
ACCV2002: The 5th Asian Conference on Computer Vision, 23–25 January 2002, Melbourne, Australia. 1

Maximum Likelihood Shape Matching
Nicu Sebe and Michael S. Lew

Leiden Institute of Advanced Computer Science

Leiden University, NielsBohrweg 1, 2333CA Leiden,

The Netherlands

{nicu,mlew}@liacs.nl

Abstract
Many visual matching algorithms can be described in

terms of the features and the inter-feature distance or met-
ric. The most commonly used metric is the sum of squared
differences (SSD), which is valid from a maximum likeli-
hood perspective when the real noise distribution is Gaus-
sian. However, we have found experimentally that the Gaus-
sian noise distribution assumption is often invalid. This im-
plies that other metrics, which have distributions closer to
the real noise distribution, should be used. In this paper we
considered a shape matching application. We implemented
two algorithms from the research literature and for each al-
gorithm we compared the efficacy of the SSD metric, the SAD
(sum of the absolute differences) metric, and the Cauchy met-
ric. Furthermore, in the case where sufficient training data
is available, we discussed and experimentally tested a new
metric based directly on the real noise distribution, which we
denoted the maximum likelihood metric.

1 Introduction
Shape is a concept which is widely understood yet difficult

to define formally. For human beings perception of shape is
a high-level concept whereas mathematical definitions tend
to describe shape with low-level attributes. Therefore, there
is no uniform theory of shape. However, the word shape can
be defined in some specific frameworks. For object recog-
nition purposes Marshall [8] defines shape as a function of
position and direction of a simply connected curve within a
2D field. Clearly, this definition is not general, nor even suf-
ficient for general pattern recognition. In pattern recognition,
the definition suggested by Marshall [8] is suitable for 2D
image objects whose boundaries or pixels inside the bound-
aries can be identified. It must be pointed out that this kind
of definition requires that there are some objects in the im-
age and, in order to code or describe the shape, the objects
must be identified by segmentation. Therefore, either man-
ual or automatic segmentation is usually performed before
shape description. How can we separate the objects from the
background? Difficulties come from discretization, occlu-
sions, poor contrast, viewing conditions, noise, complicated
objects, complicated background, etc. In the cases where the
segmentation is less difficult and possible to overcome, the
object shape is a characteristic which can contribute enor-
mously in further analysis. If segmentation is not an option,
a global search in the form of template matching is a possibil-

ity [6]. Here the template represents the desired object to be
found. However, performing template matching over a dense
structure of scales and rotations of an image is not an inter-
active solution regarding searches in large image databases.

We are interested in using shape descriptors in content-
based retrieval. Assume that we have a large number of im-
ages in the database. Given a query image, we would like
to obtain a list of images from the database which are most
similar (here we consider the shape aspect) to the query im-
age. For solving this problem, we need two things - first, a
measure which represents the shape information of the image
and second a similarity measure to compute the similarity be-
tween corresponding features of two images.

The similarity measure is a matching function and gives
the degree of similarity for a given pair of images (repre-
sented by shape measures). The desirable property of a sim-
ilarity measure is that it should be a metric (that is, it has the
properties of symmetry, transitivity, and linearity). The SSD
(L2) and the SAD (L1) are the most commonly used metrics.
This brings to mind several questions. First, under what con-
ditions should one use the SSD versus the SAD? From a max-
imum likelihood perspective, it is well known that the SSD is
justified when the additive noise distribution is Gaussian. The
SAD is justified when the additive noise distribution is Expo-
nential (double or two-sided exponential). Therefore, one can
determine which metric to use by checking if the real noise
distribution is closer to the Gaussian or the Exponential. The
common assumption is that the real noise distribution should
fit either the Gaussian or the Exponential, but what if there is
another distribution which fits the real noise distribution bet-
ter? Toward answering this question, we have endeavored to
use international test sets and promising algorithms from the
research literature.

In this paper, the problem of image retrieval using shape
was approached by active contours for segmentation and in-
variant moments for shape measure. Active contours were
first introduced by Kass et al. [7], and were termed snakes by
the nature of their movement. Active contours are a sophis-
ticated approach to contour extraction and image interpreta-
tion. They are based on the idea of minimizing energy of a
continuous spline contour subject to constraints on both its
autonomous shape and external forces derived from a super-
posed image that pull the active contour toward image fea-
tures such as lines and edges.



Moments describe shape in terms of its area, position,
orientation, and other parameters. The set of invariant mo-
ments [5] makes a useful feature vector for the recognition of
objects which must be detected regardless of position, size, or
orientation. Matching of the invariant moments feature vec-
tors is computationally inexpensive and is a promising candi-
date for interactive applications.

2 Active Contours and Invariant Moments
Active contours challenge the widely held view of bottom-

up vision processes. The principal disadvantage with the
bottom-up approach is its serial nature; errors generated at a
low-level are passed on through the system without the pos-
sibility of correction. The principal advantage of active con-
tours is that the image data, the initial estimate, the desired
contour properties, and the knowledge-based constraints are
integrated into a single extraction process.

In the literature, del Bimbo et al. [3] deforms active con-
tours over a shape in an image and measured the similarity
between the two based on the degree of overlap and on how
much energy the active contour has to spend in the deforma-
tion. Jain et al. [6] use a matching scheme with deformable
templates. Our work is different in that we use a Gradient
Vector Flow (GVF) based method [12] to improve the auto-
matic fit of the snakes to the object contours.

Active contours are defined as energy-minimizing splines
under the influence of internal and external forces. The inter-
nal forces of the active contour serve as a smoothness con-
straint designed to hold the active contour together (elastic-
ity forces) and to keep it from bending too much (bending
forces). The external forces guide the active contour towards
image features such as high intensity gradients. The opti-
mal contour position is computed such that the total energy
is minimized. The contour can hence be viewed as a rea-
sonable balance between geometrical smoothness properties
and local correspondence with the intensity function of the
reference image.

Let the active contour be given by a parametric represen-
tationv(s) = (x(s), y(s)), with s the normalized arc length
of the contour. The expression for the total energy can then
be decomposed as follows:

Etotal=

1∫
0

[Eint(v(s))+Eimage(v(s))+Econ(v(s))] ds (1)

whereEint represents the internal forces (or energy) which
encourage smooth curves,Eimage represents the local cor-
respondence with the image function, andEcon represents a
constraint force that can be included to attract the contour to
specific points in the image plane. In the following discus-
sionsEcon will be ignored.Eimage is typically defined such
that locations with high image gradients or short distances to
image gradients are assigned low energy values.

2.1 Internal Energy
Eint is the internal energy term which controls the natural

behavior of the active contour. It is designed to minimize the

curvature of the active contour and to make the active contour
behave in an elastic manner. According to Kass et al. [7] the
internal energy is defined as

Eint(v(s)) = α(s)

∣∣∣∣dv(s)

ds

∣∣∣∣2 + β(s)

∣∣∣∣d2v(s)

ds2

∣∣∣∣2 (2)

The first order continuity term, weighted byα(s), makes
the contour behave elastically, while the second order curva-
ture term, weighted byβ(s), makes it resistant to bending.
Settingβ(s) = 0 at a points allows the active contour to be-
come second order discontinuous at that point and to develop
a corner. Settingα(s) = 0 at a points allows the active
contour to become discontinuous. Active contours can inter-
polate gaps in edges phenomena known as subjective con-
tours due to the use of the internal energy. It should be noted
thatα(s) andβ(s) are defined to be functions of the curve
parameters, and hence segments of the active contour may
have different natural behavior. Minimizing the energy of the
derivatives gives a smooth function.

2.2 Image Energy
Eimage is the image energy term derived from the im-

age data over which the active contour lies and is constructed
to attract the active contour to desired feature points in the
image, such as edges and lines. The edge based functional
attracts the active contour to contours with large image gra-
dients - that is, to locations of strong edges.

Eedge = − |∇I(x, y)| (3)

2.3 Problems with Active Contours
There are a number of fundamental problems with the

active contours and solutions to these problems sometimes
create problems in other components of the active contour
model.

Initialization. The final extracted contour is highly depen-
dent on the position and shape of the initial contour
due to the presence of many local minima in the en-
ergy function. The initial contour must be placed near
the required feature otherwise the contour can become
obstructed by unwanted features like JPEG compression
artifacts, closeness of a nearby object, etc.

Non-convex shapes.How do we extract non-convex shapes
without compensating the importance of the internal
forces or without a corruption of the image data? For
example, pressure forces [2] (addition to the external
force) can push an active contour into boundary concav-
ities, but cannot be too strong or otherwise weak edges
will be ignored. Pressure forces must also be initialized
to push out or push in, a condition that mandates careful
initialization.

The original method of Kass et al. [7] suffered from three
main problems: dependence on the initial contour, numer-
ical instability, and lack of guaranteed convergence to the
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global energy minimum. Amini et al. [1] improved the nu-
merical instability by minimizing the energy functional us-
ing dynamic programming, which allows inclusion of hard
constraints into the energy functional. However, memory re-
quirements are large, beingO(nm2), and the method is slow,
beingO(nm3) wheren is the number of contour points and
m is the neighborhood size to which a contour point is al-
lowed to move in a single iteration. Seeing the difficulties
with both previous methods Williams and Shah [11] devel-
oped thegreedy algorithmwhich combines speed, flexibility,
and simplicity. The greedy algorithm is fasterO(nm) than
the dynamic programming and is more stable and flexible for
including constraints than the variational approach of Kass et
al. [7]. During each iteration, a neighborhood of each point is
examined and a point in the neighborhood with the smallest
energy value provides the new location of the point. Itera-
tions continue till the number of points in the active contour
that moved to a new location in one iteration is below a spec-
ified threshold.

2.4 Gradient Vector Flow
Since the greedy algorithm easily accommodates new

changes, there are three things we would like to add to it: the
ability to inflate the contour as well as to deflate it, the ability
to deform to concavities, and to increase the capture range of
the external forces. These three additions reduce the sensi-
tivity to initialization of the active contour and allow defor-
mation inside concavities. This can be done by replacing the
existing external force (image term) with the gradient vector
flow (GVF) [12]. The GVF is an external force computed as
a diffusion of the gradient vectors of an image, without blur-
ring the edges. The idea of the diffusion equation is taken
from physics. An example of the effect of the GVF external
force can be seen in Fig. 1. Figs. 1 (b) and (c) show the differ-
ences between the deformation with the gradient magnitude
(the greedy algorithm) and the deformation with the gradient
vector flow in the presence of a concavity.

(a) (b) (c)

Figure 1: Initialization across the shape: (a) initial position, (b)
deformation with the gradient magnitude, (c) deformation with the
GVF.

Xu and Prince [12] define the gradient vector flow (GVF)
field to be the vector fieldv(i, j) = (u(i, j), v(i, j)) which
is updated with every iteration of the diffusion equations:

un+1
i,j = (1− bi,j)uni,j

+(uni+1,j + uni,j+1 + uni−1,j + uni,j−1 − 4uni,j) + c1i,j (4)

vn+1
i,j = (1− bi,j)vni,j

+(vni+1,j + vni,j+1 + vni−1,j + vni,j−1 − 4vni,j) + c2i,j (5)

wherebi,j = Gi(i, j)
2 + Gj(i, j)

2, c1i,j = bi,jGi(i, j), and
c2i,j = bi,jGj(i, j) with Gi andGj the first and the second
elements of the gradient vector.

The second term in (4) and (5) is the Laplacian opera-
tor. The intuition behind the diffusion equations is that in
homogeneous regions, the first and third terms are 0 since
the gradient is 0, and within those regions,u andv are each
determined by Laplace equation. This results in a type of
”filling-in” of information taken from the boundaries of the
region. In regions of high gradientv is kept nearly equal to
the gradient.

Creating GVF field yields streamlines to a strong edge.
In the presence of these streamlines, blobs and thin lines in
the way to strong edges do not form any impediments to the
movement of the active contour. It can be considered as an
advantage if the blobs are in front of the shape, nevertheless
it can be considered as a disadvantage if the active contour
enters the silhouette of the shape.
2.5 Invariant Moments

Perhaps the most popular method for shape description is
the use of invariant moments [5] which are invariant to affine
transformations. In the case of a digital image, the moments
are approximated by

mpq =
∑
x

∑
y

xpyqf(x, y) (6)

where the order of the moment is(p + q), x andy are the
pixel coordinates relative to some arbitrary standard origin,
andf(x, y) represents the pixel brightness.

To have moments that are invariant to translation, scale,
and rotation, first the central momentsµ are calculated

µpq=
∑
x

∑
y

(x− x)p(y − y)qf(x, y), x=
m10

m00
, y=

m01

m00
(7)

Further, the normalized central momentsη are calculated

ηpq =
µpq
µλ00

, λ =
(p+ q)

2
, p+ q ≥ 2 (8)

From these normalized parameters a set of invariant mo-
ments{φ} found by Hu [5], can be calculated. The 7 equa-
tions of the invariant moments contain terms up to order 3:

φ1 = η20 + η02 (9)

φ2 = (η20 − η02)2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 − η12)2 + (η21 − η03)2

φ5 = (η30 − 3η12)(η30 + η12)
(
(η30 + η12)2 − 3(η21 + η03)2

)
+

(3η21 − η03)(η21 + η03)
(
3(η30 + η12)2 − (η21 + η03)2

)
φ6 = (η20 − η02)

(
(η30 + η12)2 − (η21 + η03)2

)
+

4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η30)(η30 + η12)
(
(η30 + η12)2 − 3(η21 + η03)2

)
+

(3η12 − η03)(η21 + η03)
(
3(η30 + η12)2 − (η21 + η03)2

)
3



Global (region) properties provide a firm common base for
similarity measure between shapes silhouettes where gross
structural features can be characterized by these moments.
Since we do not deal with occlusion, the invariance to posi-
tion, size, and orientation, and the low dimensionality of the
feature vector represent good reasons for using the invariant
moments in matching shapes. The logarithm of the invariant
moments is taken to reduce the dynamic range.

3 Maximum Likelihood Approach
In the previous sections we were discussing about extract-

ing the shape information in a feature vector. In order to im-
plement a content-based retrieval application we still need to
provide a framework for selecting the similarity measure to
be used when the feature vectors are compared.

Maximum likelihood theory [10] allows us to relate a
noise distribution to a metric. Specifically, if we are given
the noise distribution then the metric which maximizes the
similarity probability is

M∑
i=1

ρ(ni) (10)

whereni represents theith bin of the discretized noise distri-
bution andρ is the maximum likelihood estimate of the neg-
ative logarithm of the probability density of the noise. Typi-
cally, the noise distribution is represented by the difference
between the corresponding elements given by the ground
truth.

To analyze the behavior of the estimate we take the ap-
proach described in [4] and based on the influence function.
The influence function characterizes the bias that a particular
measurement has on the solution and is proportional to the
derivative,ψ, of the estimate

ψ(z) ≡ dρ(z)

dz
(11)

In the case where the noise is Gaussian distributed:

P (ni) ∼ exp(−ni2) (12)

then, ρ(z) = z2 and ψ(z) = z (13)

If the errors are distributed as a double or two-sided expo-
nential, namely,

P (ni) ∼ exp(−|ni|) (14)
then, ρ(z) = |z| and ψ(z) = sgn(z) (15)

In this case, using (10), we minimize the mean absolute
deviation, rather than the mean square deviation. Here the
tails of the distribution, although exponentially decreasing,
are asymptotically much larger than any corresponding Gaus-
sian.

A distribution with even more extensive tails is the Cauchy
distribution,

P (ni) ∼
a

a2 + ni2
(16)

where thescaleparametera determines the height and the
tails of the distribution.

This implies

ρ(z) = log

(
1 +

( z
a

)2
)

and ψ(z) =
z

a2 + z2
(17)

For normally distributed errors, (13) says that the more
deviant the points, the greater the weight. By contrast, when
tails are somewhat more prominent, as in (14), then (15) says
that all deviant points get the same relative weight, with only
the sign information used. Finally, when the tails are even
larger, (17) says thatψ increases with deviation, then starts
decreasing, so that very deviant points - the true outliers - are
not counted at all.

Maximum likelihood gives a direct connection between
the noise distributions and the comparison metrics. Consid-
eringρ as the negative logarithm of the probability density of
the noise, then the corresponding metric is given by Eq. (10).

Consider the Minkowski-form distanceLp between two
vectorsx andy defined by

Lp(x, y) =

(∑
i

|xi − yi|p
) 1
p

(18)

If the noise is Gaussian distributed, soρ(z) = z2, then
(10) is equivalent to (18) withp = 2. Therefore, in this case
the corresponding metric isL2. Equivalently, if the noise is
Exponential, soρ(z) = |z|, then the corresponding metric is
L1 (Eq. (18) withp = 1). In the case the noise is distributed
as a Cauchy distribution with scale parametera, then the cor-
responding metric is no longer a Minkovski metric. However,
for convenience we denote it asLc:

Lc(x, y) =
∑
i

log

(
1 +

(xi − yi
a

)2
)

(19)

In practice, the probability density of the noise can be ap-
proximated as the normalized histogram of the differences
between the corresponding feature vectors elements. For
convenience, the histogram is made symmetric around zero
by considering pairs of differences (e.g.,x − y andy − x).
Using this normalized histogram, we extract a metric, called
maximum likelihood(ML) metric. TheML metric is given
by Eq. (10) whereρ(ni) is the negative logarithm ofP (ni):

ρ(ni) = − log(P (ni)). (20)

TheML metric is a discrete metric extracted from a dis-
crete normalized histogram having a finite number of bins.
Whenni does not exactly match any of the bins, for calculat-
ingP (ni) we perform linear interpolation betweenP (ninf )
(the histogram value at binninf ) and P (nsup) (the his-
togram value at binnsup), whereninf andnsup are the clos-
est inferior and closest superior bins toni, respectively:

P (ni) =
(nsup − ni)P (ninf ) + (ni − ninf )P (nsup)

nsup − ninf
(21)

4 Experiments
We assume that representative ground truth is provided.

The ground truth is split into two non-overlapping sets: the
training set and the test set. First, for each image in the train-
ing set a feature vector is extracted. Second, the real noise
distribution is computed as the normalized histogram of dif-
ferences from the corresponding elements in feature vectors
taken from similar images according to the ground truth. The
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Gaussian, Exponential, and Cauchy distributions are fitted to
the real distribution. The Chi-square test is used to find the
fit between each of the model distributions and the real dis-
tribution. We select the model distribution which has the best
fit and its corresponding metricLk is used in ranking. The
ranking is done using only the test set.

It is important to note that for real applications, the pa-
rameter in the Cauchy distribution is found when fitting this
distribution to the real distribution from the training set. This
parameter setting would be used for the test set and any future
comparisons in that application.

As noted in the previous section, it is also possible to cre-
ate a metric based on the real noise distribution using maxi-
mum likelihood theory. Consequently, we denote the maxi-
mum likelihood (ML) metric as (10) whereρ is the negative
logarithm of the normalized histogram of the absolute differ-
ences from the training set. Note that the histogram of the
absolute differences is normalized to have area equal to one
by dividing the histogram by the total number of examples in
the training set. This normalized histogram is our approxi-
mation for the probability density function.

For the performance evaluation letQ1, · · · ,Qn be the
query images and for thei-th queryQi, I(i)

1 , · · · , I(i)
m be

the images similar withQi according to the ground truth.
The retrieval method will return this set of answers with var-
ious ranks. As an evaluation measure of the performance of
the retrieval method we used recall vs. precision at different
scopes: For a queryQi and a scopes > 0, the recallr is
defined as|{I(i)

j |rank(I(i)
j ) ≤ s}|/m, and the precisionp

is defined as|{I(i)
j |rank(I(i)

j ) ≤ s}|/s.
In our experiments we used a database of 1,440 im-

ages of 20 common house hold objects from the COIL-20
database [9]. Each object was placed on a turntable and pho-
tographed every5◦ for a total of 72 views per object. Exam-
ples are shown in Fig. 2.

Figure 2:Example of images of one object rotated with60◦

In creating the ground truth we had to take into account
the fact that the images of one object may look very different
when an important rotation is considered. Therefore, for a
particular instance (image) of an object we consider as simi-
lar the images taken for the same object when it was rotated
within ±r × 5◦. In this context, we consider two images
to ber-similar if the rotation angle of the object depicted in
the images is smaller thanr × 5◦. In our experiments we
usedr = 3 so that one particular image is considered to be
similar with 6 other images of the same object rotated within

±15◦. We prepared our training set by selecting 18 equally
spaced views for each object and using the remaining views
for testing.

The first question we asked was, ”Which distribution is a
good approximation for the similarity noise distribution?” To
answer this we needed to measure the similarity noise caused
by the object rotation and depending on the feature extraction
algorithm (greedy or GVF). The real noise distribution was
obtained as the normalized histogram of differences between
the elements of feature vectors corresponding to similar im-
ages from the training set.

Fig. 3 presents the real noise distribution obtained for the
greedy algorithm. The best fit Exponential had a better fit to
the noise distribution than the Gaussian. Consequently, this
implies thatL1 should provide better retrieval results than
L2. The Cauchy distribution is the best fit overall, and the re-
sults obtained withLc should reflect this. However, when the
maximum likelihood metric (ML) extracted directly from
the similarity noise distribution is used we expect to obtain
the best retrieval results.

In the case of GVF algorithm the approximation errors for
matching the similarity noise distribution with a model dis-
tribution are given in Table 1. Note that the Gaussian is the
worst approximation. Moreover, the difference between the
Gaussian fit and the fit obtained with the other two distri-
butions is larger than in the previous case and therefore the
results obtained withL2 will be much worse. Again the best
fit by far is provided by the Cauchy distribution.

Gauss Exponential Cauchy
0.0486 0.0286 0.0146

Table 1:The approximation error for matching the similarity noise
distribution with one of the model distributions in the case of GVF
algorithm (for Cauchya=3.27)

The results are presented in Fig. 4 and Table 2. In the
precision-recall graphs the curves corresponding toLc are
above the curves corresponding toL1 andL2 showing that
the method usingLc is more effective. Note that the choice
of the noise model significantly affects the retrieval results.
The Cauchy distribution was the best match for the measured
similarity noise distribution and the results in Table 2 show
that the Cauchy model is more appropriate for the similarity
noise than the Gaussian and Exponential models. However,
the best results are obtained when the metric extracted di-
rectly from the noise distribution is used. One can also note
that the results obtained with the GVF method are signifi-
cantly better than the ones obtained with the greedy method.

In summary,Lc performed better than the analytic dis-
tance measures, and theML metric performed best overall.

5 Conclusions
The first problem this paper addresses is whether theL2 is

appropriate to use for computer vision applications in shape
based retrieval. From our experiments,L2 is typically not
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Figure 3:Similarity noise distribution for the greedy algorithm compared with (a) the best fit Gaussian (approximation error is 0.156), (b)
the best fit Exponential (approximation error is 0.102), and (c) the best fit Cauchy (approximation error is 0.073)
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Figure 4: Precision/Recall for COIL-20 database using (a) the
greedy algorithm (forLc a=2.43) and (b) the GVF algorithm (for
Lc a=3.27)

Precision Recall
Scope 6 10 25 5 10 25

L2 0.425 0.258 0.128 0.425 0.517 0.642

L1 0.45 0.271 0.135 0.45 0.542 0.675

Lc a=2.43 0.466 0.279 0.138 0.466 0.558 0.692gr
ee

dy

ML 0.525 0.296 0.146 0.525 0.592 0.733

L2 0.46 0.280 0.143 0.46 0.561 0.707

L1 0.5 0.291 0.145 0.5 0.576 0.725

Lc a=3.27 0.533 0.304 0.149 0.533 0.618 0.758G
V

F

ML 0.566 0.324 0.167 0.566 0.635 0.777

Table 2:Precision and Recall for different Scope values

justified because the similarity noise distribution is not Gaus-
sian. We showed that better accuracy was obtained when the
Cauchy metric was substituted for theL2 andL1. Minimiz-
ing the Cauchy metric is optimal with respect to maximiz-
ing the likelihood of the difference between image elements
when the real noise distribution is equivalent to a Cauchy dis-
tribution. Therefore, the breaking points occur when there
is no ground truth, the ground truth is not representative, or
when the real noise distribution is not a Cauchy distribution.
We also make the assumption that one can measure the fit
between the real distribution and a model distribution, and
that the model distribution which has the best fit should be
selected. We used the Chi-square test as the measure of fit
between the distributions, and found in our experiments that
it served as a reliable indicator for distribution selection.

Therefore, our main contributions are in showing that the
prevalent Gaussian distribution assumption is often invalid,
and in proposing the Cauchy metric as an alternative to both
L1 andL2. In the case where representative ground truth
can be obtained for an application, we provided a method for

selecting the appropriate metric. Furthermore, we explained
how to create a maximum likelihood metric based on the real
noise distribution, and in our experiments we found that it
consistently outperformed all of the analytic metrics.

We also showed that the GVF based snakes give better re-
trieval results than the traditional snakes. In particular, the
GVF snakes have the advantage in that it is not necessary
to know apriori whether the snake must be expanded or con-
tracted to fit the object contour. Furthermore, the GVF snakes
have the ability to fit into concavities of the object which tra-
ditional snakes cannot do. Both of these factors resulted in
significant improvement in the retrieval results.
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