
ACCV2002: The 5th Asian Conference on Computer Vision, 23–25 January 2002, Melbourne, Australia 1

Motion Detection from Time-varied Background

Ying REN, Chin-Seng CHUA, Yeong-Khing HO, Ying CHEN
School of Electrical and Electronic Engineering

Nanyang Technological University, Singapore, 639798
E-mail: fp144775376,ecschua,eykho,eycheng@ntu.edu.sg

Abstract

This paper proposes a new background subtraction
method for detecting moving objects from a time-varied
background. While background subtraction has tradition-
ally worked well for stationary backgrounds; for a non-
stationary viewing sensor, motion compensation can be ap-
plied but is difficult to realize to sufficient pixel accuracy
in practice. The problem is further compounded when the
moving objects are small, since the pixel error in motion
compensating the background will subsume the small tar-
gets. A Spatial Distribution of Gaussians (SDG) model
is proposed to deal with moving object detection having
motion compensation approximated. The distribution of
each background pixel is temporally and spatially mod-
eled. Based on this statistical model, a pixel in the cur-
rent frame is classified as belonging to the foreground or
background. For this system to perform under lighting and
environmental changes over an extended period of time, the
background distribution must be updated with each incom-
ing frame. A new background restoration and adaptation
algorithm is developed for the time-varied background. Test
cases involving the detection of small moving objects within
a highly textured background and a pan-tilt tracking system
based on 2D background mosaic are demonstrated success-
fully.

1 Introduction

Motion detection and segmentation is a basic problem in
computer vision. It is a prerequisite for security surveil-
lance, object tracking, motion analysis and image com-
pression. Background subtraction is a traditional tech-
nique for finding moving objects in a sequence of images
[12, 5, 11, 4]. This approach provides a more complete set
of feature data describing the moving targets when com-
pared with other motion detection approaches [6]. Condi-
tionally, the background scene and the viewing sensor are
required to be stationary when background subtraction is
applied.

Recently, motion detection with a non-stationary view-

ing sensor has attracted the attention of several research
groups [3, 7, 1, 10]. The applications include vehicle-
borne or airborne video surveillance, object detection and
tracking with a pan-tilt camera and others. In these cases,
background subtraction cannot be applied directly. Motion
compensation is required first to compensate for the mo-
tion due to the moving sensor. Usually a motion model
of the background is assumed and motion parameters are
estimated. Then the background is registered ideally and
the foreground can be detected pixel by pixel. The under-
lying assumptions are that the motion model must be suffi-
ciently accurate, the parameters of the motion model are ac-
curately estimated and the sensing lenses are, more or less,
distortion-free. In practice, these assumptions are difficult
to realize. Usually, distortion correction, registration refine-
ment and accurate 3D registration are required. These are
time-consuming and not suitable for real-time applications.
With the approximate estimation of the motion model, the
background image and the current image cannot warp and
register well. Accurate inter-frame registration of images
from a moving sensor is not trivial and false detection can-
not be avoided. The problem is further compounded when
the moving target to be detected/tracked is small and within
a textured background. The target will be subsumed by the
pixel error in motion compensation.

In this paper, we propose a Spatial Distribution of Gaus-
sians (SDG) model, which is a temporal and spatial descrip-
tion of the background. The foreground detection is carried
out based on the SDG model. The proposed approach is
robust even with approximate motion compensation, noise
or environmental changes and is able to detect small mov-
ing objects in a highly textured background. In Section 2,
we introduce the SDG model and the technique of back-
ground restoration, adaptation and object detection. Section
3 presents experimental results of background restoration,
adaptation and foreground detection with moving sensor
based on the SDG model. Finally, conclusions are drawn
in Section 4.



2 Spatial Distribution of Gaussians (SDG)
model and foreground detection

The basic idea of this approach is that we can model the
distribution of the intensity value of each background pixel
as a Gaussian (or Mixture of Gaussians (MOG)). Assume
that the dominant motion between the current frame and the
background is the motion due to the moving sensor and can
be approximated by a 2D parametric transformation in the
image plane. Traditional approaches are used to estimate
the transformation parameters after which the current im-
age is warped to align with the background. For a pixel in
the current frame, after compensating for the sensor motion,
it should belong to one of the background Gaussians in its
local spatial region if it is indeed the background; other-
wise, it is regarded as the foreground. Not only the tempo-
ral visual information, but also the local spatial information
of the pixel, is taken into consideration when deciding the
foreground.

2.1 Pixel-wise background model

In a sequence of images with sizeM � N , each pixel
fxi; i = 1; 2; : : : ;M � Ng is modeled as an independent
statistical process. The distribution of the intensity value
is fitted with multiple Gaussians which compose the MOG
model. Each Gaussian may correspond to the distribution
of background or individual moving objects covering this
pixel over time. Thepdf is given as

p(I) = p(I jB)P (B) +

c�1X
j=1

p(I j!j)P (!j) (1)

whereB stands for the background,!j denotes an inten-
sity class of the moving objects andc, the number of Gaus-
sians for that pixel. For clarity of discussion, we assume
that the intensity distribution for each pixel may be mod-
eled as a two-component MOG, that is, the Gaussians of
backgroundB and moving objectsT . The background dis-
tribution should be a narrow Gaussian and the distribution
of moving objects, a flat Gaussian. Then Eq. (1) can be
modified asp(I) = p(I jB)P (B) + p(I jT )P (T ). After
the learning stage, the parameters of the distributions of
p(I jB), p(I jT ) can be obtained.

The background Gaussian distributions of every pixel
compose a Background Map, which is adapted frame by
frame with each new incoming frame. A Background Image
Ib is extracted by calculating the mean of the background
distribution in the Background Map and utilized as the ref-
erence frame when performing the motion compensation.

2.2 Background motion compensation

Due to the errors of feature localization, motion model
assumption, motion parameter estimation, lens distortion
and others, the motion compensation cannot be accurate
enough to make a dense registration from the current image
Ic to the Background ImageIb. The position after motion
compensation is, at best, a predicted position in the Back-
ground Map. For a pixelxc in the current image, let the pre-
dicted position in the Background Map bex̂b. s~̂xb = �~xc,
where~̂xb = [x̂b; ŷb; 1]

T and~xc = [xc; yc; 1]
T are homo-

geneous coordinates, and� is the transformation matrix for
background motion compensation.

To estimate the transformation matrix�, corners are se-
lected as features due to their positional accuracy and low
computational cost. Corners are extracted fromIb andIc
in a coarse-to-fine structure. The bestl corresponding cor-
ner pairs are selected into a setfC1; C2g, C1 = fc1i; i =
1; 2; : : : ; lg, C2 = fc2i; i = 1; 2; : : : ; lg andc1i andc2i
are corner positions in the two images respectively. Least
Square Estimation (LSE) Method is used to estimate the
transformation matrix� according to the assumed transfor-
mation model, which is usually affine or projective.

2.3 SDG model

For a positionxc in the current image, after the compen-
sation for the background motion, its predicted position in
the Background Map iŝxb. The corresponding position of
xc in the Background Map is assumed to be Gaussian dis-
tributed about̂xb and is expressed as

p(xbjx̂b) = 1

2�jRj 12 exp(�
1

2
(xb � x̂b)TR�1(xb � x̂b))

(2)

whereR is the covariance matrix of positional errors. There
is a validation regionAx̂b

Ax̂b
, fxb : Dxb;x̂b

� g (3)

whereDxb;x̂b
= (xb � x̂b)TR�1(xb � x̂b) is the Maha-

lanobis distance from a random positionxb in the Back-
ground Map to the predicted position̂xb. Dxb;x̂b

is �2

distributed. The real corresponding position ofxc will be
found in this region with a certain probability decided by.

As described in Section 2.1, for a certain positionxb, the
intensity distribution of that pixel is modeled as a MOG,
namely, the Gaussians of the backgroundBxb

and the tar-
getsTxb . The conditional distribution of the intensity value
given the background at positionxb is expressed as

p(I jBxb
) =

1p
2��

exp(� (I � �I(xb))
2

2�2
) (4)
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where�I(xb) and� are the mean and standard deviation of
the background distribution atxb. In the process of fore-
ground detection, it is probable that the foreground inten-
sity value appears in any position within its valid range. If
xb is the corresponding position ofxc, we are concerned
with whether the intensity value belongs to the background
Bxb

or the targetsTxb , instead of which target Gaussian it
belongs to. For the consideration of the above reasons and
to minimize the computational cost, we regard that the fore-
ground is uniformly distributed withp(I jTxb) = 1=L, L is
decided by the valid range of the intensity valueI . Accord-
ing to the Bayesian decision rule, whether an intensity value
belongs to the background or the targets can be depicted by
a likelihood ratio test.

p(I jBxb
)

p(I jTxb)
� P (T )

P (B)
= � (5)

P (T ) andP (B) are assumed constant with respect toxb
and decided by the proportion of the typical time duration
a pixel belongs to the background and the foreground re-
spectively [9]. Replacingp(I jBxb

) with Eq. (4) yields the
logarithm of the likelihood decision form

jI � �I(xb)j � k� (6)

wherek =
q
�2 ln(

p
2���=L).

For a certain pixel with the intensity valueI(xc) in the
current frame, there is a corresponding SDG model in the
Background Map. This SDG model is composed of the lo-
cal background Gaussians centered atx̂b. The size of SDG
is decided according to Eq. (3). The problem of foreground
detection from a non-stationary background can be regarded
as the pixel-wise decision problem based on a SDG model.
If there existsxb in the Background Map, whereI(xc) be-
longs to theBxb

rather thanTxb andxb 2 Ax̂b
, that is,

I(xc) belongs to one of the background Gaussians of its
SDG model, the pixel is labeled as background; otherwise,
it is labeled as foreground.

2.4 R and the size of the SDG model

The covariance matrixR of the positional errors in Eq.
(2) is important when deciding the size of the SDG model.
In this paper, we assume thatR is constant and approxi-
mately estimated as

R = �Ê (7)

whereÊ = 1

n

P
n

i=1
(c1i � c0

1i
)(c1i � c0

1i
)T ands~c

0

1i
=

�~c2i, s is a nonzero scaler andf(ci1; ci2); i = 1; 2; : : : ; ng
is the set of the wholly available corresponding corner pairs

in the two images. According to Eq. (3), when the con-
fidence probability is given, the size of the SDG model is
mainly decided byR. With Ê being estimated, as� in-
creases, the size of the SDG model increases and different
results of the detection will be obtained accordingly. False
Alarm Rate (FA) and Miss Detection Rate (MD) [8] are ap-
plied to evaluate the efficiency of the foreground detection.
The problem is to decide the value of� to ensure a bal-
ance betweenFA andMD. Figure 3 shows the relation-
ship betweenFA, MD and coefficient� (the size of the
SDG model). When̂E has been estimated, the increase of
� will result in an increase of the size of the SDG model
and hence decrease the FA (Figure 3(a), the method we pro-
pose) and slightly increase the MD (Figure 3(b), the method
we propose). With the SDG model, we can eliminate much
of the false detection due to the registration errors. It is not
true that the larger the size of SDG model, the better the re-
sults we can obtain. Some true foreground detection will be
missed when the foreground pixel happen to belong to the
background of a certain position within its SDG model. In
applications, the proper� can be set according to the bal-
ance of the FA and MD.

2.5 Dynamic restoration and adaptation of the
Background Map

The previous sections assumed that the Background Map
is available. This map needs to be updated under two con-
ditions: (1) when the camera pans and tilts to image new,
uncovered background scenes, or (2) when the background
scene changes due to lighting or environmental changes.
The objective of the previous sections was to classify a
given pixel in the current image as a foreground pixel or a
background pixel using the SDG model within the Back-
ground Map. However which Gaussian within the SDG
model should this current pixel be used to update is not
precisely known. This section deals with the problem of
using the appropriate pixel in the current frame to update a
given Gaussian of the MOG at a certain position, and de-
cides which Gaussian is corresponding to the background
and hence the SDG model at this position.

As described in Section 2.1, each pixel along an image
sequence is considered as a statistical process. The distribu-
tion of the intensity value can be modeled as a MOG. Learn-
ing the parameters of the MOG and hence the detection of
the foreground is a broadly studied topic for a static back-
ground [5, 11, 4]. For a moving background, the problem
is to decide the correspondence of the pixels in the previous
and current frame during the learning stage. The problem is
further complicated when there is occlusion and/or uncov-
ered background.

The background coordinate system is defined with re-
spect to that of the first frame. Since the pixel process is
considered as an independent process along the image se-
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quence, a random pixelxb is used to illustrate the procedure
of background restoration and adaptation. Assume that the
distribution of the intensity value atxb is modeled as ac
mixture of Gaussians (c is not required to be known in ad-
vance). We initialize the first Gaussian with the intensity
value atxb in the first frame as the mean and a predefined
variance�2. The first Gaussian is not guaranteed to be the
background Gaussian.!0 is defined to describe the cases
that occlusion and/or uncovered background appear; with
this a new Gaussian distribution should be created.

With a new frame, the motion parameters are estimated
and the background is transformed and warped to the cur-
rent frame. The predicted position ofxb in the current
frame isx̂c, where~̂xc = s��1~xb. Assume that we already
havem Gaussiansp(I j!j) (j = 1; :::;m; 1 � m � c),
which are corresponding to the background and individual
targets. If there is no occlusion and/or uncovered back-
ground, there should be a corresponding pixel ofxb in the
current frame. The position of the corresponding pixel is as-
sumed to be Gaussian distributed aboutx̂c and is expressed
asp(xcjx̂c) = N (xc; x̂c;R). Accordingly, there is a vali-
dation regionAx̂c

aboutx̂c in the current frame. The pix-
els in this validation region are feasible corresponding pix-
els of xb. The positions which are not the corresponding
position ofxb are modeled as independent identically dis-
tributed (IID) random variables with uniform spatial distri-
bution. Events�i and�0 are defined to describe the rela-
tionship of the positionxc = xci in the current frame and
the predicted position̂xc, where,xci 2 Ax̂c

; i = 1; :::; n.
�i , f xci is the corresponding position of xbg,
�0 , f none of the positions is the corresponding

position of xbg, and
P

n

i=0
P (�i) = 1. BarShalom gives

the details of the derivation of eachP (�i) in [2]. P (�i)
is mainly decided by the Mahalanobis distanceDxci;x̂c

=
(xci � x̂c)

T
R
�1(xci � x̂c). SinceR is assumed to be

constant globally,P (�i) can be calculated in advance and
a lookup table can be used when performing background
restoration and adaptation.

Forxb, if there is a corresponding pixelx�
c

in the current
frame, the intensity valueI(x�

c
) should belong to a certain

Gaussian of them�MOG which have been already learnt.
If there is no corresponding pixel in the current frame (the
presence of the foreground and/or uncovered background),
no pixel in the current frame belongs to any Gaussian of
them�MOG. !0 is active and a new Gaussian should be
created. P (!0) is given by� and p(I j!0) = 1=L. We
decide the corresponding pixelx�

c
of the positionxb in the

following steps:

1. For each pixelxci 2 Ax̂c
with the sameP (�i) and

I = I(xci), if it is the corresponding position ofxb in the
current frame, find the plausible!ji it belongs to:

!ji = arg max
0�j�m

P (!j jI(xci))

= arg max
0�j�m

p(I(xci)j!j)P (!j)
(8)

If no better argument is available about the prior probability
P (!j), we usually assume thatP (!j) is equal and satisfies
�+
P

m

j=1
P (!j) = 1.

2. For allxci 2 Ax̂c
with plausible!ji , the correspond-

ing pixelx�
c

and the updated Gaussian are decided by

(x
�
c ; !

�
j ) = arg max

xci2Ax̂c ;0�ji�m
P (!ji jI(xci))P (�i)

= arg max
xci2Ax̂c ;0�ji�m

p(I(xci)j!ji)P (!ji)P (�i)P
m

ni=0
p(I(xci)j!ni)P (!ni)

(9)

If !�
j
6= 0, the pixelx�

c
is regarded as the corresponding

pixel of xb and the parameters of Gaussian!�
j

are updated
with I(x�

c
). If !�

j
= 0, or for all xci 2 Ax̂c

, !ji = !0,
that means no corresponding pixel ofxb in this frame and
I(x̂c) is used to initialize a new Gaussian with variance�2.
This may cause a small disturbance of position in the re-
stored background. But this position disturbance will not
cause fatal error when using the SDG model to detect the
foreground.

As mentioned in Section 2.1, the background distribution
is a narrow Gaussian with a high prior probabilityP (B).
We regard!j which has a higher frequency and lower stan-
dard deviation corresponding to the background.

3 Applications and experimental results

Two applications of the SDG model based motion de-
tection are developed, they are foreground detection of an
outdoor scene from a hand-held, moving camera and a hu-
man tracking system with a pan-tilt camera.

3.1 Background Map restoration, adaptation and
foreground detection of an outdoor scene

The performances of the Background Map restoration,
adaptation and foreground detection are evaluated with a se-
quence of images which are extracted from a moving hand-
held video camera. With the first several frames, the Back-
ground Map is restored, while the parameters are learnt even
though no Background Map is available in advance. In
the following frames, foreground is detected and the Back-
ground Map is adapted based on the SDG model.

Figure 2 shows the experimental results of the restored
and adapted background. We make a comparison of two
approaches, one is the method we proposed above, another
is the direct method which restores and adapts the back-
ground directly after motion compensation. Figure 2(a) and
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Figure 1.

(b) are Frame 1 and 136 (frame rate is 5 frames/sec) of the
sequence. Figure 2(c) shows the result of the restored Back-
ground Image at frame 50 using the direct method. Fig-
ure 2(d) shows the restored Background Image using our
method. The restored Background Image using the direct
method is more blur than the one using our approach. Fig-
ure 2(e) and (f ) are the error maps between the restored
Background Images and an ideal Background Image for
both methods. Due to the inaccurate motion compensa-
tion, there is an accumulation of the motion compensation
errors. As showing in Figure 1, the background Gaussian
learnt directly after motion compensation is more flat than
the Gaussian learnt by our approach. Sometimes, the es-
timated Gaussian is bias (Figure 1(b)). With these back-
ground Gaussians, the efficiency of foreground detection
will be impacted.

In this test case, the camera motion cannot be neglected
and the moving objects (humans) are small. An affine trans-
formation model is applied for the estimation of the motion
parameters and motion compensation. Figure 2(g) is the re-
sult of foreground extraction using background subtraction
after affine motion compensation at Frame 136, and (h) is
the result of (c) after a3� 3 morphological operation. With
this traditional approach, the moving objects are submerged
by noise. The restored Background Image using the tech-
nique described above is illustrated in Figure 2(i). Figure
2(j) is the result of segmenting the moving objects of Frame
136 based on the SDG model.

Figure 3 shows the results of the error analysis based on
the traditional method and our approach. In the traditional
method, let the size of the morphological mask be equal
to the size of the SDG model. When increasing the size,
the FA decreases for both methods. Significantly, MD in-
creases dramatically using the traditional method while our
approach exhibits minimal increase in MD. When the size
of the operator is larger than 2 pixels, the MD using the
traditional method reaches 100% even though its FA is de-
creased. Detection fails subsequently. On the contrary, the
MD using our approach is not as sensitive to the size of the
SDG model. It shows that our approach is insensitive to mo-
tion compensation error and is able to detect small objects.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2. Background restoration, adaptation and foreground
detection.

3.2 Indoor active human tracking with pan-tilt
camera

Another application of the SDG model is an indoor ac-
tive human tracking system with a pan-tilt camera. When
the pan and tilt are assumed to rotate about the optical cen-
ter, or the distance from the camera to the scene is assumed
to be much larger than the depth of the scene itself, a simpli-
fied 2D transformation can be applied to calculate the pixel
transformation. With the calibration parameters and pan-
tilt angle�-�, a panorama Background Map is established
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Figure 3. Error analysis with the varying size of the SDG
model.

and foreground can be detected. In practice, the assumption
is difficult to realize. The non-coincidence of the optical
center and the rotation center makes the accuracy of the 2D
transformation affected by the depth and bring errors to the
results of the transformation.

In this application, the SDG model is applied to elim-
inate the errors that originate from the approximation of
the 2D transformation as well as other artefacts. 5 five-
hundred-frame sequences of clean background are captured
from 5 different pan/tilt positions. The intensity value of
every pixel in each background sequence is modeled as one
Gaussian. The 5 sequences are wrapped to the same co-
ordinate system. The Gaussians covering the same pixel
consist a MOG, and all these MOGs form the Background
Map mosaic. All these work can be done off-line. Figure
4(a) shows the result of the Background Map mosaic. In the
tracking stage, for each pixel in the current frame, the mo-
tion compensation with arbitrary pan/tilt angle can be calcu-
lated. Due to the random rotation angle of the pan-tilt cam-
era, the position of the camera cannot be the exact position
where the sequences of background images are captured.
Even with the MOG Background Map mosaic, motion com-
pensation error cannot be eliminated (Figure 4(c)). With the
SDG model, referring to Figure 4(d), moving objects are
detected and tracked accurately. The detection based on our
approach is able to extract the desired target without signif-
icant noise clutter.

4 Conclusions

This paper proposes a SDG model which is used to de-
tect the foreground from a non-stationary background. It
extends the application of the background subtraction to the
moving sensor and is robust even with approximate motion
compensation, noise, or environmental changes. The detec-
tion based on the SDG model shows good results even when
the detection is applied to small moving objects in a highly
textured background. With a non-stationary background, an
algorithm is proposed for the background restoration and
statistically modeling the background, which is required

Figure 4. Human detection and tracking with pan-tilt camera.

when detecting the foreground. These algorithms are in
pixel-wise case; no iterative computations are required. As
such, they are suitable for parallel implementations for real-
time considerations.
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