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Abstract

In this paper, a wavelet based method is proposed to
estimate the blur in an image using information con-
tained in the image itself. We look at the sharpness of
the sharpest edges in the blurred image, which contain
information about the blurring. Specifically, a smooth-
ness measure, the Lipschitz exponent, is computed for
these sharpest edges. A relation between the variance
of a gaussian point spread function and the magnitude
of the Lipschitz exponent is shown, which is only de-
pendent on the blur in the image and not on the image
contents. This allows us to estimate the variance of the
blur directly from the image itself.

1 Introduction

Blurring of edges in an image occurs in many differ-
ent fields. Image blur is modelled as:

g(z,y) = (h* f)(z,y) (1)

with g(z,y) the blurred image, f(z,y) the unknown
sharp image and h(z,y) the point spread function
(psF). The symbol * represents the convolution op-
erator, and models the image blur. It is in fact the re-
sponse of the imaging system to an ideal point source.
This blur is often unwanted and has to be compen-
sated for (this is image restoration, and is applied in
astronomy, medical imaging, microscopy, ... ). In that
case, the estimation of the blur is needed to restore the
ideal image f(z,y) from degraded data g(x,y).
Sometimes however, this blur contains extra infor-
mation. For example, it can provide information about
the settings of the camera. When dealing with autofo-
cus cameras, one expects to find a sharp image, because
all natural images contain sharp edges since an object
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in front of a background produce sharp edges. When
an image is out of focus, the sharpness of the sharpest
edges that are still present in the image gives us infor-
mation about how much an out-of-focus camera needs
to be adjusted.

Blurred edges can also provide information about
the 3D nature of the scene itself. In those applications,
depth is estimated from focus/defocus [1,2]. Again, we
assume that all objects in front of a background have
sharp edges. But only objects in the focal plane are
imaged with sharp edges. For objects not in the focal
plane these sharp edges will be blurred proportionally
to their distance from the focal plane, thus providing
some depth information about the image.

In this paper, a method is proposed to estimate the
PSF in an image by looking how sharp the sharpest
edges in a blurred image still are, in order to find in-
formation about the pSF. It estimates in particular the
variance op; of a gaussian PSF from information con-
tained in the image itself:

PSF(2, 1) = b e~ 9P/ (20). )

B vV 271'0'(,1

Our method can estimate the image blur oy with an
accuracy of about 10%. Other techniques for blur esti-
mation using Gaussian PSF’s [3,4] use derivatives of the
Gaussian PSF to determine the variance of the Gaus-
sian blur. We present an alternative method, which
doesn’t use derivatives, but a measure of the smooth-
ness of the image at a certain position. This method
can also be extended to gaussian PSF’s that are not
axially symmetrical and even to PSF’s that aren’t even
gaussian. For out-of-focus blur, a uniform circular pPSF
is used [5,6]. Our method requires only minor modifi-
cations to adapt to this kind of pPSF, as will be shown
in the paper.
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Figure 1. Cone of influence for a point u.

2 Our method

2.1 Principle

Our method for blur estimation is based on estimat-
ing the sharpness of the sharpest edges in the image.
To analyse edges in the image, we calculate the Lips-
chitz exponent in all points where a change in inten-
sity is found either in the horizontal or vertical direc-
tion. The Lipschitz exponent (sometimes referred to
as Holder exponent) is a measure of how smooth the
image is in a certain point. In fact, it is an extension of
how many times the image is differentiable in a certain
point. For example, a signal that is differentiable once,
has Lipschitz exponent 1, a step function has Lipschitz
0 and a dirac impulse Lipschitz —1. In the wavelet do-
main, it is possible to calculate the Lipschitz exponent
in a certain point in the image from the evolution of
the modulus maxima of the wavelet coefficients corre-
sponding to that point through successive scales. Mal-
lat has shown in [7-9] how Lipschitz regularity van be
calculated for a one-dimensional signal.

Consider the cone of influence for a point v. The
cone of influence in v (fig. 1) are the points (u, s) in
scale-place space that are within the support of the
wavelet 1, s at position v and scale s. Now, if the
signal is uniformly Lipschitz « in the neighbourhood of
a certain point v, then a constant A exists such that all
wavelet coefficients within the cone of influence around
v in the scale-place space satisfy the condition

max(|W f(u, s)|) = A s°H1/2, ()
which is equivalent to
max(logy [W f(u, s)|) =logy A +logy(ar +1/2). (4)

Here, |W f(u, s)| represents the modulus of the wavelet
transform of f(z) at resolution scale s. The Lipschitz

Figure 2. Lena image and detail (mirr or) whic h
shows small intensity variations that disturb
the blur estimation.

regularity in at v is given by the maximum slope of
log, W f(v, s, x)| as a function of log, s along the lines
of modulus maxima that converge towards v within the
cone of influence.

2.2 Practical considerations

The wavelet decomposition of the image is calcu-
lated, and by following the modulus maxima of the
wavelet coefficients corresponding to a certain point
in the image through different resolution scales, the
Lipschitz exponent in that point is calculated by fit-
ting an exponential curve to the modulus maxima ver-
sus the scale, as described earlier [7-9]. A problem in
this approach is that even minor intensity variations
in smooth regions result in Lipschitz exponents that
correspond with sharp edges. An example is shown
in figure 2. In the mirror region at the right of the
famous ’Lena’ image, we can see what causes this ef-
fect. When magnified and with enhanced contrast, we
see the intensity variations, even in apparently smooth
regions. The problem is to distinguish sharp transi-
tions whith a small amplitude from smooth transitions.
This disturbs our estimation of the blurring of the im-
age. However, transitions with small amplitude are not
likely to belong to dominant image features. Because
we work in the wavelet domain, we restrict our analy-
sis to features that produce a gradient above a certain
threshold. This gradient is extracted from the wavelet
detail coefficients in the highest resolution scale. The
threshold was determined empirically so that major im-
age features were visible. Empirically, this thresholds
corresponds with 30/cy;.

From the Lipschitz exponents thus found along the
significant edges in the image, a histogram is made.
For this histogram, we divided the range of Lipschitz
exponents in intervals with a width of 0.1. Because we



Estimated sigma

0.1 0.3 0.5 0.7
CG of lipschitz histogram

Figure 3. The graph that shows the fitted re-
lation between the estimated o and cc of the
histogram of Lipsc hitz exponents.

Estimated sigma

I
-

0 T T 1
0 2 4 Inputsigma 6

Figure 4. Verification: the estimated oy In
function of the input o, are on a perfect line .

restricted the lipschitz exponents to those correspond-
ing with transitions with large amplitude, we already
filtered out the sharpest transitions with a large am-
plitude in the image. When we make a histogram of
these Lipschitz exponents, we expect a single peak cor-
responding with the smoothness of the sharpest edges.
When we have synthetic test images with large con-
stant regions and step edges, we only have one kind of
transitions, namely those step edges. When these edges
are blurred, we obtain a histogram with one peak, cor-
responding with the sharpness of the blurred edges.
This is illustrated in fig. 5. In reality, we have a cer-
tain distribution around this peak, from which we want
to estimate the blur. Both the position of the maxi-
mum in the histogram and the center of gravity (CG)
of the histogram are related to the blur in the image,
but from experiments, the ¢G was the most reliable
parameter. Let N, be the number of transitions along
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(b) Lipschitz histogram.

(a) synthetic image

Figure 5. Blur estimation on synthetic image.
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Figure 6. lllustration of the offset effect when
comparing the diff erent images. The top set
of curves is without subtracting the offset;
the bottom set is after subtraction.

significant edges in the image with Lipschitz exponent
ag, then CG is:

2w NE g

cG = —Zk N, (5)

2.3 Experiments

We studied a test set of eight images, taken from the
Kodak website [10] and were taken with digital cam-
eras. From these images, square regions were selected
to reduce computation time. In each experiment, an
image from this set was blurred with a gaussian PSF
with oy varying between 1 and 5. Each time, the Lips-
chitz exponents were calculated among the edges in the
blurred image. For control purposes, they were plotted
in a Lipschitz representation image, where an intensity
is associated with the magnitude of the Lipschitz ex-
ponent. We made the histogram and calculated the ca
the histogram.



An example of such an experiment for blurring with
a Gaussian PSF with variance oy = 3 is shown in fig-
ure 9. In fig. 9(a) the original image is shown, in fig.
9(b) we see the blurred image with oy = 3. In fig.
9(c), a representation is made of which exponents con-
tribute to the histogram in figure 9(d). In this repre-
sentation, the Lipschitz exponent is plotted with black
points corresponding to the sharpest transitions in the
image; the smoother the transition, the lighter color
was used. When fig. 9(c) is compared to fig. 9(a),
one can verify that the considered Lipschitz exponents
are indeed located among the sharpest edges with large
amplitude in the image, though not all edges are found
in 9(c) and not all dark points in 9(c) are edges. In our
method, this is not a problem, since they are only used
for gathering statistics.

We calculated the Lipschitz exponent that corre-
sponds to CG of the histogram, and determined the
average CG,, over the whole set of test images blurred
with the same op;. To these data (o4, CGy,,), an ex-
ponential curve was fitted (figure 3) experimentally,
where the standard deviation over the experiments is
shown as a vertical error bar. The fitting was

op = a exp(b CGy,,) (6)

and for the parameters the fitting produced a =
0.6645 and b = 2.6142.

If we compare the estimated o to the input ¢ with
which the images were originally blurred, we obtain the
graph in figure 4. In this graph, we can see that the
estimations for o}, are accurate to about 10%.

When we plot for all the images in all blurring ex-
periments the estimated sigma versus the input sigma,
we see that all the curves are more or less parallel. This
suggests that in some images, there was already some
initial blur (see top set of curves in figure 6). When
this offset is subtracted from all curves, the standard
deviation is a lot smaller (lower set of curves in figure
6). So what we estimate is the total effect of the blur
that was already present in the original digital image,
and the synthetic blur from the experiment.

When we applied this method to estimate the blur in
blurred images for which no blur information was avail-
able, it was possible to use this estimation in a classical
restoration scheme, and good restoration results were
obtained. In figure 7, a confocal microscope image of
a cell nucleus of Arabidopsis Thaliana is shown. The
left image shows the raw microscope image, the right
image shows the image, restored with the well known
Richardson-Lucy restoration algorithm [11], using the
raw image and our estimate of the PSF as inputs. As
reference image, we manually restored the image with a
synthetically generated Gaussian PSF, with oy varying

(b) Image restored using
our estimation.

(a) Original microscope
image.

(c¢) Image manually restored

Figure 7. Blur estimation used in restoration
of areal image.

between 1 and 15. The image that was restored best,
was the one with the same op; as the one estimated
with our method.

We also tried to estimate the PSF in case of out-of-
focus blur. This kind of blur is encountered in autofo-
cus applications, and is modelled by a uniform circular
PSF [5,6].

PSE(z, y) = { K if /22 +y? < d/2 )

0 elsewhere

with d the diameter of the focal spot, and K a fac-
tor, chosen such that the norm of the psF is 1.0. In
most autofocus applications one doesn’t estimate the
PSF of the blurring, but one only tries to determine if
an image is in focus or not. Nevertheless, it is possible
to retrieve more information about the blurring, and
to use it to adjust the focus more accurately. We re-
peated the same experiment as before, but this time
with synthetic out-of-focus blur. In this case, relation
6 is not valid anymore. For out-of-focus blur, a poly-
nomial provided a good fit to the data:

Tocal = 19.7 CG* — 19.1 cG® + 17.3 ca — 2.3.

(8)

Using this relation, we can estimate r¢ocq. In figure
8 a comparison is given between the input blur and
the estimated blur. The error bars show the standard
deviation over the test set of images used before.
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Figure 8. Focus estimation vs real size of the
focal spot.

3 Conclusions and future work

In the experiments, we see that the cG of the his-
togram of Lipschitz exponents calculated among the
edges in the image is a reliable parameter to estimate
o of gaussian blur. However, the standard deviation
on the estimate increases as ¢ increases.

The tests were performed only for vertical edges in
the image. Applying the algorithm to horizontal edges
is similar, and will allow us to study Gaussian PSF’s
that are not circular symmetrical (with o, # o0y).
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(a) Original image.
il ;
fo | 7
.-rj i

.|:ﬁ
r.-f!; Tl !,i

1'& i

f:’.r"ll.-h' FI.|r ;

' 'J.r’"'l'-"r o

(c) Lipschitz representatlon of the blurred image.

(b) Tmage blurred with o = 3.
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(d) Lipschitz histogram of the blurred image.

Figure 9. Example of a blur estimation experiment on atest image.



