searches the CPM space to find
the best correspondences between two surfaces. Finally, we
showed results using 2D range profiles as inputs to our al-
gorithm.

The initial results were very promising. Future work will
help to refine our correspondence technique to develop a
fully automatic match method, which can be applied to a
wide variety of 3D modelling applications. We will im-
prove the algorithm by statistically determining the number
of repetitions of the code required for any given data sets to
achieve good correspondences between surfaces, examining
the behaviour of MI with respect to surface properties such
as sampling density and scale, extending the algorithm to
3D, and also generalising the algorithm to incorporate mul-
tiple views.
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