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Abstract

The Point Distribution Model (PDM) has been suc-
cessfully used in modelling shape variations in groups
of static images. It has also been effectively adapted
to temporal image sets and used to track moving bod-
ies such as hands and walking persons. However stan-
dard models do not consider the temporal characteris-
tics of the data and are purely models of shape. This
research proposes an extension to the PDM which ex-
plicitly considers the temporal sequencing of the images
in the motion. The modified model can then be built
from temporal quantities such as linear velocity and
acceleration which are derived from the images. The
new model formulation also enables movements to be
tracked and classified according to their distinguishing
temporal characteristics. This has been tested against
distinct sets of arm movements under varying sets of
experimental conditions.

1. Introduction

A number of computer vision techniques have been
devised and successfully used to model variations in
shape in large sets of images. Such models are built
from the image data and are capable of characteris-
ing the significant features of a correlated set of im-
ages. One such model is the Point Distribution Model
(PDM) [4] which builds a deformable model of shape
for a set of images based on coordinate data of features
of the object in the image. This research proposes an
extension to the PDM in which the model is not solely
constructed from the coordinate image data. The basic
model has been adapted for use in temporal domains
previously, but this is concentrated on the basic co-
ordinate shapes. Results produced from these models
would be the same regardless of the order of shape pre-
sentation.

The modified model of this research significantly dif-
fers from the standard in that it encodes the temporal
sequencing of the data and not only the shape varia-
tion present. Hence it takes into account the order in
which the shapes occur. This research focuses on the
reparameterisation of the model by determining quan-
tities such as acceleration and velocity from the spatial
data, based upon an image sequence of a moving ob-
ject. The model is tested experimentally on a number
of arm motions and these motions classified based on
comparison with a set of PDMs.

2. Background

The Point Distribution Model is built from the co-
ordinates of points on objects in image sets and then
performing PCA on this data. This enables the ob-
jects described by the model to be characterised by a
linear model consisting of a mean shape plus a number
of modes of variation which show the deviations from
the mean for all points on the object [4]. The use of
PCA enables the dimensionality of the model to be re-
duced as only the most significant modes of variation
are added into the model, those which will allow for
a high proportion of the variance in the shapes to be
represented. Additionally, new shapes may be derived
from the model which are representative of the shapes
contained in the training set. Techniques such as the
Active Shape Model [3] are also used to fit parameters
to unseen images which are similar to those found in
the training set.

The PDM has often been used on static images such
as those found in medical imagery and objects such
as circuit boards. Research with moving objects has
been performed, such as the tracking of a walking per-
son [2]. In this instance, a B-spline is used to model
the shape of the walker with the control points of the
spline forming the shape vectors for use in the PDM.
A Kalman filter is used in conjunction with the Ac-



tive Shape Model to accurately track the person over
the sequence. PDMs have also been used in tracking
people from moving camera platforms [5]. The human
form is again represented by a B-spline with an appli-
cation of the Condensation algorithm used to perform
the tracking. The PDM has also been used to track
and classify sequences of hand gestures [1].

Reparameterisations of the PDM have also been
achieved in the domain of motion. One such appli-
cation is the Cartesian-Polar Hybrid PDM which ad-
justs its modelling for objects which may pivot around
an axis [7]. Points which undergo angular motion are
mapped into polar coordinates, while other points re-
main as Cartesian coordinates and this allows for a
more accurate representation of the motion. Other re-
search has characterised the flock movement of animals
by adding parameters such as flock velocity and rela-
tive positions of other moving objects in the scene to
the PDM [9]. These parameters combined with stan-
dard image coordinates found in typical PDMs yield a
richer, more useful description of the movement occur-
ring.

3. The Point Distribution Model

3.1. Standard linear PDM

The construction of the PDM is based upon the
shapes of images contained within a training set of data
[4]. Each shape is modelled as a set of n “landmark”
points on the object represented by xy-coordinates.
The points indicate significant features of the shape
and must be marked consistently across the set of
shapes to ensure proper modelling. Hence for the 2D
model, each shape is represented as a vector of the
form:

x = (x1, y1, x2, y2, x3, y3, . . . , xn, yn)T (1)

To derive proper statistics from the set of training
shapes, the shapes are aligned using a weighted least
squares method in which all shapes are translated, ro-
tated and scaled to correspond with each other. This
technique is based upon Generalised Procrustes Anal-
ysis [6]. The mean shape x is calculated from the set
of aligned shapes, where Ns is the number of shapes in
the training set:

x =
1

Ns

Ns∑

i=1

xi (2)

The difference dxi of each of the aligned shapes from
the mean shape is taken and the covariance matrix S
derived:

S =
1

Ns

Ns∑

i=1

dxidxT
i (3)

The modes of variation of the shape set are found
from the derivation of the unit eigenvectors, pi, of the
matrix S:

Spi = λipi (4)

The most significant modes of variation are rep-
resented by the eigenvectors aligned with the largest
eigenvalues. The total variation of the training set is
calculated from the sum of all eigenvalues with each
eigenvalue representing a fraction of that value. There-
fore the minimal set of eigenvectors that will describe a
certain percentage (typically 95% or 99%) of the vari-
ation is chosen.

Hence any shape, x, in the training set can be esti-
mated by the equation:

x = x + Pb (5)

where P = (p1p2 . . .pm) is a matrix with columns
containing the m most significant eigenvectors, and
b = (b1b2 . . .bm)T is the set of linearly independent
weights associated with each eigenvector. The set of
weights may also be used as parameters to produce
other shapes which are possible within the range of
variation described by the PDM. As the variance of
each bi is λi, the parameters would generally lie in the
limits:

−3
√

λi ≤ bi ≤ 3
√

λi (6)

3.2. Modified PDM for Motion Components

While prior research has shown it is possible to use
the standard PDM for constructing models based on a
temporal sequence of images, this paper instead pro-
poses a reparameterisation of the PDM. The modified
version of the model does not directly use image co-
ordinates of the body but instead processes this data
and derives other measures for input. Hence the utility
of the model can be increased by using a feature space
more suited to the analysis of motion.

To construct the PDM, a number of frames of the
object in motion are taken as in temporal applications
of the standard model. After extracting the bound-
ary of the object, a subset of n points is selected for
use in developing the model. The movement of the
body from frame to frame and the subsequent bound-
ary extraction generates a new image for input and
processing. As the focus of this research is to describe
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Figure 1. Frame triple and its vectors for mod-
ified PDM

and classify movements on the basis of motion compo-
nents, the temporal sequencing of the shapes and the
relative movement of the points on the shapes is used
to reparameterise the PDM.

To achieve this a set of three temporally adjacent
frames is considered at a time with the movement of
a point from the first to second frame being one vec-
tor and the movement from the second frame to the
third being a second vector. This is illustrated in Fig-
ure 1. These vectors are measured as the Euclidean
norm between the xy coordinates of the points. From
these vectors, the relevant motion components and thus
the input parameters for the PDM can be calculated.
There are many potential motion components that can
be modelled, however this extension suggests the fol-
lowing four components:

1. Angular velocity, ∆θ — the change in angle be-
tween the vectors, with a counter-clockwise move-
ment considered a positive angular velocity and a
clockwise movement a negative angular velocity.

2. Acceleration, a — the difference in the Euclidean
norm between the vectors with the norm of the
first vector being va and that of the second being
vb ie. vb − va.

3. Linear velocity, v — this is the norm of the sec-
ond vector vb.

4. Velocity ratio, r — the ratio of the second veloc-
ity to the first, vb/va. For a constantly accelerating
body this measure will remain constant.

These parameters are calculated for every one of the
n points of the object leading to a new vector repre-
sentation for the PDM:

x = (∆θ1, a1, v1, r1, ∆θ2, a2, v2, r2, . . . , ∆θn, an, vn, rn)T

The user may also choose to focus on only one pa-
rameter for each point reducing the vector size and
complexity of the model. Note also that performing

this process for all points requires some algorithm for
determining correspondences between points over the
set of consecutive frames. Without this process the re-
lationship between the points over the frames may be
lost and the resultant model will not be accurate. This
is analogous to the standard PDM in which landmark
points should associate with the same features over all
shapes in the training data to ensure correct modelling
of the data.

This process is repeated for all triples of consecu-
tive frames in the sequence. In this way information
from all N frames in the sequence is included. However
this reduces the number of temporal component shapes
in the training set to be N − 2. After this reparame-
terisation of the model, the PDM can be built in the
standard way. This characterisation encapsulates the
temporal sequencing of the motion with the changes in
parameters modelled on a frame to frame basis.

4. Classification and Tracking

To test the model, experiments were carried out on
a set of sequences of a moving arm. The aim of this
proportion of the research was to correctly track and
classify movements through the building of the PDM
and an application of a search strategy to match mo-
tions with a previously built PDM. The general method
of experimentation used will now be described.

4.1. Video Capture and Image Processing

For all arm motion sequences, the same general se-
quence of preprocessing is applied in order to gener-
ate the coordinate image data for the building of the
models. After video capture, the moving objects are
segmented from the scene via thresholding. After the
segmentation of the moving portion of the frame, im-
ages are chaincoded to derive the boundary of object as
this is to be used in determining movements of points
and tracking objects.

As described in Section 3.2, the modified PDM is
built using a subset of n points on the boundary of
the object rather than the traditional landmark points
of the standard model. For the first frame of the se-
quence, this is done by selecting points spaced equidis-
tant around the boundary. For subsequent frames,
points are selected based on their correspondence with
the points of the previous frame as is typically per-
formed in motion analysis using various schemes. For
this research a more simple method of choosing the
closest point in terms of Euclidean distance in the next
frame is used. This is possible as the motion between
image frames is small and hence the likelihood of a
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poorly matched point is reduced. The matching point
is searched for in a particular sized window on the
boundary in a region matching where the correspond-
ing point would be expected to be found. A check is
also performed using Sobel edge detection to ensure
that the corresponding point found is oriented in the
same way as the point in the previous frame.

4.2. Training and Test Data

After deriving the set of N xy-coordinate shapes
from the images, the modified PDM is built. The xy
shapes are reparameterised into motion components for
all points on all images. For this research, one param-
eter is modelled for each point rather than a combi-
nation of parameters and the feature of linear velocity
is chosen as the motions were stable over time. This
yields a vector of the following type for each frame:

x = (v1, v2, v3, . . . , vn)T (7)

The test data for use in tracking is prepared in the
same manner as data for the model. Video footage of
a movement is captured, the images processed into the
correct format and a subset of n points on an image de-
rived. Both the model and its test data must have the
same number of points present in the temporal shape.
As for the PDM, these points are reparameterised into
a set of vectors using the same parameter of linear ve-
locity. This yields an equivalent set of vectors such as
were used in the construction of the PDM.

4.3. Classification

In order to evaluate the effectiveness of the PDM in
classifying movement, the test sequence of vectors de-
rived from the reparameterisation are tracked against
the model. This involves deriving vectors that best fit
the desired vector through adjustment of the b vector of
the model. As described in Equation 6 these limits are
typically taken to lie within three standard deviations.

As stated previously, the Active Shape Model [3] is
a standard technique for fitting an instance of a PDM
model to an example shape. However, this research
differs in that temporal data rather than image data
is present and modelled. Features such as gray level
profiles and edge information are not available and so
a standard ASM cannot be implemented. Hence a mul-
tidimensional version of Powell’s method, as described
in [8], is used. For this research it will find the combina-
tion of b values that will most closely approximate the
required vector and hence minimise the error function
between the actual and predicted vector. The vector of

b values must however be minimised within the set lim-
its stated previously. Hence any values that do not fall
within the specified limits are adjusted to fit within
the limits and so only allow predicted motion within
the bounds of the PDM.

The methodology used to classify the movements
was to match a test set of data against several pre-
built models, including a model built from a part of
the sequence from which the test data came. The test
data itself was “unseen” in that it did not form part
of the data from which the PDM was built. The error
between the matching and actual vectors of point ve-
locities was measured over time as was the increasing
total error over the series. The model which produced
the lowest match error at the end of the tracking phase
was classified as the matching model, and the test data
classified as the same type of motion as the model.

5. Experimental Results

5.1. Arm Motion

To test the research hypothesis, a set of six distinct
arm movements were captured and linear velocity data
derived from the images. Additionally two faster ver-
sions of the first two movements were captured given
a total of eight movements to model and classify. The
motions are illustrated in Figure 2.

There were 20 points identified on the boundary
of the image for use in the model. Typically most
sequences consisted of a few hundred frames of the
demonstrated motion. Thus the PDM was built with
the first 300 frames of motion of a sequence. The last
200 frames of motion of the sequence were used as the
test data set.

Table 1 shows the final matching error value over
all comparisons in matrix format for PDMs built to
capture 95% of the variation in the training set. The
boxed values are the lowest match error for a data set,
as well as those along the diagonal of the matrix. An
ideal set of results would place all the lowest errors
down the diagonal of the matrix – that is the test data
set matching most correctly with the PDM that is built
from the same sequence. The results showed that in all
but one of the motions the correct model was matched
to the test data set. Motions A, B, C, D, E and H
were unique and motions F and G were fast versions
of A and B respectively. Only H was misclassified in
that motion model E appears to be the correct match
for the test data of H. The model for H has the second
lowest final error and thus a correct solution was close
to being found.
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(a) A (b) B (c) C

(d) D (e) E (f) H

Figure 2. Six arm movements where each blob
denotes a point of rotation. Arrows show al-
lowable movement.

Two of the match error plots are shown in Figure 3
displaying progressively error values over all frames in
the sequences. For the correct match of test data A,
the match error generally showed a consistently lower
trend than the incorrect models which would obviously
also lead to a lower total error at the end of testing.
The only exception to this is for test data A in which
a “bump” occurs in the error curve for a period of ap-
proximately 20 vectors, caused by an irregularity in the
movement and poor segmentation. However, the track-
ing process is sufficiently robust to recover from this
and validate the correct model at the end of the test-
ing phase. In the set in which model E is incorrectly
matched to motion H, Figure 3(b), the error plots C,
D, E and H are close together and have similar gradi-
ents. This indicates these models provide more plausi-
ble matches for the motion with other models providing
much higher error values.

5.2. Decreasing variation of PDM

A further exploration of the efficacy of the model
in classification was to investigate what effect reducing
the variance modelled by the PDM had. This would
reduce the number of eigenvectors contained in the
models and limit the possible tracking that the models
could apply to the test data, leaving the models less
likely to cope with the more extreme variations in the

Data Models
A B C D E F G H

A 13.3 43.5 74.0 54.6 217.9 151.7 185.7 146.0

B 96.3 32.1 62.9 40.7 329.3 223.3 157.2 279.0

C 424.8 93.6 38.3 67.2 235.7 229.0 361.9 130.0

D 30.0 78.1 55.7 17.3 373.7 242.2 221.9 269.4

E 131.6 100.6 107.3 101.7 24.9 223.0 346.4 72.7

F 3658.0 2481.0 761.9 2341.1 1081.4 121.8 336.3 1077.0

G 3412.2 2320.8 537.8 2061.3 1273.0 477.0 130.0 1418.3

H 331.6 249.6 114.1 93.1 68.4 322.5 451.8 78.8

Table 1. Error matrix for arm with PDM vari-
ance of 95%
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Figure 3. Error plots for arm with PDM vari-
ance of 95%

motions. The variation represented by the models was
reduced to 80%. For this experiment, all test motions
were classified correctly against the models. The er-
ror that had previously occurred in the classification of
motion H no longer existed. Therefore decreasing the
variation reduced the possibility of incorrect results.
The error matrix is shown in Table 2, with the lowest
final match error highlighted. These coincide with the
error values on the diagonal of the matrix, showing a
full set of correct results. There is also a moderate up-
ward trend in all error values as could be expected with
the models less able to deal with larger fluctuations in
the motion.

The same set of error plots as in the previous Section
are shown for these experiments in Figure 4. While
error values have increased, there is more distinction
between the correctly classified error curves and the
incorrect curves. The gap between the error values has
increased over the models with 95% variation. The
increased error over 20 vectors for test set A is still
present, as is the step in some curves for H. Thus the
irregularities in these motions still affect classification,
although it is less noticeable than in the previous exper-
iment. Hence while the decreased variation increased
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the match error, it has also reduced the likelihood of
incorrect matches as models were less able to capture
the features of motions which they were not directly
modelled upon.

Data Models
A B C D E F G H

A 28.4 88.4 88.8 104.9 269.8 213.1 451.2 432.8

B 125.6 46.2 103.6 123.9 407.2 328.1 376.4 618.1

C 499.7 447.6 64.7 226.0 251.5 377.3 436.5 404.6

D 105.8 138.8 133.7 26.1 446.1 323.3 519.4 560.8

E 266.5 432.2 156.5 268.8 63.1 330.5 442.5 244.5

F 3681.3 2508.7 971.6 2366.1 1304.7 164.0 455.9 1918.4

G 3420.7 2327.9 670.8 2074.0 1507.3 606.4 155.0 2116.3

H 523.1 684.8 229.95 389.9 171.7 664.3 643.2 117.2

Table 2. Error matrix for arm with PDM vari-
ance of 80%
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Figure 4. Error plots for arm with PDM vari-
ance of 80%

6. Conclusion

This paper has described and illustrated an adap-
tation of the Point Distribution Model for a series of
images taken of moving objects. The PDM is built to
represent changes between temporally adjacent images
which differs from standard models employed and thus
incorporates temporal sequencing into the model pa-
rameters. The spatial image data is processed in order
to derive spatiotemporal quantities such as linear ve-
locity and acceleration for a set of points representing
an image. Over a complete set of images, these vec-
tors are used to build a PDM that represents the set
of variation demonstrated by the motion features over
time.

The model was then used to classify distinct types of
movement of a person’s arm. Continuing research will

consider aims such as using the PDM to deal with more
complex data such as human gait analysis, discovering
the points of articulation on a moving body and also
whether building separate models for each articulated
part aids in classification.
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