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Abstract

In this paper, a unified framework for classifying facial
attributes is presented. Facial Attribute-Specific Subspace
(FASS) is firstly proposed to represent each specific facial
attribute. Then a framework is provided to classify facial
images based on FASS and the Minimum Reconstruction
Error (MRE) rule. The proposed framework is motivated
by, but essentially different from the conventional
Eigenface based methods, since, in our framework,
similarity is measured by the reconstruction error. To
evaluate the performance of the proposed method, it is
applied to several face perception applications, such as
face recognition, expression analysis, gender
discriminating, and glasses detection. Extensive
experiments in several face databases have demonstrated
the impressive effectiveness and excellent robustness of the
proposed framework against appearance variance due to
changeable imaging conditions.

1. Introduction

To endow computers the ability to perceive facial
attributes information, such as identity, emotional status,
gender, race, age, and so on, it is essential to build more
intelligent and intuitive Human-Computer Interface (HCI).
Related research activities have significantly increased over
the past few years as reviewed in [1,2,3,4].

Among these face perception tasks, face recognition is
the most representative one and its development will
greatly facilitate the resolution of other face perception
tasks. Since the beginning of the 1990s, appearance based
technologies have been the dominant methods, from which
the two FRT categories were derived: one is holistic
appearance feature based and the other is analytic local
feature based. Popular methods belonging to the former
paradigm include Eigenface [5], Fisherface [6], SVD and
most NN based FRTs etc. Local Feature Analysis (LFA) [7]
and Elastic Graph Matching (EGM) [8] are typical
instances of the latter category. In recent years, Eigenface
based methods [5,11], Gabor wavelet based Elastic Bunch
Graph Matching (EBGM) technologies [8], active

appearance model [9], and Fisherface [6]/LDA based
approaches have attracted much attention. FERET
evaluation has provided extensive comparisons among
these algorithms [10]. More recently, SVM has been
successfully applied to face recognition [11].
Representative resolutions to pose and illumination
variation problems include Kriegman’s illumination cone
[12], Vetter’s linear object class methods [13] and
Shashua’s “Quotient Image” [14].

This paper extends the Eigenface method by proposing
the idea of representing each specific attribute by using a
“Facial Attribute-Specific Subspace (FASS)”. Then we
propose a unified framework for facial attribute
classification and apply it to several face perception tasks,
such as face recognition/verification, expression
recognition, gender classification, glasses detection, and
pose estimation.

The remaining of the paper is organized as follows: In
Section 2, some observations on Eigenface are presented,
which lead to our FASS based method. Section 3 describes
the FASS based framework in detail. Its applications and
corresponding experiments in face recognition, expression
analysis, gender classification, glasses detection, and pose
estimation are presented in Section 4. A conclusion is
drawn in the last section.

2. Observations On Eigenface Methods

As is well known in the face recognition community,
Eigenface is essentially based on the idea that face images
can be regarded as points in the high dimensional image
space. They are believed to approximately form a subspace,
so called “face subspace”. Fig.1 visually illustrates the idea
by describing an input face image as the linear combination
of some leading Eigenfaces.

≈ω1 + … +ωi +… +ωm

Fig.1 One face image is represented as the linear
combination of leading Eigenfaces

A recognized nature of Eigenface method is the DFFS
(Distance From Face Subspace), i.e. reconstruction error,
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which can be used to measure the extent of face pattern
“hiding” in the input image or its similarity to face.

Further experiments are conducted to illustrate the
effects of different Eigenfaces by reconstructing different
input image patterns. As is shown in Fig.2, the patterns in
each line, from left to right, are the original patterns and the
patterns reconstructed by using the first 10, 30, 50, 70, 90,
100, 150, 200, 250, 300 Eigenfaces, respectively. In the
first line, a face with salient characteristic (man-made
“mole”) is reconstructed, from which we can see that the
“mole” cannot be portrayed when fewer leading Eigenfaces
are used. When enough Eigenfaces are considered, the
“mole” does emerge to some degree, however, much noise
comes up together with the “mole”. Line 2~4 illustrate the
ability of the Eigenfaces to reconstruct non-face patterns, in
which input patterns are monkey face, gates with flowers
and tessellated windows respectively. It is interesting but
understandable that they are reconstructed like common
human faces when only a few Eigenfaces are considered.
But the non-face patterns are also recovered better and
better when more and more Eigenfaces are used. This
suggests that fewer Eigenfaces provide favorable power to
discriminate face patterns from non-face patterns, but the
power declines with the increasing number of principal
Eigenfaces involved.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 2 Ability of different Eigenfaces to reconstruct
face/non-face patterns

Based on the previous observations, we argue that PCA
representation may mainly extract the features of the input
pattern as a common face, but not individual features that
discriminate different subjects. So the Eigenface method
may be more suitable for the detection of face pattern, that
is, less DFFS means more similarity to face pattern. Based
on this point, we derive the idea that, if a subspace is learnt
from the face examples of one specific attribute,
correspondingly, it can be employed to detect the
occurrence of face patterns with this specific attribute, i.e.,
less DFFS means more resemblance to the specific
attributes. So the FASS based unified framework is
proposed in the following section.

3. Unified Framework For Classifying Facial
Attributes

Since all facial images with the same specific facial
attribute (e.g. all male’s facial images) have similar

appearance, they form a subspace in the image space. So
one private signal subspace can be used to model them, by
which the invariant facial feature belonging to the same
attribute is mostly retained as the expected signal, while
most of the inter-attributes deformation that is useless for
classification is thrown away into the “noise” subspace.

Let a facial attribute (e.g. gender) set with p
physiologically separable attributes (for the “gender” case,
p=2: male and female) be },,,{ 21 pC ΩΩΩ= L . Each

specific attribute pkk ,,2,1, L=Ω in C is analyzed using

eigenvalue decomposition. Then the signal subspace for the
k-th specific attribute is spanned by the leading
eigenvectors:
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It is named the k-th FASS. Any face image Γ can be

projected to the k-th FASS )(k
attriS by a matrix transform:

)()()( kTk
attri

k UW Φ= ,

in which )()( kk Ψ−Γ=Φ is the difference image and )(kΨ
is the mean image obtained from the training images
corresponding to the k-th attribute. And the input image can
be reconstructed by the linear combination of the leading
eigenfaces:

)()()( kk
attri

k
r WU=Φ .

Then the distance of any input face image from the k-th
FASS, i.e. reconstruction error, can be computed as the
Euclid distance between the original and the reconstructed
pattern:

)()()( k
r

kk Φ−Φ=ε .

We denote the distance as DFFASS, which can measure the
similarity between the image and the k-th attribute.

Fig. 3 visualizes the leading Eigenfaces of specific
attributes, from which distinct facial characteristics of the
corresponding attribute can be clearly seen. The images in
the first line illustrate the leading Eigenfaces learnt from 15
example images with “surprised” attribute. And the
Eigenfaces in the second line are learnt from 15 images all
with glasses. The last line shows the leading Eigenfaces
learnt from one frontal example image of the subject No.1
in Yale face database [6]. Obviously, the Eigenfaces of
specific attribute distill the general characteristics of the
corresponding attribute.

Fig.3 Leading ten Eigenfaces of surprising-FASS, glass-
FASS, and subject-No-1-FASS from Yale face database
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3.1 Minimum Reconstruction Error Classifier

As has been mentioned, DFFASS reflects the similarity
of the input pattern to the facial attribute from which FASS
is trained. It can be formally defined as follows:

Let Γ be any input image. It can be projected to the k-th
FASS by:

)()()( kTk
attri

k UW Φ= ,

and

k
k Ψ−Γ=Φ )( ,

where kΨ is the mean of the k-th attribute. Then )(kΦ can

be reconstructed by:
)()()( kk

attri
k

r WU=Φ .

So, Γ ’s distance from the k-th FASS, that is, the

reconstruction error, can be computed as:
)()()( k

r
kk Φ−Φ=ε .

The DFFASS reflects the quantity of the k-th facial
attribute “hiding” in the input image Γ , or in other words,
the power of the k-th FASS to reconstruct the input pattern
Γ . Thus, it can be regarded as the similarity of the input
pattern Γ to the face samples that form the FASS. So the
following minimal reconstruction error (MRE) classifier
can be obtained:
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To demonstrate the rationality of the framework intuitively,
further reconstruction experiments are conducted on FASS
for different input patterns. To get comparable visual
effects, the reconstruction is carried out based on the
following formula:

)( )()()( kk
r

k Ψ+Φ⋅Ψ−Γ=Γ′ .

As an example, Fig. 4 illustrates the power of one specific
FASS to reconstruct various input patterns, in which the
specific attribute is “identity”. The first line shows the first
11 Eigenfaces of No.196 FASS trained from one face
image of subject No.196 (Refer to section 4.1.4). In the
first column from line 2 to line 6 are the input patterns. The
subsequent pictures in each line illustrate the reconstructed
patterns by using the leading 10~19 Eigenfaces of No.196
FASS. The input face in line 2 belongs to subject No.196,
and we can see that the reconstructed faces are quite similar
in appearance to the input face. The input faces in line 3~5
are non-No.196 faces. The reconstructed faces are quite
different from the corresponding input face but still very
similar to No.196’s face. The last line illustrates the case
when one non-face pattern is fed into the reconstructing

procedure, where much more difference between the input
pattern and reconstructed ones can be observed clearly.

Fig.4 Eigenfaces of No.196 subject and its ability to
reconstruct different patterns

Apparently, FASS possesses the favorable nature to
reconstruct its own face patterns perfectly, while it is not
the case for face patterns of other attributes. This strongly
suggests that the FASS based face representation has
outstanding class discriminating power.

4. Applications In Facial Perception

Based on the unified framework for facial attribute
classification, we do abundant experiments to verify its
effectiveness in five face analysis applications: face
recognition, expression analysis, gender classification, and
glasses detection. Similar methods can be used to
categorize facial images according to race and age.

4.1 Face Recognition From A Single Face Image

As we know, to learn a FASS, multiple training example
images with the specific attribute are required. For face
recognition (i.e. classification according to different
“identity”), it means more than one example per subject is
needed to train his/her FASS. But for some other face
recognition applications, such as mug shot matching,
suspect identification etc., in which only a few (even single)
face images are available for each subject involved, FASS
based method cannot be applied directly. To solve this
problem, we developed a simple technique to derive
multiple samples from single example image. The
technique is based on the following two intuitive
propositions:
1. Proper geometric transforms, such as translation,

rotation in image plane, scale variance etc., do not
change the identity attribute of a face image visually.

2. Proper gray-level transforms, such as simulative
directional lighting, man-made noise, etc., do not
change the identity attribute of a face image visually.

In our system, the two kinds of transforms are combined
to derive tens of training examples from single example
image, which are then fed into the FASS learning
procedure. Fig. 5(c) illustrates some normalized “virtual”
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examples derived from one face image as shown in Fig. 5(a)
by utilizing our technique.

In addition, to alleviate the influence of translation,
ration, lighting and scale variance, geometric and gray-
level normalization are adopted. As to geometric
normalization, the locations of the two irises are first
localized manually and then fixed at specific locations by
affine transformation. A mask, as shown in Fig.5 (b), is
covered over the face region to eliminate the alterable
background and hairstyle. Finally all faces are warped to
the size of 32x32 as shown in Fig.5 (d). Histogram
equalization is conducted to normalize illumination, and all
the face data are vectorized to unit length before they are
fed into the training or testing procedure.

(a) (b) (c) (d)

Fig.5 Deriving multiple samples from single image and
normalization (a) input face image (b) mask (c)

derived multiple examples from face in (a) (d)
normalized faces

To verify the effectiveness of the proposed framework,
we have also developed Eigenface method and template
matching as benchmark algorithms. Extensive experiments
are conducted on Yale face database, Bern face database,
and our own face database containing 350 different
subjects.

4.1.1 Benchmark Design And Performance Evaluation

Eigenface and template matching method are de facto
the standard benchmarks in the face recognition community.
We design the Eigenface method according to [5]. All
faces are normalized as in Fig.5 (d). Template matching is
operated on the normalized faces as shown in Fig.5 (d).
Similarity between two faces is measured by using the
cosine of the angle between the two vectors. Similar
performance evaluation methodology as utilized in FERET
evaluation [10] is adopted. The performance is evaluated
and compared by using Cumulative Recognition Rate
(CRR).

4.1.2 Experiments On Yale 15 Subjects Face Database

The Yale face database contains 165 images from 15
subjects, with 11 images per subject, among which there is
a normal face with neutral expression, taken under ambient
lighting conditions, while the left 10 images cover different
cases including faces with/without glasses, images with
basic expressions (happy, sad, sleepy, wink, surprised),
images illuminated by center-light, left-light and right-light.
All faces are frontal views. (Refer to [6] for details.)

In our experiment, all the 15 normal face images (one for
each subject) are chosen to form the training set and gallery
set, and all the other images (150 images) constitute the
probe set for all the algorithms tested. The performance
curves of different methods are plotted in Fig. 6. It is clear
that our proposed method extraordinarily outperforms the
other approaches. The top-ranking (first-choice)
recognition ratio of our method is 95.33%, while that of the
Eigenface method is 74.67%.
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Fig.6 Performance comparisons on Yale face database

[6] is a well-known paper with experiments on Yale face
database, in which Fisherface method is proposed. Note
that the setup of our experiments is quite different from
what is described in that paper, where error rates were
determined by the “Leave-One-Out” strategy. But relative
performance can still be compared as shown in Table 1.
When comparing these data, readers must keep in mind that,
in the “Leave-One-Out” strategy, ten training examples are
learnt for each subject, except for the test person who is
represented by nine [6]. However, in our methods only one
example image for each subject is provided for the training
procedure. It is obvious that our case is much more difficult
than the “Leave-One-Out” strategy. Nevertheless our
method outperforms all the other methods tested.

Table 1. Comparisons with methods in [6]
“Leave-one-out” One example per subject

Methods in
[6]

Error Rate
(Cropped)

Our Methods

Eigenface
(W/O 1st 3)

15.3* 25.3 Eigenface

Correlation 23.9* 24.0 Correlation
Subspace 21.6* 24.0 Eigenface+Cos
Fisherface 7.3* 4.7 FASS based

*Note: Quoted data are from [6].

4.1.3 Experiments On Bern 30 Subject Multi-Pose Face
Database

To further verify the effectiveness of the proposed
framework on multi-pose face recognition problem,
comparative experiments are conducted on Bern 30
subjects multiple-pose face database. The Bern database
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consists of 300 example images of 30 subjects, for each
subject 10 gray-level images with slight variations of the
head positions (1,2 facing the camera, 3,4 facing right, 5,6
facing left, 7,8 downwards, 9,10 upwards)*.

In our experiments, the No.“1” examples (looking right
into the camera) of each subject in the database are chosen
as the example images to form the training set (30
examples totally). The performance curves of different
methods are plotted in Fig. 7. It is clear that our proposed
method extraordinarily outperforms the other approaches.
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Fig. 7 Performance comparison on Bern face database

4.1.4 Experiments On Our 350 Subjects Face Database

To further demonstrate the performance and scalability
of our FASS based method on larger database, more
detailed experiments are conducted on a 350-subject face
database. For the 350 subjects, 1750 images are acquired,
with 5 images per subject. All images are taken with a
general USB camera. For each subject, 1 normal face
(nearly frontal, neutral expression and ambient lighting
condition) is chosen as the training example; therefore a
training/gallery set containing 350 faces is constructed. All
the remaining 1400 images (4 examples per subject)
constitute the probe set, which cover face images with
different expressions, lighting conditions and minor pose
variance. Apparent difference can be observed between the
images in the gallery set and the probe set. The
performances of different methods are compared in Fig. 8.
Notably the proposed method outperforms all other
algorithms. The Rank-1 (first-choice) recognition rate of
our method is 88.36%, while that of the improved
Eigenface method is 61.57%.

4.1.5 Observations on Experimental Results

These experiments clearly indicate the outstanding
performance of our FASS based method compared with the
two benchmarks, in which over 20% improvement is
achieved in the same training/testing context. The results
sufficiently demonstrate the adaptability and scalability of
our method to expression, lighting, and slight pose variance,

* Copyright 1995 University of Bern All Rights Reserved

in that the Yale database covers various expressions and
varying illuminations, Bern database involves faces with
pose variance, and our database contains 350 subjects with
various expressions and varying poses.
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Fig. 8 Performance comparison on our face database

4.2. Facial Expression Classification

Facial expression has been studied for quite a long time.
Ekman classified the human facial expressions into six
main categories: happiness, sadness, anger, disgust,
surprise and fear. In this paper, the method based on the
FASS is used to recognize Ekman’s six static facial
expressions by constructing six subspaces specific to the
six facial expressions respectively and applying the
proposed unified classifying framework. Details can be
found in [15]. Table2 shows our recognition results.

Table 2. Expression recognition results
Hap Surp Fear Sad Ang Dis Neut Total

Sample
Number 77 80 32 51 98 68 64 470

Correctly
recognized 71 73 25 44 91 57 60 421

Ratio(%) 92.2 91.2 78.1 86.2 92.9 83.8 93.8 89.6

4.3. Gender Classification

To further verify the proposed framework, we have done
experiments for gender classification as well. Two linear
subspaces respectively specific for male and female are
constructed based on 550 male facial image and 550 female
facial images. Then we test the algorithm on a testing set
containing 1048 faces (596 females and 452 males, none of
them are in the training set), the recognition ratio is up to
87.1%. Table.3 shows the detailed results of these
experiments.

Table 3. Gender Classification Results
Male Female Total

Training Samples 550 550 1100

Testing Samples 452 596 1048
Correctly

recognized 390 523 913

Ratio(%) 86.3 87.8 87.1
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4.4. Glasses Detection

Facial images can be categorized into two classes on the
basis of wearing glasses or not. Then two FASS can be
learnt respectively from examples with or without glasses.
In the Bern face database (Refer to 4.1.3), there are 15
subjects wearing glasses among all the 30 subjects. 50
examples from 5 subjects (10 for each) wearing glasses are
chosen as training samples to learn glasses-FASS. And
similarly, 50 examples from 5 subjects (10 for each)
without glasses are used to learn non-glasses-FASS. All the
remaining images are used as testing examples. Table.4
shows the experimental results, where an average correct
rate of 77% is achieved. Note that in the Bern database,
many glasses of some images are quite thin-edge glasses,
which increases the difficulty of the detection.

Table 4. Glasses Detection Results
glasses Non-glasses Total

Training Samples 50 (5x10) 50(5x10) 100

Testing Samples 100(10x10) 50(10x10) 200
Correctly

recognized 74 80 154

5. Conclusion

In the paper, a general concept named "Facial Attribute-
Specific Subspaces (FASS)" is proposed and a unified
framework to tackle face perception tasks is presented.
Extensive experiments have shown the effectiveness and
robustness of our method, especially its robustness for face
recognition against variance due to expression, lighting and
pose changes compared with benchmark algorithms.

Future efforts will be devoted to research on the
adaptability and invariance of the proposed framework to
varying illuminations. More deliberate virtual view
synthesis algorithms should also be developed to derive
multiple samples from single example view.
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