Estimating image blur in the wavelet domain

Filip Rooms Aleksandra Pizurica Wilfried Philips Ghent University

Department of Telecommunications and Information Processing Sint-Pietersnieuwstraat 41, B9000 Ghent, Belgium Filip.Rooms@rug.ac.be http://telin.rug.ac.be/~frooms/

Tel. +32 9 264 34 15 Fax. +32 9 264 42 95

Abstract

In this paper, a wavelet based method is proposed to estimate the blur in an image using information contained in the image itself. We look at the sharpness of the sharpest edges in the blurred image, which contain information about the blurring. Specifically, a smoothness measure, the Lipschitz exponent, is computed for these sharpest edges. A relation between the variance of a gaussian point spread function and the magnitude of the Lipschitz exponent is shown, which is only dependent on the blur in the image and not on the image contents. This allows us to estimate the variance of the blur directly from the image itself.

1 Introduction

Blurring of edges in an image occurs in many different fields. Image blur is modelled as:

$$g(x,y) = (h * f)(x,y) \tag{1}$$

with g(x,y) the blurred image, f(x,y) the unknown sharp image and h(x,y) the point spread function (PSF). The symbol * represents the convolution operator, and models the image blur. It is in fact the response of the imaging system to an ideal point source.

This blur is often unwanted and has to be compensated for (this is image restoration, and is applied in astronomy, medical imaging, microscopy, ...). In that case, the estimation of the blur is needed to restore the ideal image f(x,y) from degraded data g(x,y).

Sometimes however, this blur contains extra information. For example, it can provide information about the settings of the camera. When dealing with autofocus cameras, one expects to find a sharp image, because all natural images contain sharp edges since an object

in front of a background produce sharp edges. When an image is out of focus, the sharpness of the sharpest edges that are still present in the image gives us information about how much an out-of-focus camera needs to be adjusted.

Blurred edges can also provide information about the 3D nature of the scene itself. In those applications, depth is estimated from focus/defocus [1,2]. Again, we assume that all objects in front of a background have sharp edges. But only objects in the focal plane are imaged with sharp edges. For objects not in the focal plane these sharp edges will be blurred proportionally to their distance from the focal plane, thus providing some depth information about the image.

In this paper, a method is proposed to estimate the PSF in an image by looking how sharp the sharpest edges in a blurred image still are, in order to find information about the PSF. It estimates in particular the variance σ_{bl} of a gaussian PSF from information contained in the image itself:

$$PSF(x,y) = \frac{1}{\sqrt{2\pi\sigma_{bl}}} e^{-(x^2+y^2)/(2\sigma_{bl}^2)}.$$
 (2)

Our method can estimate the image blur σ_{bl} with an accuracy of about 10%. Other techniques for blur estimation using Gaussian PSF's [3,4] use derivatives of the Gaussian PSF to determine the variance of the Gaussian blur. We present an alternative method, which doesn't use derivatives, but a measure of the smoothness of the image at a certain position. This method can also be extended to gaussian PSF's that are not axially symmetrical and even to PSF's that aren't even gaussian. For out-of-focus blur, a uniform circular PSF is used [5,6]. Our method requires only minor modifications to adapt to this kind of PSF, as will be shown in the paper.

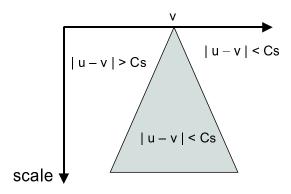


Figure 1. Cone of influence for a point u.

2 Our method

2.1 Principle

Our method for blur estimation is based on estimating the sharpness of the sharpest edges in the image. To analyse edges in the image, we calculate the Lipschitz exponent in all points where a change in intensity is found either in the horizontal or vertical direction. The Lipschitz exponent (sometimes referred to as Hölder exponent) is a measure of how smooth the image is in a certain point. In fact, it is an extension of how many times the image is differentiable in a certain point. For example, a signal that is differentiable once, has Lipschitz exponent 1, a step function has Lipschitz 0 and a dirac impulse Lipschitz -1. In the wavelet domain, it is possible to calculate the Lipschitz exponent in a certain point in the image from the evolution of the modulus maxima of the wavelet coefficients corresponding to that point through successive scales. Mallat has shown in [7–9] how Lipschitz regularity van be calculated for a one-dimensional signal.

Consider the cone of influence for a point v. The cone of influence in v (fig. 1) are the points (u,s) in scale-place space that are within the support of the wavelet $\psi_{v,s}$ at position v and scale s. Now, if the signal is uniformly Lipschitz α in the neighbourhood of a certain point v, then a constant A exists such that all wavelet coefficients within the cone of influence around v in the scale-place space satisfy the condition

$$\max(|Wf(u,s)|) = A s^{\alpha+1/2},$$
 (3)

which is equivalent to

$$\max(\log_2 |Wf(u,s)|) = \log_2 A + \log_2(\alpha + 1/2).$$
 (4)

Here, |Wf(u,s)| represents the modulus of the wavelet transform of f(x) at resolution scale s. The Lipschitz

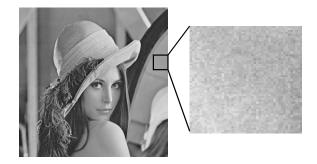


Figure 2. Lena image and detail (mirror) which shows small intensity variations that disturb the blur estimation.

regularity in at v is given by the maximum slope of $\log_2 |Wf(v,s,x)|$ as a function of $\log_2 s$ along the lines of modulus maxima that converge towards v within the cone of influence.

2.2 Practical considerations

The wavelet decomposition of the image is calculated, and by following the modulus maxima of the wavelet coefficients corresponding to a certain point in the image through different resolution scales, the Lipschitz exponent in that point is calculated by fitting an exponential curve to the modulus maxima versus the scale, as described earlier [7–9]. A problem in this approach is that even minor intensity variations in smooth regions result in Lipschitz exponents that correspond with sharp edges. An example is shown in figure 2. In the mirror region at the right of the famous 'Lena' image, we can see what causes this effect. When magnified and with enhanced contrast, we see the intensity variations, even in apparently smooth regions. The problem is to distinguish sharp transitions whith a small amplitude from smooth transitions. This disturbs our estimation of the blurring of the image. However, transitions with small amplitude are not likely to belong to dominant image features. Because we work in the wavelet domain, we restrict our analysis to features that produce a gradient above a certain threshold. This gradient is extracted from the wavelet detail coefficients in the highest resolution scale. The threshold was determined empirically so that major image features were visible. Empirically, this thresholds corresponds with $30/\sigma_{bl}$.

From the Lipschitz exponents thus found along the significant edges in the image, a histogram is made. For this histogram, we divided the range of Lipschitz exponents in intervals with a width of 0.1. Because we

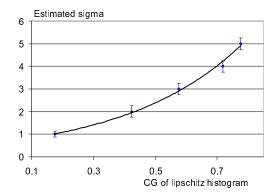


Figure 3. The graph that shows the fitted relation between the estimated σ and GG of the histogram of Lipschitz exponents.

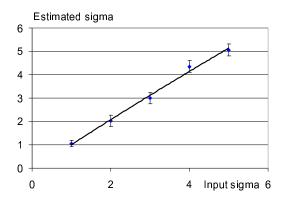


Figure 4. Verification: the estimated σ_{bl} in function of the input σ_{bl} are on a perfect line .

restricted the lipschitz exponents to those corresponding with transitions with large amplitude, we already filtered out the sharpest transitions with a large amplitude in the image. When we make a histogram of these Lipschitz exponents, we expect a single peak corresponding with the smoothness of the sharpest edges. When we have synthetic test images with large constant regions and step edges, we only have one kind of transitions, namely those step edges. When these edges are blurred, we obtain a histogram with one peak, corresponding with the sharpness of the blurred edges. This is illustrated in fig. 5. In reality, we have a certain distribution around this peak, from which we want to estimate the blur. Both the position of the maximum in the histogram and the center of gravity (CG) of the histogram are related to the blur in the image, but from experiments, the CG was the most reliable parameter. Let N_k be the number of transitions along

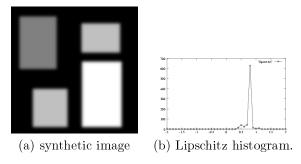


Figure 5. Blur estimation on synthetic image.

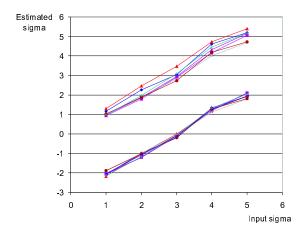


Figure 6. Illustration of the offset effect when comparing the different images. The top set of curves is without subtracting the offset; the bottom set is after subtraction.

significant edges in the image with Lipschitz exponent α_k , then CG is:

$$CG = \frac{\sum_{k} N_k \alpha_k}{\sum_{k} N_k}$$
 (5)

2.3 Experiments

We studied a test set of eight images, taken from the Kodak website [10] and were taken with digital cameras. From these images, square regions were selected to reduce computation time. In each experiment, an image from this set was blurred with a gaussian PSF with σ_{bl} varying between 1 and 5. Each time, the Lipschitz exponents were calculated among the edges in the blurred image. For control purposes, they were plotted in a Lipschitz representation image, where an intensity is associated with the magnitude of the Lipschitz exponent. We made the histogram and calculated the CG the histogram.

An example of such an experiment for blurring with a Gaussian PSF with variance $\sigma_{bl} = 3$ is shown in figure 9. In fig. 9(a) the original image is shown, in fig. 9(b) we see the blurred image with $\sigma_{bl} = 3$. In fig. 9(c), a representation is made of which exponents contribute to the histogram in figure 9(d). In this representation, the Lipschitz exponent is plotted with black points corresponding to the sharpest transitions in the image; the smoother the transition, the lighter color was used. When fig. 9(c) is compared to fig. 9(a), one can verify that the considered Lipschitz exponents are indeed located among the sharpest edges with large amplitude in the image, though not all edges are found in 9(c) and not all dark points in 9(c) are edges. In our method, this is not a problem, since they are only used for gathering statistics.

We calculated the Lipschitz exponent that corresponds to CG of the histogram, and determined the average $CG_{\sigma_{bl}}$ over the whole set of test images blurred with the same σ_{bl} . To these data $(\sigma_{bl}, CG_{\sigma_{bl}})$, an exponential curve was fitted (figure 3) experimentally, where the standard deviation over the experiments is shown as a vertical error bar. The fitting was

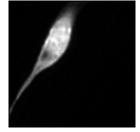
$$\sigma_{bl} = a \exp(b \operatorname{CG}_{\sigma_{bl}}) \tag{6}$$

and for the parameters the fitting produced a = 0.6645 and b = 2.6142.

If we compare the estimated σ to the input σ with which the images were originally blurred, we obtain the graph in figure 4. In this graph, we can see that the estimations for σ_{bl} are accurate to about 10%.

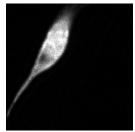
When we plot for all the images in all blurring experiments the estimated sigma versus the input sigma, we see that all the curves are more or less parallel. This suggests that in some images, there was already some initial blur (see top set of curves in figure 6). When this offset is subtracted from all curves, the standard deviation is a lot smaller (lower set of curves in figure 6). So what we estimate is the total effect of the blur that was already present in the original digital image, and the synthetic blur from the experiment.

When we applied this method to estimate the blur in blurred images for which no blur information was available, it was possible to use this estimation in a classical restoration scheme, and good restoration results were obtained. In figure 7, a confocal microscope image of a cell nucleus of $Arabidopsis\ Thaliana$ is shown. The left image shows the raw microscope image, the right image shows the image, restored with the well known Richardson-Lucy restoration algorithm [11], using the raw image and our estimate of the PSF as inputs. As reference image, we manually restored the image with a synthetically generated Gaussian PSF, with σ_{bl} varying



(a) Original microscope image.

(b) Image restored using our estimation.



(c) Image manually restored

Figure 7. Blur estimation used in restoration of a real image.

between 1 and 15. The image that was restored best, was the one with the same σ_{bl} as the one estimated with our method.

We also tried to estimate the PSF in case of out-offocus blur. This kind of blur is encountered in autofocus applications, and is modelled by a uniform circular PSF [5,6].

$$PSF(x,y) = \begin{cases} K & \text{if } \sqrt{x^2 + y^2} < d/2 \\ 0 & \text{elsewhere} \end{cases}$$
 (7)

with d the diameter of the focal spot, and K a factor, chosen such that the norm of the PSF is 1.0. In most autofocus applications one doesn't estimate the PSF of the blurring, but one only tries to determine if an image is in focus or not. Nevertheless, it is possible to retrieve more information about the blurring, and to use it to adjust the focus more accurately. We repeated the same experiment as before, but this time with synthetic out-of-focus blur. In this case, relation 6 is not valid anymore. For out-of-focus blur, a polynomial provided a good fit to the data:

$$r_{focal} = 19.7 \text{ cG}^3 - 19.1 \text{ cG}^2 + 17.3 \text{ cG} - 2.3.$$
 (8)

Using this relation, we can estimate r_{focal} . In figure 8 a comparison is given between the input blur and the estimated blur. The error bars show the standard deviation over the test set of images used before.

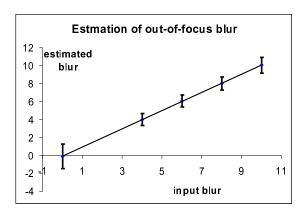


Figure 8. Focus estimation vs real size of the focal spot.

3 Conclusions and future work

In the experiments, we see that the CG of the histogram of Lipschitz exponents calculated among the edges in the image is a reliable parameter to estimate σ of gaussian blur. However, the standard deviation on the estimate increases as σ increases.

The tests were performed only for vertical edges in the image. Applying the algorithm to horizontal edges is similar, and will allow us to study Gaussian PSF's that are not circular symmetrical (with $\sigma_x \neq \sigma_y$).

References

- [1] Yalin Xiong and Steve Shafer, "Depth from focusing and defocusing," in *Proc. of IEEE Conf. on Computer Vision and Pattern Recognition*, 1993.
- [2] Yoav Schechner and Nahum Kiryati, "Depth from defocus vs. stereo: How different really are they?," in Proc. International Conf. on Pattern Recognition, 1998.
- [3] James Elder and Steven Zucker, "Local scale control for edge detection and blur estimation," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 20, no. 7, pp. 699–716, 1998.
- [4] V. Kayargadde and J.-B. Martens, "Estimation of edge parameters and image blur from local derivatives," *Journal on Communications*, pp. 33–34, 1994.
- [5] Andreas Savakis and H. joel Trussell, "Blur identification by residual spectral matching," *IEEE Tans. Image Processing*, vol. 2, no. 2, pp. 141–151, 1993.

- [6] Andreas Savakis and H. joel Trussell, "On the accuracy of psf representation in image restoration," *IEEE Tans. Image Processing*, vol. 2, no. 2, pp. 141–151, 1993.
- [7] Stephane Mallat and Sifen Zhong, "Characterization of signals from multiscale edges," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 14, no. 7, pp. 710–732, 1992.
- [8] Stephane Mallat and Wen Liang Hwang, "Singularity detection and processing with wavelets," *IEEE Trans. Information Theory*, vol. 38, no. 8, pp. 617–643, 1992.
- [9] Stephane Mallat, A wavelet tour of signal processing (2nd ed.), Academic Press, Oval Road, London, 1998,1999.
- [10] "Kodak digital camera sample pictures," http://www.kodak.com/digitalImaging/samples/classic.shtml.
- [11] H.T.M. van der Voort and K.C. Strasters, "A quantitative comparison of image restoration methods for confocal microscopy," *Journal of Microscopy*, vol. 185, no. 3, pp. 354–365, 1997.

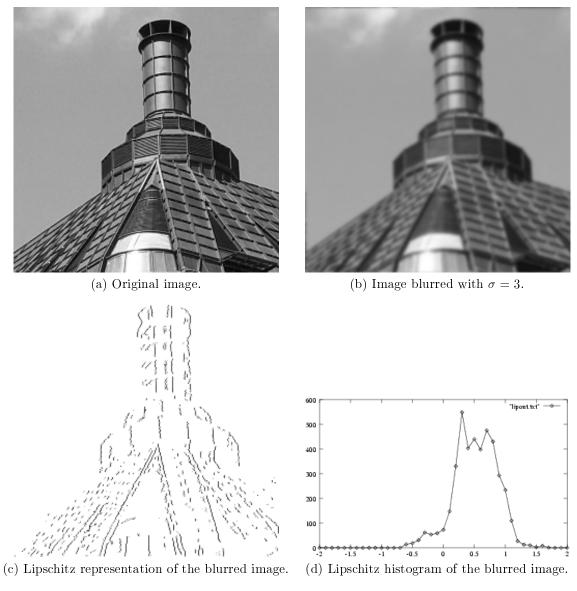


Figure 9. Example of a blur estimation experiment on a test image.