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Abstract

In this paper we describe a new shape-from-shading
method. We show how the parallel transport of surface
normals can be used to impose curvature consistency and
to iteratively update surface normal directions so as to im-
prove the brightness error. We commence by showing how
to make local estimates of the Hessian matrix from surface
normal information. With the local Hessian matrix to hand,
we develop an “EM-like” algorithm for updating the surface
normal directions. At each image location, parallel trans-
port is applied to the neighbouring surface normals to gen-
erate a sample of local surface orientation predictions. From
this sample, a local weighted estimate of the image bright-
ness is made. The transported surface normal which gives
the brightness prediction which is closest to this value is se-
lected as the revised estimate of surface orientation. The
revised surface normals obtained in this way may in turn be
used to re-estimate Hessian matrix, and the process iterated
until stability is reached.

1 Introduction

Shape-from-shading is a problem that has been studied
for over 25 years in the vision literature [1, 7, 10, 13]. Stated
succinctly, the problem is to recover local surface orienta-
tion information, and hence reconstruct the surface height
function, from information provided by the surface bright-
ness. Since the problem is an ill-posed one, in order to be
rendered tractable recourse must be made to strong sim-
plifying assumptions and constraints. Hence, the process
is usually specialised to matte reflectance from a surface
of constant albedo, illuminated by a single collimated light
source of known direction. To overcome the problem that
the two parameters of surface slope can not be recovered
from a single brightness measurement, the process is aug-
mented by constraints on surface normal direction at oc-
cluding contours or singular points, and also by constraints
on surface smoothness.

There have been several distinct approaches to the shape-
from-shading problem. The classic approach developed by
Ikeuchi and Horn [6] and, by Horn and Brooks [3], among
others, is an energy minimisation one based on regularisa-
tion theory. Here the dual constraints of compliance with
the image irradiance equation and local surface smoothness
are captured by an error function. This has distinct terms
corresponding to data-closeness, i.e. compliance with the
image irradiance equation, and for surface smoothness, i.e.
the constraint that the local variation in the surface nor-
mal directions should be small. The shortcomings with this
method are threefold. First, it is sensitive to the initial sur-

face normal directions, second the data-closeness and sur-
face smoothness must be carefully balanced, and, finally,
the solution found is invariably dominated by the smooth-
ness model and as a result fine surface detail is lost. The
second approach to the problem of shape-from-shading has
been to adopt the apparatus of level-set theory to solve the
underlying differential equation [7, 8, 11]. This offers two
advantages. First, the recovered solution is provably cor-
rect, and second, the surface height function is recovered
at the same time as the field of surface normals. The third
approach was recently developed by Worthington and Han-
cock [13]. This method adopts the view that the image
irradiance equation should be treated as a hard constraint
and that curvature consistency constraints should be used
in preference to local smoothing. They develop a shape-
form-shading algorithm in which the surface normals are
constrained to fall on the irradiance cone whose apex an-
gle is determined by the local image brightness. The sur-
face normals are initialised to point in the direction of the
local Canny image gradient. These directions on the cone
are updated by smoothing the surface normal directions is a
manner which is sensitive to local surface topography.

The observation underpinning this paper is that although
considerable effort has gone into the development of im-
proved shape-from-shading methods, there are two areas
which leave scope for further development. The first of
these is the use of statistical methods in the recovery of sur-
face normal information. The second is that relatively little
effort has been expended in the use of ideas from differen-
tial geometry for surface modeling.

Our aim in this paper is to develop a sample-based al-
gorithm for shape-from-shading which exploits curvature
consistency information. As suggested by Worthington and
Hancock [13, 12], we commence with the surface normals
positioned on their local irradiance cone and are aligned in
the direction of the local image gradient. From the initial
surface normals, we make local estimates of the Hessian
matrix. This allows us to transport neighbouring normals
across the surface in a manner which is consistent with the
local surface topography. The resulting sample of surface
normals represent predictions of the local surface orienta-
tion which are consistent with the local surface curvature.
Moreover, each transported vector can be used to make a
prediction of the local image image brightness.

We adopt a simple model of the distribution of brightness
estimates based on the assumption that the original intensity
image is subject to Gaussian measurement errors. Using
this distribution, we compute the mean predicted brightness
value for the sample of transported surface normals. We
select a revised local surface normal direction by identify-
ing the transported vector which gives the brightness that is
closest to the mean-value.



This process may be iterated until stability is reached.
From the revised surface normal directions, we make new
estimates of the local Hessian matrices. These matrices in-
turn are used for neighbouring surface normal transporta-
tion, and the samples of surface normals so-obtained are
used to estimate mean brightness. Viewed in this way our
algorithm has many features reminiscent of the EM algo-
rithm. The surface normals may be regarded as hidden or
missing data that must be recovered from the observed im-
age brightness. In the expectation-step, we compute the
mean image brightness. The maximisation step is con-
cerned with finding the revised surface normal directions
that minimise the weighted brightness error. From the per-
spective of differential geometry, one of the attractive fea-
tures of our algorithm is that it provides a statistical frame-
work for combining evidence for shading patterns from the
Gauss map.

Hence, we facilitate a direct coupling between consistent
surface normal estimation and reconstruction of the image
brightness. Moreover, our method overcomes the problem
of estimating surface normal directions in a natural way.
This offers two advantages over existing methods for shape-
from-shading. First, because it is evidence-based, unlike the
Horn and Brooks method, it is not model dominated and
does not oversmooth the recovered field of surface normal
directions. The data-closeness and surface-smoothness er-
rors are not simply compounded in an additive way as is
the case in the regularisation method. Second, and unlike
the Worthington and Hancock method, it relaxes the im-
age irradiance equation and hence allows for brightness er-
rors to be corrected. Another interesting property of the
method, is that we parameterise the local surface structure
using the Hessian matrix, rather than quadric patch param-
eters. Hence we exploit the intrinsic geometry of the Gauss
map rather than its extrinsic geometry.

Hence, the novelty of our contribution is twofold. First,
we develop an evidence combining algorithm for shape-
from-shading. There has been little previously documented
attempts to do this in the literature. Second, is our idea
of using parallel transport to ensure consistency with dif-
ferential geometry. Here there are two pieces of related
work. First, Lagarde and Ferri [2] have shown how the
Darboux smoothing idea of Sander and Zucker can be ap-
plied to smooth extracted needle-maps as a post-processing
step. Second, Worthington and Hancock [13] have shown
how the variance of the Koenderinck and Van Doorn shape-
index can be used to control the robust smoothing of surface
normal directions.

2 Shape-from-shading

Central to shape-from-shading is the idea that local
regions in an image

���������
	
correspond to illuminated

patches of a piecewise continuous surface, � �������
	 . The
measured brightness

���������
	
will depend on the material

properties of the surface, the orientation of the surface at
the co-ordinates

�������
	
, and the direction and strength of il-

lumination.
The reflectance map, � � 
�����	 characterizes these proper-

ties, and provides an explicit connection between the image
and the surface orientation. Surface orientation is described
by the components of the surface gradient in the

�
and

�
direction, i.e.


��������� and
���������� . The shape from shading

problem is to recover the surface � �������
	 from the intensity
image

���������
	
. As an intermediate step, we may recover

the needle-map, or set of estimated local surface normals,� �������
	
.

Needle-map recovery from a single intensity image is an
under-determined problem [10, 5, 1] which requires a num-
ber of constraints and assumptions to be made. The com-
mon assumptions are that the surface has ideal Lambertian
reflectance, constant albedo, and is illuminated by a single
point source at infinity. A further assumption is that there
are no inter-reflections, i.e. the light reflected by one portion
of the surface does not impinge on any other part.

The local surface normal may be written as
� �����
���� �!��"#	�$

, where

��������� and

���%������ . For a light source
at infinity, we can similarly write the light source direction
as & �'����
)(*��� �+(*��"#	�$

. If the surface is Lambertian the re-
flectance map is given by� � 
�����	,� �.- & (1)

The image irradiance equation [4] states that the mea-
sured brightness of the image is proportional to the radi-
ance at the corresponding point on the surface; that is, just
the value of � � 
�����	 for


����
corresponding to the orienta-

tion of the surface. Normalizing both the image intensity,���������
	
, and the reflectance map, the constant of propor-

tionality becomes unity, and the image irradiance equation
is simply ���������
	/� � � 
�����	 (2)

Although the image irradiance equation succinctly de-
scribes the mapping between the

�����
co-ordinate space of

the image and the

����

gradient-space of the surface, it pro-
vides insufficient constraints for the unique recovery of the
needle-map. To overcome this problem, a further constraint
must be applied. Usually, the needle-map is assumed to
vary smoothly.

The process of smooth surface recovery is posed as a
variational problem in which a global error-functional is
minimized through the iterative adjustment of the needle
map. Surface normals are updated with a step-size dictated
by Euler’s equation. Here we consider the formulation of
Brooks and Horn [?] which is couched in terms of unit sur-
face normals. Their error functional is defined to be02143.365)798 :<;�=�>#?/@BADC�> EGFH I<J KL!MDN O*P�Q R�SUTUTU7VMDM*WUMYX[Z
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The terms
�#k��� and

�#k��� above are the directional deriva-
tives of the needle-map in the

�
and

�
directions respec-

tively. The magnitudes of these quantities are used to mea-
sure the smoothness of the surface, with a large value indi-
cating a highly-curved region. However, it should be noted
that a planar surface has

�#k��� � �#k��� �ml in this case.
The first term of Equation 3 is the brightness error, which

encourages data-closeness of the measured image intensity
and the reflectance function. The regularizing term imposes
the smoothness constraint on the recovered surface normals,
penalising large local changes in surface orientation. The
constant n is a Lagrange multiplier. For numerical stabil-
ity, n must often be large, resulting in the smoothness term
dominating.

2



Minimization of the functional defined in Equation 3 is
accomplished by applying the calculus of variations and
solving the resulting Euler equation. The solution is���������
	� ��
��� ��	����� ���� ��� ��� ������	������� � (4)

where � is the spacing of pixel-sites on the lattice and 
� �
is the local mean of the surface normals around the neigh-
bourhood ! � of the pixel at position "
� � � #$ ! � $&%')(�*,+ � � (5)

3 Differential Surface Structure

In this paper we are interested in the local differential
structure of surfaces represented in terms of a field of sur-
face geometry. In the differential geometry this representa-
tion is known as the Gauss map. The differential structure
of the surface is captured by the second fundamental form
or Hessian matrix - � ./021�3541�6 3 1�3741�681�91�3541�681�9 1�3741�9 3

:<;= (6)

The eigen-structure of the Hessian matrix can be used to
gauge the curvature of the surface. The two eigen-values of-

are the maximum and minimum curvatures. The orthogo-
nal eigen-vectors of

-
are known as the principal curvature

directions. The mean-curvature of the surface is found by
averaging the maximum and minimum curvatures. Finally,
the Gaussian curvature is equal to the product of the two
eigenvalues.

In the case when surface normal information is being
used to characterise the surface, then the Hessian matrix
takes on the following form- �?> @BAADCFE (7)

The diagonal elements of the Hessian are related to the rate-
of change of the surface normal components via the equa-
tions @ � GIH �HKJML 6 (8)C � GIH �HKJML 9 (9)

where the subscripts J and N on the large brackets indicate
that the J or N components of the vector-derivative are being
taken.

Treatment of the off-diagonal elements is more subtle.
However, if we assume that the surface can be represented
by a twice differentiable function O �QPSR JUT NWV , then we can
write A �2GIH �H N L 6 �2GIH �HKJXL 9 (10)

In the next Section we will describe how the elements of the
Hessian, i.e. @ , A and C , can be estimated from raw surface
normal data using the method of least-squares.

4 Estimating the Hessian

In this section we describe how to make a statistical es-
timate of the Hessian matrix from a sample of surface nor-
mals delivered by shape-from-shading. Specifically, we use
the method of least squares to estimate the elements of

-
.

Let
� � represent the surface normal at the positionR J � T N � V and let

� ' be a neighbouring surface normal with
position R J ' T N ' V . If the normals are close to each other,
then we can approximate the change in the components of
the surface normal using a first-order Taylor expansion. Ac-
cordingly,RZYM[ ' V 6 �2GIH �HKJXL 6 Y J ' �\GIH �H N L 6 Y N ' (11)RZYM[ ' V 9 ��GIH �HKJML 9 Y J ' �\GIH �H N L 9 Y N ' (12)

where the measured change in the components
of the surface normal is given by

� ']� � � �R5RZYM[ ' V 6 T RZYM[ ' V 6 V
^ . The displacements in point
co-ordinates are Y J ' � J '_� J � and Y N ' � N '`� N � .
We can rewrite the first-order Taylor expansion in terms of
elements of the Hessian matrix, i.e.RZYM[ ' V 6 � @ � Y J ' � A � Y N ' (13)RZYM[ ' V 9 � A � Y J ' � C � Y N ' (14)

where @ � , A � and C � are the elements of the Hessian matrix
at the pixel indexed " . These equations govern the parallel
transport of the vector across the curved geometry of the
surface. So, to first-order, the change in the normal is linear
in the elements of the Hessian matrix. Unfortunately, for
the single neighbouring normal these equations are under-
constrained and we can not recover the Hessian. However,
if we have a sample of a neighboring surface normals, then
there are

� a homogenous linear equations in the elements
of
-

and the problem of recovering differential structure
is no-longer under-constrained. Under these circumstances,
we can estimate the elements of the Hessian matrix using
the method of least-squares.

To proceed, we make the homogeneous nature of the
equations more explicit by writingRZYM[ ' V 6 �bY J ' � @ � � Y N ' � A � � cd� C �RZYM[ ' V 9 � cd� @ � �eY J ' � A � �eY N ' � C �

(15)
In order to simplify notation, we can write the full system

of 2N equations in matrix form asf �hgjilk (16)

where
f

is an aggregated column-vector of normal compo-
nents f � .//0 RZYM[ � V 6RZYM[ � V 9RZYM[ � V 6...

: ;;= T
The design matrix g is a matrix of co-ordinate displace-
ments gm� ./0 Y J � Y N � cc Y J � Y N �Y J � Y N � c

...

:<;=
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and
���

is the parameter vector��������� �	 �
 ���
When the system of equations is over-specified in this way,
then we can extract the set of parameters that minimises the
vector of error-residuals 
���� ��� . We pose this parame-
ter recovery process as a least-squares estimation problem.
In other words we seek the vector of estimated parameters�������� �� ��� �	 ��� �
 ����� which satisfy the condition������! #"%$'&)( *+ � 
,��� ��� � � 
,��� ��� (17)

The solution-vector is found by computing the pseudo-
inverse of the design matrix � thus-���.��� � � � �0/21 � � 
 (18)
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Figure 1. Surface normal vector and its com-
ponents.

The surface geometry is illustrated in Figure 1.

5 Parellel Transport

In this paper we are interested in using the local estimate
of the Hessian matrix to provide curvature consistency con-
straints for shape from-shading. Our aim is to improve the
estimation of surface normal direction by combining evi-
dence from both shading information and local surface cur-
vature. As demonstrated by both Ferrie and Lagarde [2]
and Worthington and Hancock [13], the use of curvature
information allows the recovery of more consistent surface
normal directions. It also provides a way to control the over-
smoothing of the resulting needle maps. Ferrie and Lagarde
[2] have addressed the problem using local Darboux frame
smoothing. Worthington and Hancock [13], on the other
hand, have employed a curvature sensitive robust smooth-
ing method. Here we adopt a different approach which uses
the equations of parallel transport to guide the prediction of
the local surface normal directions.

Our idea is as follows. At each location on the surface
we make an estimate of the vector of curvature parameters.
Suppose that we are positioned at the point 345�.���768�9�;:��<��=
where the vector of estimated curvature parameters is

�.�
and that the resulting estimate of the Hessian matrix is > � .
Further suppose that ?5@ is the surface normal at the point34 @ ���76 @ �;: @ ��= in the neighbourhood of 345� . We use the
local curvature parameters

���
to transport the vector ?5@

to the location 345� . The first-order approaximation to the
transported vector is? �@ � ?A@CB�> �#� 34 @!�D345�<� (19)

This procedure is repeated for each of the surface nor-
mals belonging to the neighbourhood E � of the point F . In
this way we generate a sample of alternative surface normal
directions at the location F . The geometry of the parallel
transport procedure is illustrated in Figure 2.

6 Statistical Framework

We would like to exploit the transported surface-normal
vectors to develop an evidence combining approach to
shape-from-shading. To do this we require a probabilistic
characterisation of the sample of available surface normals.
We assume that the observed brightness G � at the point 345�
follows a Gaussian distribution. As a result the probability
density function for the transported surface normals is

H � G �JI ?A@ �K���<�'� LM N9O2PRQTSVUXW � � G � ��? �@�Y Z ��[N#P [ \ (20)

where
P [

is the noise-variance of the brightness errors. With
this distribution to hand, we can use the image irradiance
equation to compute the expected value of the image bright-
ness at the location 345� for the sample of transported surface
normals. The expected brightness is given by-G �.�^]@`_Ja2b H � G ��I ?A@ �K���<� ?

�@ Y Z (21)

To update the surface normal direction, we select from the
sample the one which results in a brightness value which is
closest to

-G � . This surface normal is the one for which-? ���c #"%$d&)( *@`_Ja2b W -G � ��? �@ Y Z \ [ (22)

This procedure is repeated at each location in the field of
surface normals.

We iterate the method as follows:e 1: At each location compute a local estimate of the
Hessian matrix > � from the currently available surface
normals ? � .e 2: At each image location 345� obtain a sample of sur-
face normals f �g��h ? �@ I ikj E �ml by applying paral-
lel transport to the set of neighbouring surface normals
whose locations are indexed by the set E � .e 3: From the set of surface normals f � compute the
expected brightness value

-G � and the updated surface
normal direction

-? � . Note that the measured intensityG � is kept fixed throughout the iteration process and is
not updated.e 4: With the updated surface normal direction to hand,
return to step 1, and recompute the local curvature pa-
rameters.

To initialise the surface normal directions, we adopt the
method suggested by Worthington and Hancock [13]. This
involves placing the surface normals on the irradiance cone
whose axis is the light-source direction n and whose apex
angle is oTp�q /2r G � . The position of the surface normal on the
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cone is such that its projection onto the image plane points
in the direction of the local image gradient, computed using
the Canny edge detector. When the surface normals are ini-
tialised in this way, then they satisfy the image irradiance
equation.

P̂
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Q

Q
Q

Q Q
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Parallel transport

Figure 2. Parallel transport used for predict-
ing the surface normal vector using local cur-
vature estimation.

7 Experiments

In this section, we present some experimental evaluation
of the new method.

We commence by exploring some of the iterative prop-
erties of the method. Here use experiment with an image of
a toy duck from the Columbia COIL data-base. In Figure
3 we show the field of surface normal directions with itera-
tion number. The main feature to note here is that the sur-
face details become more marked with iteration number. In
Figure 4, we plot the difference between the measured and
predicted image brightness as a function of iteration num-
ber. Initially, the error is greatest on the curved regions of
the surface (near the head, beak, neck, wings and tail). Af-
ter 10 iterations, the only region where there is a significant
error is around the eye, where there is an albedo difference.
There are some high curvature points around the neck and
the wing where there is also some residual brightness er-
ror. The average brightness error is plotted as a function
of iteration number in Figure 5. Figure 6 shows the effect
of re-illuminating the final needle-map with different light
source directions. This highlights the curvature detail on the
surface, which appears to be well reconstructed.

Figure 3. Needle maps for the small duck im-
age

Figure 4. Increasing probability of image in-
tensity agreement
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Figure 5. Error plot for the intensity value re-
covering for the small duck image

In Figures 7, 8 and 9 we show results for images of mar-
ble statues. In each image the top left-hand panel is the orig-
inal image, the top right-hand panel is the final value of

����
,

and the bottom two images show the initial (left) and final
(right) needle-maps. In each case the final needle-maps and
brightness images reproduce the curvature structure well, at
all but the points of highest curvature.

Finally, in Figure 10, we show the re-illumination of the
statue Venus. This captures the surface detail well. In par-
ticular, the folds in the draping around the legs is well re-
produced.

8 Conclusions

In this paper we have described a new method for shape-
form-shading which relies on vector transport to accumulate
evidnece for surface normal directions which are consistent
with the observed image brightness. The method uses a
two-step iterative algorithm. First, estimates of the Hessian
matrix are made using the available surface normals. These
Hessian matrices are used to perform vector transport on the
surrounding surface normals to accumulate a sample of ori-
entation hypotheses. These putative directions are used to
compute an expected value for the image brightness. In the
second step of the algorithm, the surface normal direction
is updated. The direction is taken to be that of the trans-
ported vector which yields the brightness which is closest
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Figure 6. Reconstructed image with different
illumination directions

Figure 7. The three graces

to the expected value. The method is evaluated on a variety
of real-world images where it provides promissing results.
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