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Abstract
In this paper we propose a new flexible technique to cal-

ibrate camera’s intrinsic parameters from a single image of
balls. Balls are projected onto the image as ellipses, or
conics. Each conic provides two constraints on the intrin-
sic parameters. To estimate all five intrinsic parameters,
we need three balls. Ball’s size is arbitrary. Everyone can
find a few balls around. It is more flexible than other pre-
designed calibration objects. Only one image is used, and
there is no correspondence problem involved. We propose
an algorithm to estimate the camera intrinsic parameters
and the relative size and position of each ball optimally and
simultaneously from the boundary points of each ball. Ex-
perimental results on both synthetic and real images show
that the algorithm is effective and robust.

1 Introduction
Camera calibration is necessary if one is to obtain met-

ric information from images. For example, we need focal
length and principal point of each camera in order to com-
pute 3D coordinates from a pair of matched images. Many
approaches have been proposed to solve the problem. They
are classified into two categories.

Approaches in the first category do the job by observing
a predesigned calibration object whose geometry is known
precisely [4, 15, 17]. The object usually consists of two
or three planes orthogonal to each other, or equivalently,
vanishing points for orthogonal directions [9]. These ap-
proaches require a calibration apparatus, or are limited to
cases where orthogonal directions can be found. Recently,
people have proposed to use planes [14, 7] or planar pat-
terns [19, 13]. Certainly, a plane or planar pattern is more
flexible and easier to prepare than previous calibration ob-
jects. But in this case, multiple images have to be used and
the correspondence problem has to be solved.

The other category is called self-calibration, comprising
of approaches that do not need any known geometry, but
only require a certain number of image points be matched
over two or more images [10, 8, 5, 12]. A pair of im-
ages provides two constraints over the camera paramters,

in the form of Kruppa’s equations. If enough images are
obtained, the intrinsic parameters can be solved for. The
problem with this category of approaches, however, is that
the result is sensitive to noise. It is not yet mature enough
for accurate calibration [2].

In this paper, we propose a new approach that uses balls
as the calibration object. This falls in the first category, but
it is easier for the users as balls are ubiquitous. Any balls,
be it a soccer ball, a pingpong ball, a toy ball, can serve
the purpose. Since only one image is needed, there is no
correspondence problem here.

It is well known that a ball’s image is a conic, and more
concretely, an ellipse in practice. It is also known that the
camera intrinsic parameters can be represented as the im-
age of theabsolute conic. We will show in this paper an al-
gorithm to optimally compute the camera intrinsic param-
eters and the relative size and position of each ball from
the images of balls. Experimental results with both syn-
thetic and real images show that this approach is easy to
use, effective and robust.

In the literature, balls have been first used for calibra-
tion by Penna [11]. But he only tried to compute the as-
pect ratio of the two image axes. In an attempt to calibrate
cameras by vanishing lines, Beardsleyet al. show that by
rotating objects which have parallel lines, the trajectories
of vanishing points are ellipses [1]. They found that the
major axes of the ellipses intersect at the principal point.
Based on this observation, they further propose to first de-
termine the aspect ratio using three ellipses, then determine
the principal point and finally determine the focal length.
In a separate effort towards camera calibration, Daucheret
al. propose to use “spheres” [3]. They obtained similar re-
sults as Beardsleyet al. Compared with these approaches,
our approach not only provides a general mathematical for-
mulation of the problem which links conics with the con-
cept of absolute conic, but also provides an efficient algo-
rithm to solve for the intrinsic paramters, and the relative
positions and sizes of the balls, in an optimal manner.



2 Images of Balls: Conics
Balls, seen from any directions, are round. The bound-

ary is always a circle. The circle and the camera’s focal
point forms a circular cone, whose intersection with the
image plane becomes an ellipse (it becomes a parabole if
the ball intersects the image plane.)

As illustrated in Fig.1, we define the origin of the co-
ordinate system for the circular cone to be the same as the
camera’s focal point, and theZ-axis is from the origin to
the center of the circle, or equivalently, the center of the
ball. Between the camera’s coordinate system and that of
the cone, there is no translation but only a rotation.

Z

R

Focal point

ball

image

u

v

rz=1

Figure 1: A ball is projected onto the image as an ellipse,
or a conic.

We assume that the camera is a pinhole. The directly
available pixel image coordinatesm = [u, v]T and the nor-
malized image coordinatesx = [x, y]T are related by the
following equation

m̃ = Ax̃ , (1)

wherem̃ = [u, v, 1]T and x̃ = [x, y, 1]T are the homo-
geneous coordinates of the point in pixel coordinates and
normalized image coordinates, respectively, andA is the
intrinsic matrix, given by

A =


αu b u0

0 αv v0
0 0 1


 , (2)

with (u0, v0) the coordinates of the principal point in the
pixel coordinate system,αu, αv the focal lengths for the
u, v axes, andb the skew parameter betweenu andv axes.

Generally, a pointM = [X,Y,Z]T in the world coordi-
nate system is projected onto the image pointm by

sm̃ = A [R t ] M̃ , (3)

wheres is a scalar,̃M = [X,Y,Z, 1]T is the homogeneous
coordinates of point[X,Y,Z, 1]T , andR andt are the ro-
tation matrix and translation vector, respectively, between
the world coordinate system and the camera coordinate
system.

Since there is no translation here, we havet = 0. Thus,
a point[X,Y,Z]T on the cone is projected onto the image
by

sm̃ = ARM . (4)

Moving R andA to the left side, we have

sRT A−1m = M . (5)

For the third components of both sides to be equal,s must
be

s =
Z

rTA−1m̃
, (6)

wherer is the 3rd column vector ofR. It is not hard to
see thatr is actually the central axis of the circular cone in
the camera coordinate system. Knowingr means knowing
the ball’s position up to depth. Assume that the circle has
radiusr atZ = 1. Multiplying the transpose of each side
of (5) from the left yields

m̃TA−T A−1m̃ =
1
s2
MT M =

1
s2

(r2 + 1)Z2 .

Substituting (6) for the above equation yields

m̃TA−T A−1m̃ = (r2 + 1)m̃TA−T rrTA−1m̃ . (7)

Moving the right side to the left side, we have

m̃TQm̃ = 0 ,

where

Q ∼= A−TA−1 − (r2 + 1)A−T rrTA−1 (8)

Q describes a conic, andA−T A−1 is the image of the
absolute conic [10, 8], from which the camera intrinsic pa-
rameters can be uniquely determined (see Appendix A).

Since

Q ∼= A−T (I − (r2 + 1)rrT )A−1

= A−T r1rT
1 + r2rT

2 − r2rrTA−1

= A−T [r1, r2, r]diag(1, 1,−r2) [r1, r2, r]
T A−1 ,

Q has two positive and one negative eigenvalues.
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Givenr, we can determine its intersection with the im-
age plane. Let the intersection’s normalized image coordi-
nates be(xc, yc). We have

[
xc

yc

]
=

[
r1/r3
r2/r3

]
(9)

wherer = [r1, r2, r3]T . Together withr, xc andyc de-
termine the relative size and position of a ball up to the
unknown depth.
r and (xc, yc) have 3 degrees of freedom. Since each

conic provides 5 constraints, only 2 of them are for the
intrinsic parameters. If we model the camera as having 5
intrinsic parameters, we need minimally 3 balls.

3 From Conics to the Absolute Conic: Opti-
mal Estimation of Intrisic Parameters and
Ball’s Relative Size and Position

In the case of 3 balls, we have totally 14 independent
unknown parameters, 5 intrinsic parameters and 9 param-
eters,r(j), xc(j), vc(j), j = 1, 2, 3, to model the relative
sizes and positions of the 3 balls.

By the conventional wisdom, we model image noise as
isotropic uniform Gaussian. The optimal estimation tries to
find the unknown parameters so that the sum of the squared
Euclidean distances between the image points and respec-
tive conics is minimized.

Three issues have to be considered. The first is that the
Euclidean distance from a point to a conic is very com-
plex to express explicitly. We will illustrate this later. The
second issue is that since the distance is a non-linear func-
tion of the unknown parameters, we need to use nonlinear
optimization algorithms which involves the differentials of
the distance with respect to the unknown parameters. Here
we use the Levenberg-Marquardt algorithm which only re-
quires the computation of the first-order differentials [16].
The third issue is that non-linear iterative algorithms need
good initial estimates.

Assuming thatn points are extracted from the ball
boundaries in the image, the cost function is defined as

C =
1
2

n∑
i=1

{(ui−Uj(ui, vi))2 +(vi−Vj(ui, vi))2} (10)

where ui, vi are the pixel coordinates of thei-th im-
age point, andUj(ui, vi), Vj(ui, vi) are the coordinates of
(ui, vi)’s closest point on the ellipse of thej-th ball, to
which thei-th point belongs.

In its canonical form, an ellipse can be described by

U2

a2
+
V 2

b2
= 1

The distance from point(x, y) to the ellipse can be ob-
tained by minimizing

(x− U)2 + (y − V )2 + λ(
U2

a2
+
V 2

b2
− 1)

whereλ is the Lagrange multiplier. Setting the differentials
of the above expression with respect toU andV to be zeros
yields a 4-th order polynomial equation aboutλ,

a2x2

(a2 + λ)2
+

b2y2

(b2 + λ)2
= 1 (11)

There are 4 solutions, 2 of which may be imaginary. We
need to choose the solutions that provides the shortest real
distance. Although analytic solutions forλ (and thus for
U, V ) are available, the expressions are long and complex.
They become even more complex if we add the transform
from a general ellipse to its canonical form and if we try
to differentiate the cost function (10) with respect to the
unknown parameters.

The strategy we adopt to resolve this difficulty is to ap-
proximate the differentials by numerical calculations. Us-
ing the current values of intrinsic parameters and the rel-
ative size and position of the balls, we can determine the
transformation from the pixel image coordinate system to
the canonical coordinate system of each ellipse. We can
then further compute the closest point on the ellipse to a
given point off the ellipse by solving (11) and find the clos-
est real distance from the 4 solutions. Let the result be
Uj(ui, vi, p1, ..., pk, ..., p14), Vj(ui, vi, p1, ..., pk, ..., p14).
We then change one of the unknown parameterspk by
a small∆, and compute the closest point on the ellipse
again. Let the new coordinates beUj(ui, vi, p1, ..., pk +
∆, ..., p14), Vj(ui, vi, p1, ..., pk + ∆, ..., p14). The differ-
entials can be approximated by

dUj(ui, vi)
dpk

≈ (Uj(ui, vi, p1, ..., pk + ∆, ..., p14)

− Uj(ui, vi, p1, ..., pk, ..., p14))
1
∆
,

dVj(ui, vi)
dpk

≈ (Vj(ui, vi, p1, ..., pk + ∆, ..., p14)

− Vj(ui, vi, p1, ..., pk, ..., p14))
1
∆
.

With the first-order differentials available, we can now
use the Leverberg-Marquartd algorithm. The success of
convergence to the global minimum depends on good ini-
tial estimates of the parameters. We found that if we as-
sume that the image center is the principal point, pixels are
square(αu = αv) and the skew is zero(b = 0), then the
other parameters can be obtained by first recovering the el-
lipse and then solving a few equations. See Appendix B
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for details. Note that these assumptions are good approxi-
mations of the modern cameras, and empirically we found
that they do not introduce errors that are so large that the
global minimum cannot be reached.

Once the intrinsic parameters are known, we can deter-
mine the relative size and position of each ball. See Ap-
pendix C for details.

4 Implementation Details and Experimental
Results

With all the equations given above and given in the ap-
pendices, we can now implement the algorithm. To be
more numerically robust, we choose to normalize the im-
age first by the initial estimate of the intrinsic matrix, then
optimally estimate the parameters over the normalized im-
age, and finally transform the obtained intrinsic parameters
back to their original domains.

Suppose that the initial estimate of the intrinsic matrix
is A0. We project all the image points to the normalized
image by

x̃i = A−1
0 m̃i, i = 1, ..., n.

The conic matrixQ(j) in (8) for the normalized image
points of thej-th ball becomes

Q′(j) ∼= A′−T A′−1 − (r(j)2 + 1)A′−T r(j)r(j)TA′−1.

whereA′ is the intrinsic matrix for the new image. The
initial guess ofA′ used for the optimization is the iden-
tity matrix. FromQ′(j), we can compute the initial esti-
mate ofr(j) andr(j) by the formula in Appendix C. And
r(j), j = 1, 2, 3 is used to determine the initial estimates
of xc(j), yc(j), j = 1, 2, 3.

Let the optimally estimated intrinsic matrix for the nor-
malized image beA′. The final intrinsic matrix is then

A = A0A′ . (12)

The implementation goes in the following steps: (1) ex-
tract boundary for each ball using, e.g., a “snake”, and
sample (40-60) points for each boundary; (2) fit each
point set by a conic by, e.g., Kanatani’s program down-
loaded from http://www.ail.cs.gunma-u.ac.jp/∼kanatani/;
(3) choose the ball that is the farest from the image cen-
ter and estimate the focal length using the formula in Ap-
pendix B; (4) normalize the image (points) byA0 with
the focal length determined above; (5) estimate the rela-
tive size and position of each ball using the formula in Ap-
pendix C; (6) optimally estimate the 14 parameters in the
normalized image; (7) project all the estimated parameters
and their estimated variances back to the original digital
image domain.

We have conducted experiments on both synthetic and
real images. For the synthetic image (Fig. 2) of1000 ×

1000 pixels with a focal length of 1000 pixels, 3 balls are
generated and isotropic uniform Gaussian noise ofσ =
2.0 is added to the ball boundary points. Fig. 3 shows

Figure 2: A simulation image of 3 balls. Gaussian noise of
σ = 2.0 is added to the image points.

how αu converges. The three tracks are respectively for
the different initial estimates of focal length using the 3
different conics. The three tracks converge to the same
minimum.

The results of optimization for Gaussian noiseσ = 2.0,
σ = 1.0 andσ = 0.0 are listed in Table 1. The initial
and computed values are shown together with the variance
estimated by the Levenberg-Marquartd algorithm. It can
be seen from the table that the larger the Gaussian noise,
the more the computed values deviate from the true values,
and the larger the computed covariances.
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Figure 3: This figure shows howαu converges. The three
tracks are respectively for the different initial estimates of
focal length using the 3 different conics. The three tracks
converge to the same minimum.

Table 1
σ param. αu αv u0 v0 b

true 1000 1000 500 500 0.0
0.0 init. 1010 1010 500 500 0.0

final 1010 1012 502 501 -0.9
var. 17.7 18.6 7.0 7.0 3.06

1.0 init. 995.7 995.7 500 500 0.0
final 1014 1018 508 505 -6.9
var. 17.9 18.8 7.1 7.1 3.13

2.0 init. 989.5 989.5 500 500 0.0
final 1015 1020 511 507 -9.5
var. 18.0 18.9 7.2 7.1 3.16

We also examined how the ball positions affect the final
result. We moved the balls in Fig. 2 toward the image cen-
ter in two steps and produced the images in Fig. 4. Fig. 5
shows howαu starts from different initial values and con-
verges to different values. It can be seen that the closer the
balls are to the image center, the more the computed values
deviate from the true values.

We have also done experiments on real images. One ex-
ample is shown in Fig. 6. The camera is Power Shot Pro
70, a digital camera manufactured by Canon. The image
size is1536 × 1024 pixels. We used 60 points along the
boundary for each ball. One of the balls is very close to
the image center. It does not provide the initial estimate of

Figure 4: Two new simulation images with the balls closer
to the image center.

Figure 5: This figure shows the three tracks of convergence
of αu for image 1 (Fig. 2), image 2 and image 3 (Fig. 4).
The closer the balls are to the image center, the more the
computed value deviate from the true value.
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focal length using the formula in Appendix B. This is nat-
ural because when the center coincides with the principal
point, the ball’s image is a circle, which does not provide
necessary information to determine the focal length. This
is why we choose the conic that is the farthest from the im-
age center for providing the initial estimate of the intrinsic
parameters.

Figure 6: A real image of 3 balls. The image size is1536×
1024 pixels.

The optimally estimated values are listed in Table 2.
The initial and computed values are shown together with
the variance estimated by the Levenberg-Marquartd algo-
rithm. Starting from the intial guess obtained from the
other ball off the image center, all the values converged
to the same minimum as in Table 2. The results look very
promising. Experiments with other real images confirm
that the algorithm is very robust.

Table 2

αu αv u0 v0 skew
init. 1296 1296 768 512 0.0
final 1348 1346 767 514 0.19
var. 32.6 33.5 17.7 13.4 3.3

5 Conclusions
In this paper we have proposed a new flexible technique

to calibrate camera’s intrinsic parameters by taking a single
image of 3 balls. A ball is projected onto the image as an
ellipse, or a conic. It is known that the image of the abso-
lute conic corresponds to the intrinsic matrix up to a scale
factor. we proposed an algorithm to optimally determine
the image of the absolute conic given the conics as the im-
age of balls by minimizing the sum of squared Euclidean
distances from the image points to the estimated ellipses.
Experimental results with both synthetic and real images

show that the algorithm is very effective. The advantages
of this approach are that balls are ubiquitous and that there
is no correspondence problem involved.
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A Computing Intrinsic Parameters from the
Image of the Absolute Conic

The image of the absolute conicA−T A−1 can be ex-
pressed as

A−TA−1 =




1
α2

u
− b

α2
uαv

bv0−u0αv

α2
uαv

∗ b2

α2
uα2

v
+ 1

α2
v

− b(bv0−u0αv)
α2

uα2
v

− v0
α2

v

∗ ∗ (bv0−u0αv)2

α2
uα2

v
+ v2

0
α2

v
+ 1




where the components indicated by * are omitted to save
space. Note that the matrix is symmetric.

Define a symmetric matrixC with C33 = 1 such that

λC = A−T A−1

FromC, it is straightforward to obtain

v0 =
C12C13 −C11C23

C11C22 − C2
12

λ =
C11

C11 − (C2
13 + v0(C12C13 − C11C23))

αu =
√

1
λC11

αv =

√
C11

λ(C11C22 − C2
12)

b = −λC12α
2
uαv

u0 =
bv0
αu

− λC13α
2
u

B Determining Focal Length
Assuming Square Pixels, Zero Skew and
Known Principal Point

Whenαu = αv = α andb = 0, A−T A−1 becomes

A−T A−1 =




1
α2 0 − u0

α2

0 1
α2 − v0

α2

− u0
α2 − v0

α2
u2

0
α2 + v2

0
α2 + 1




From (8), we have

kQ = A−T A−1 − aaT

wherea = [a1, a2, a3]T =
√
r2 + 1A−T r. Using the up-

per left2 × 2 submatrix, we obtain

a2
1 =

1
α2

− kQ11

a2
2 =

1
α2

− kQ22

a1a2 = −kQ12

which lead to

α2k =
Q11 +Q22 ±

√
(Q11 −Q22)2 + 4Q2

12

2(Q11Q22 −Q2
12)

Experiments

have shown thatα2k = Q11+Q22−
√

(Q11−Q22)2+4Q2
12

2(Q11Q22−Q2
12)

is

always the right choice. Note that when the ball is close to
the image center, the image becomes close to a circle and
Q11Q22 − Q2

12 becomes close to zero. It means that the
focal length cannot be obtained in this case by solving the
above equation.

Using the rightmost column vector, we obtain

−a1a3 = kQ13 +
u0

α2

−a1a3 = kQ23 +
v0
α2

−a2
3 = kQ33 − 1 − u2

0

α2
− v2

0

α2
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which lead to

α2 = α2k
−Q13Q23 +Q12Q33

Q12
− Q13v0 +Q23u0

Q12

− u2
0 − v2

0 − u0v0
α2kQ12

With α2k already expressed in terms ofQ’s components,
α(α > 0) can be easily obtained.

C Determining Ball’s Relative Size and Po-
sition

In this section, we show how to determine the relative
size and position of a ball, given its conic equation and the
intrinsic matrix.

From (8), we have

kQ = A−T A−1 − (r2 + 1)A−T rrTA−1

SinceA is known, we have

kATQA = I − (r2 + 1)rrT

The left side can be decomposed as

Udiag(kλ1, kλ2, kλ3)UT

and the right side can be written as

[ r1 r2 r ] diag(1, 1,−r2) [ r1 r2 r ]T

It is easy to see that

U = [ r1 r2 r ]

and

r =

√
−λ3

λ1

D Fitting Conics to Ball Boundaries in Im-
age

A conic is described by

Q(u, v) = Au2 + 2Buv + Cv2 + 2Du+ 2Ev + F
= ũTQũ = 0

where

Q =


 A B D
B C E
D E F


 ,

and
ũ = [u, v, 1]T .

In particular, for an ellipse,B2 − AC < 0.

The simplest way to fit a conic to the point set{ui} =
{(ui, vi)}(i = 1, ..., m) is to minimize

E =
m∑

i=1

Q2(ui, vi) =
m∑

i=1

qT pipT
i q

where

q = [A,B,C,D,E, F ]T ,
pi = [u2

i , 2uivi, v
2
i , 2ui, 2vi, 1]T

This problem has a closed-form solution. The optimalq
is the eigenvector associated with smallest eigenvalue of
matrix

∑m
i=1 pipT

i . Note that the scale ofq is arbitrary.
While the algorithm is simple, the result is not guaran-

teed to be optimal asE does not correspond to a geomet-
rically meaningful quantity. Geometrically speaking, the
optimal fitting is one that the conic goes as close as pos-
sible to the image points. Thus we should minimize the
squared Euclidean distances from the image points to the
ellipse [18]. Kanatani proves that minimizing the squared
Euclidean distances is equivalent to estimating the conic by
the renormalization approach assuming the isotropic uni-
form Gaussian distribution of noise in image position [6].
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