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Abstract ity [6]. Here the template represents the desired object to be
Many visual matching algorithms can be described infound. However, performing template matching over a dense
terms of the features and the inter-feature distance or metstructure of scales and rotations of an image is not an inter-
ric. The most commonly used metric is the sum of squaredctive solution regarding searches in large image databases.
differences (SSD), which is valid from a maximum likeli- We are interested in using shape descriptors in content-
hood perspective when the real noise distribution is Gaushased retrieval. Assume that we have a large number of im-
sian. However, we have found experimentally that the Gausages in the database. Given a query image, we would like
sian noise distribution assumption is often invalid. This im-to obtain a list of images from the database which are most
plies that other metrics, which have distributions closer tosimilar (here we consider the shape aspect) to the query im-
the real noise distribution, should be used. In this paper weage. For solving this problem, we need two things - first, a
considered a shape matching application. We implementeeheasure which represents the shape information of the image
two algorithms from the research literature and for each al- and second a similarity measure to compute the similarity be-
gorithm we compared the efficacy of the SSD metric, the SAlRveen corresponding features of two images.
(sum of the absolute differences) metric, and the Cauchy met- | . similarity measure is a matching function and gives

ric. Furthermore, in the case where sufficient training data,[he degree of similarity for a given pair of images (repre-

is available, we discussed and experimentally tested a newg .o g by shape measures). The desirable property of a sim-
metric based dlre_ctly on_the_ real n0|se_d|str|but|on, which Weilarity measure is that it should be a metric (that is, it has the
denoted the maximum likelihood metric. properties of symmetry, transitivity, and linearity). The SSD

1 Introduction (L2) and the SAD L) are the most commonly used metrics.

Shape is a concept which is widely understood yet difficult This brings to mind several questions. First, under what con-
to define formally. For human beings perception of shape iglitions should one use the SSD versus the SAD? From a max-
a high-level concept whereas mathematical definitions tendmum likelihood perspective, itis well known that the SSD is
to describe Shape with low-level attributes. Therefore' theréustiﬁed when the additive noise distribution is Gaussian. The
is no uniform theory of Shape_ However, the word Shape Ca@AD |SJUSt|f|ed when the additive noise distribution is EXpO'
be defined in some specific frameworks. For object recoghential (double or two-sided exponential). Therefore, one can
nition purposes Marshall [8] defines shape as a function oflétermine which metric to use by checking if the real noise
position and direction of a S|mp|y connected curve within adistribution is closer to the Gaussian or the EXponentiaI. The
2D field. Clearly, this definition is not general, nor even suf- common assumption is that the real noise distribution should

ficient for general pattern recognition. In pattern recognition,fit either the Gaussian or the Exponential, but what if there is
the definition suggested by Marshall [8] is suitable for 2D another distribution which fits the real noise distribution bet-
image objects whose boundaries or pixels inside the bound€r? Toward answering this question, we have endeavored to
aries can be identified. It must be pointed out that this kinduse international test sets and promising algorithms from the
of definition requires that there are some objects in the im{esearch literature.

age and, in order to code or describe the shape, the objects In this paper, the problem of image retrieval using shape
must be identified by segmentation. Therefore, either manwas approached by active contours for segmentation and in-
ual or automatic segmentation is usually performed beforevariant moments for shape measure. Active contours were
shape description. How can we separate the objects from thfest introduced by Kass et al. [7], and were termed snakes by
background? Difficulties come from discretization, occlu- the nature of their movement. Active contours are a sophis-
sions, poor contrast, viewing conditions, noise, complicatedicated approach to contour extraction and image interpreta-
objects, complicated background, etc. In the cases where th®n. They are based on the idea of minimizing energy of a
segmentation is less difficult and possible to overcome, theontinuous spline contour subject to constraints on both its
object shape is a characteristic which can contribute enorautonomous shape and external forces derived from a super-
mously in further analysis. If segmentation is not an option,posed image that pull the active contour toward image fea-
a global search in the form of template matching is a possibiltures such as lines and edges.



Moments describe shape in terms of its area, positiongurvature of the active contour and to make the active contour
orientation, and other parameters. The set of invariant mobehave in an elastic manner. According to Kass et al. [7] the
ments [5] makes a useful feature vector for the recognition ofnternal energy is defined as
objects which must be detected regardless of position, size, or

: . . . h du(s) |? d*v(s) ?
orientation. Matching of the invariant moments feature vec- Eine(v(s)) = als) | =, =] +B(s) | =5~ 2
tors is computationally inexpensive and is a promising candi-
date for interactive applications. The first order continuity term, weighted ly(s), makes
2 Active Contours and Invariant Moments the contour behave elastically, while the second order curva-

ture term, weighted bys(s), makes it resistant to bending.

Active contours challenge the widely held view of bottom- . . :
- e : . SettingG(s) = 0 at a points allows the active contour to be-
up vision processes. The principal disadvantage with the X : .
L . ) tome second order discontinuous at that point and to develop
bottom-up approach is its serial nature; errors generated at a . . .
: a corner. Settingx(s) = 0 at a points allows the active
low-level are passed on through the system without the pos-

. . I . contour to become discontinuous. Active contours can inter-
sibility of correction. The principal advantage of active con- olate gaps in edaes phenomena known as subiective con-
tours is that the image data, the initial estimate, the desire gap ges p )

. . ours due to the use of the internal energy. It should be noted
contour properties, and the knowledge-based constraints aEﬁa’[a(s) and 3(s) are defined to be functions of the curve
integrated into a single extraction process.

In the literature, del Bimbo et al. [3] deforms active con- parametes, and hence segments of the active contour may

. : -~ have different natural behavior. Minimizing the energy of the
tours over a shape in an image and measured the similarit

rivati i mooth function.
between the two based on the degree of overlap and on hoé{e vatives gives a smooth functio
much energy the active contour has to spend in the deform 2.2 Image Energy

tion. Jain et al. [6] use a matching scheme with deformable Eimage iS the image energy term derived from the im-

templates. Our work is different in that we use a Gradient?9€ data over which the active contour lies and is constructed
Vector Flow (GVF) based method [12] to improve the auto- 1O attract the active contour to desired feature points in the
matic fit of the snakes to the object contoursp image, such as edges and lines. The edge based functional

: . L . attracts the active contour to contours with large image gra-
Active contours are defined as energy-minimizing splineSyiants - that is. to locations of strong edges.

under the influence of internal and external forces. The inter-

nal forces of the active contour serve as a smoothness con- Eedge = — |VI(z,y)| (3)
straint designed to hold the active contour together (elastic-

ity forces) and to keep it from bending too much (bending2.3 Problems with Active Contours

forces). The external forces guide the active contour towards There are a number of fundamental problems with the
image features such as high intensity gradients. The optiactive contours and solutions to these problems sometimes

mal contour position is computed such that the total energyreate problems in other components of the active contour
is minimized. The contour can hence be viewed as a reamodel.

sonable balance between geometrical smoothness properties . =~ ) L

and local correspondence with the intensity function of the!Nitialization.  The final extracted contour is highly depen-
reference image. dent on the position and shape of the initial contour

Let the active contour be given by a parametric represen- ~ dué 10 the presence of many local minima in the en-

tationv(s) = (z(s), y(s)), with s the normalized arc length ergy fungtion. The initial contour must be placed near
of the contour. The expression for the total energy can then  the required feature otherwise the contour can become
be decomposed as follows: obstructed by unwanted features like JPEG compression

artifacts, closeness of a nearby object, etc.

1

Etotar :/[Eint(”(S))+Eima96(”(s))+Econ (v(s)lds (1) Non-convex shapesHow do we extract non-convex shapes
without compensating the importance of the internal
forces or without a corruption of the image data? For
example, pressure forces [2] (addition to the external
force) can push an active contour into boundary concav-
ities, but cannot be too strong or otherwise weak edges
will be ignored. Pressure forces must also be initialized
to push out or push in, a condition that mandates careful
initialization.

WhereEmi represents the internal forces (or energy) which
encourage smooth curvegB;,,q4. represents the local cor-
respondence with the image function, aig,,, represents a
constraint force that can be included to attract the contour to
specific points in the image plane. In the following discus-
sionsE.on Will be ignored. E;yq4e is typically defined such
that locations with high image gradients or short distances to
image gradients are assigned low energy values.
2.1 Internal Energy The original method of Kass et al. [7] suffered from three
E;.¢ is the internal energy term which controls the naturalmain problems: dependence on the initial contour, numer-
behavior of the active contour. It is designed to minimize theical instability, and lack of guaranteed convergence to the



global energy minimum. Amini et al. [1] improved the nu- ultt = (1= by j)udy

.
merical instability by minimizing the energy functional us- P Ul Ul ul o — dul) ek (@)

ing dynamic programming, which allows inclusion of hard o = (1= bl

constraints into the energy functional. However, memory re- o HIITI

quirements are large, beiinm?), and the method is slow, HO 1+ 0l F U o — i) ey (5)
beingO(nm?) wheren is the number of contour points and whereb,; — Gi(i,§)° + G, (i, ), cbs = bi;Ga(i,5), and
m is the neighborhood size to which a contour point is al- 2 _ bi’,jGj(@j) ;/vith G, and G, thlg first and tr;e second

lowed to move in a single iteration. Seeing the difficulties ellé
with both previous methods Williams and Shah [11] devel-

oped thegreedy algorithnwhich combines speed, flexibility, to; - The intuition behind the diffusion equations is that in
and simplicity. The greedy algorithm is fas®(nm) than  omogeneous regions, the first and third terms are 0 since
the dynamic programming and is more stable and flexible fog,o gradient is 0, and within those regiomsandv are each
including constraints than the variational approach of Kass efjatermined by Laplace equation. This results in a type of
al.[7]. During each iteration, a neighborhood of each point is«jjing.in* of information taken from the boundaries of the
examined and a point in the neighborhood with the smallespegion_ In regions of high gradientis kept nearly equal to
energy value provides the new location of the point. Itera-the gragient.

tions continue till the num_ber_ of poir_1ts in_the_ active contour Creating GVF field yields streamlines to a strong edge.
that moved to a new location in one iteration is below & Specy, the presence of these streamlines, blobs and thin lines in
ified threshold. the way to strong edges do not form any impediments to the
2.4 Gradient Vector Flow movement of the active contour. It can be considered as an

Since the greedy algorithm easily accommodates nevadvantage if the blobs are in front of the shape, nevertheless
changes, there are three things we would like to add to it: thét can be considered as a disadvantage if the active contour
ability to inflate the contour as well as to deflate it, the ability enters the silhouette of the shape.
to deform to concavities, and to increase the capture range &5 Invariant Moments
the external forces. These three additions reduce the sensi- Perhaps the most popular method for shape description is
tivity to initialization of the active contour and allow defor- the use of invariant moments [5] which are invariant to affine
mation inside concavities. This can be done by replacing théransformations. In the case of a digital image, the moments
existing external force (image term) with the gradient vectorare approximated by
flow (GVF) [12]. The GVF is an external force computed as Mpg = > Pyl f(z,y) (6)
a diffusion of the gradient vectors of an image, without blur- z oy
fing the edges. The idea of the diffusion equation is takeryVN€re the order of the moment s + ¢),  andy are the -
from physics. An example of the effect of the GVF external pixel coordinates relative to_ some arbitrary standard origin,
force can be seen in Fig. 1. Figs. 1 (b) and (c) show the differnd.f (%, y) represents the pixel brightness. .
ences between the deformation with the gradient magnitude To ha\_/e moments that are invariant to translation, scale,

. . . . _—and rotation, first the central momenisre calculated
(the greedy algorithm) and the deformation with the gradient mio Mot
vector flow in the presence of a concavity. =y Y (=T (y—1)'f(x,y), ==——, 7=—— (7)
z Yy

ments of the gradient vector.
The second term in (4) and (5) is the Laplacian opera-

moo moo

Further, the normalized central momentare calculated

+
npq:m))\qv)\:—(p2Q)7p+qz2 (8)
Hoo

From these normalized parameters a set of invariant mo-
ments{¢} found by Hu [5], can be calculated. The 7 equa-
tions of the invariant moments contain terms up to order 3:

$1 = m20 + Mo2 9)
¢a = (n20 —mo2)® + 4ni;
® - ¢3 = (n30 —3m2)? + (3n21 — 7Mo3)?
(@) (b) (©) ps = (m30—m2)® + (21 — n03)*

N30 — 3mz) (30 + m2) ((M30 +m12)% — 3(n21 + no3)?)+

Figure 1: Initialization across the shape: (a) initial position, (b) s
3n21 — 103) (n21 + M03) (3(n30 +m2)? — (M21 + Mo3)?)

deformation with the gradient magnitude, (c) deformation with the

o~ o~ o~ o~ o~ —~

GVF. b6 = (n20 —mo2) (30 +mz2)? — (n21 +no3)?) +

Xu and Prince [12] define the gradient vector flow (GVF) 4n11(n30 + m2)(n21 + 103) , ,
field to be the vector field (i, j) = (u(i, §), v(i, §)) which 7 = (3721 =n30)(n30 +m2) (30 + M2)* = 3(n21 + m03) "+
is updated with every iteration of the diffusion equations: (3m12 — M03) (M21 + M03) (3(n30 +m2)? — (M21 + M0o3)?)



Since we do not deal with occlusion, the invariance to posi- . . . i ;
. . : . i : i that all deviant points get the same relative weight, with only
tion, size, and orientation, and the low dimensionality of the

. . ._the sign information used. Finally, when the tails are even
feature vector represent good reasons for using the invariant

. . . . . {arger, (17) says thap increases with deviation, then starts
moments in matching shapes. The logarithm of the invarian . . . .

. : decreasing, so that very deviant points - the true outliers - are
moments is taken to reduce the dynamic range.

not counted at all.
3 Maximum Likelihood Approach Maximum likelihood gives a direct connection between
In the previous sections we were discussing about extracthe noise distributions and the comparison metrics. Consid-

ing the shape information in a feature vector. In order to im-eringp as the negative logarithm of the probability density of
plement a content-based retrieval application we still need téhe noise, then the corresponding metric is given by Eq. (10).
provide a framework for selecting the similarity measure to  Consider the Minkowski-form distanck, between two

be used when the feature vectors are compared. vectorse andy defined by
Maximum likelihood theory [10] allows us to relate a »
noise distribution to a metric. Specifically, if we are given Ly(z,y) = <Z |z — y¢|p> (18)
the noise distribution then the metric which maximizes the i
similarity probability is If the noise is Gaussian distributed, gtz) = 22, then
Zp(”i) (10) (10) is equivalent to (18) witlp = 2. Therefore, in this case
P the corresponding metric iB2. Equivalently, if the noise is

. o : . . ... Exponential, sp(z) = |z|, then the corresponding metric is
wheren; represents théh bin of the discretized noise distri- L1 (Eq. (18) withp = 1). In the case the noise is distributed

bt!“on and_p is the maximum I_|I_<eI|hood_ estimate Of_ the N€Y- asa Cauchy distribution with scale parametgethen the cor-
ative |ogar|thm of.the_ prgbap|||ty density of the noise. Typi- responding metric is no longer a Minkovski metric. However,
cally, the noise distribution is represented by the differenceqgr convenience we denote it &s:
between the corresponding elements given by the ground N2
truth. P g g y g Lc(:uy) = Zlog (1 + (%) ) (19)

To analyze the behavior of the estimate we take the ap- ‘
proach described in [4] and based on the influence function. In practice, the probability density of the noise can be ap-
The influence function characterizes the bias that a particulgproximated as the normalized histogram of the differences
measurement has on the solution and is proportional to thbetween the corresponding feature vectors elements. For
derivative ), of the estimate convenience, the histogram is made symmetric around zero

_dp(z) by considering pairs of differences (e.g.— y andy — x).
() = dz (11) Using this normalized histogram, we extract a metric, called
In the case where the noise is Gaussian distributed: maximum likelihoodA/ L) metric. The M L metric is given
, ) 1 by Eq. (10) wherey(n;) is the negative logarithm aP(n;):
() o) €2 pln:) = ~log(P(ny)). (20)
then, p(z) == and  Y(z) =2 (13)

The M L metric is a discrete metric extracted from a dis-
crete normalized histogram having a finite number of bins.
P(ns) ~ exp(—|ni]) 14y  Whenn; does not exactly match any of the bins, for calculat-
then, p(z) = || and ¥(2) = sgr(z) (15)  ing P(n;) we perform linear interpolation betwe@?(r., ¢)

) ) o (the histogram value at bin,, ;) and P(nsup) (the his-

In this case, using (10), we minimize the mean absolutqogram value at bims.,,,), wheren,;,, ; andn..,;,, are the clos-
deviation, rather than the mean square deviation. Here thest inferior and closest superior binsitg respectively:
tails of the distribution, although exponentially decreasing,
are asymptotically much larger than any corresponding Gaus- P(ni) =

If the errors are distributed as a double or two-sided expo
nential, namely,

(nsup = 1i) P(ning) + (ni = Ming) P(nsup)

(21)

Nsup — Ninf

sian.
A distribution with even more extensive tails is the Cauchy4  Experiments
distribution, a We assume that representative ground truth is provided.

P(ni) ~ (16)

a? + n;? The ground truth is split into two non-overlapping sets: the
where thescaleparameterz determines the height and the fraining setand the test set. First, for each image in the train-
tails of the distribution. ing set a feature vector is extracted. Second, the real noise

This implies distribution is computed as the normalized histogram of dif-
2 ferences from the corresponding elements in feature vectors

Z\2
p(z) = log <1 + (g) ) and  4(2) = 5——5 (7 taken from similar images according to the ground truth. The



Gaussian, Exponential, and Cauchy distributions are fitted ta-15°. We prepared our training set by selecting 18 equally
the real distribution. The Chi-square test is used to find thespaced views for each object and using the remaining views
fit between each of the model distributions and the real disfor testing.

tribution. We select the model distribution which has the best The first question we asked was, "Which distribution is a
fit and its corresponding metrib;, is used in ranking. The good approximation for the similarity noise distribution?” To
ranking is done using only the test set. answer this we needed to measure the similarity noise caused

It is important to note that for real applications, the pa- by the object rotation and depending on the feature extraction
rameter in the Cauchy distribution is found when fitting this algorithm (greedy or GVF). The real noise distribution was
distribution to the real distribution from the training set. This obtained as the normalized histogram of differences between
parameter setting would be used for the test set and any fututbe elements of feature vectors corresponding to similar im-
comparisons in that application. ages from the training set.

As noted in the previous section, it is also possible to cre- Fig. 3 presents the real noise distribution obtained for the
ate a metric based on the real noise distribution using maxigreedy algorithm. The best fit Exponential had a better fit to
mum likelihood theory. Consequently, we denote the maxi-the noise distribution than the Gaussian. Consequently, this
mum likelihood (ML) metric as (10) whergis the negative implies thatZ; should provide better retrieval results than
logarithm of the normalized histogram of the absolute differ- L2. The Cauchy distribution is the best fit overall, and the re-
ences from the training set. Note that the histogram of thesults obtained with. should reflect this. However, when the
absolute differences is normalized to have area equal to onmaximum likelihood metric /L) extracted directly from
by dividing the histogram by the total number of examples inthe similarity noise distribution is used we expect to obtain
the training set. This normalized histogram is our approxi-the best retrieval results.

mation for the probability density function. In the case of GVF algorithm the approximation errors for
For the performance evaluation 1€, -, Q, be the  matching the similarity noise distribution with a model dis-
query images and for theth query Q;, Igi)7 ..., 79 pe tribution are given in Table 1. Note that the Gaussian is the

the images similar withQ; according to the ground truth. Worst approximation. Moreover, the difference between the
The retrieval method will return this set of answers with var- Gaussian fit and the fit obtained with the other two distri-
ious ranks. As an evaluation measure of the performance diutions is larger than in the previous case and therefore the
the retrieval method we used recall vs. precision at differentesults obtained witi.> will be much worse. Again the best
scopes: For a quer@; and a scope > 0, the recallr is  fit by far is provided by the Cauchy distribution.

defined a${Z\" [rank(Z\") < s}|/m, and the precisiop
is defined a${Z" |rank(Z\") < s}|/s.

In our experiments we used a database of 1,440 im-
ages of 20 common house hold objects from the COIL-20rap)e 1:The approximation error for matching the similarity noise

database [9]. Each object was placed on a turntable and ph@sstribution with one of the model distributions in the case of GVF
tographed ever§° for a total of 72 views per object. Exam- algorithm (for Cauchy=3.27)

ples are shown in Fig. 2.

Gauss | Exponential| Cauchy
0.0486 0.0286 0.0146

The results are presented in Fig. 4 and Table 2. In the
precision-recall graphs the curves correspondind.toare
above the curves correspondingie and L2 showing that
the method usind.. is more effective. Note that the choice
of the noise model significantly affects the retrieval results.
The Cauchy distribution was the best match for the measured
similarity noise distribution and the results in Table 2 show
that the Cauchy model is more appropriate for the similarity
noise than the Gaussian and Exponential models. However,

In creating the ground truth we had to take into account® Pest results are obtained when the metric extracted di-
the fact that the images of one object may look very different€CtlYy from the noise distribution is used. One can also note
when an important rotation is considered. Therefore, for 4hat the results obtained with the GVF method are signifi-
particular instance (image) of an object we consider as simicantly better than the ones obtained with the greedy method.
lar the images taken for the same object when it was rotated M summary,L. performed better than the analytic dis-
within £ x 5°. In this context, we consider two images tance measures, and théL metric performed best overall.
to ber-similar if the rotation angle of the object depicted in 5 Conclusions
the images is smaller thanx 5°. In our experiments we The first problem this paper addresses is whethef this
usedr = 3 so that one particular image is considered to beappropriate to use for computer vision applications in shape
similar with 6 other images of the same object rotated withinbased retrieval. From our experimenis; is typically not

Figure 2:Example of images of one object rotated with?



p0.08 - p0.08 i p0.08

(a) Gauss (b) Exponential (c) Cauclarp.43)
Figure 3:Similarity noise distribution for the greedy algorithm compared with (a) the best fit Gaussian (approximation error is 0.156), (b)
the best fit Exponential (approximation error is 0.102), and (c) the best fit Cauchy (approximation error is 0.073)

1 1 . . . .
selecting the appropriate metric. Furthermore, we explained

how to create a maximum likelihood metric based on the real
noise distribution, and in our experiments we found that it
consistently outperformed all of the analytic metrics.

We also showed that the GVF based snakes give better re-
N D trieval results than the traditional snakes. In particular, the
(a) (b) GVF snakes have the advantage in that it is not necessary
to know apriori whether the snake must be expanded or con-
tracted to fit the object contour. Furthermore, the GVF snakes
have the ability to fit into concavities of the object which tra-

Preci sion

Figure 4: Precision/Recall for COIL-20 database using (a) the
greedy algorithm (fol.. a=2.43) and (b) the GVF algorithm (for

L. a=3.27) ditional snakes cannot do. Both of these factors resulted in
Precision Recall significant improvement in the retrieval results.
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