
ACCV2002: The 5th Asian Conference on Computer Vision, 23--25 January 2002, Melbourne, Australia.

1

Intruder Tracking with a Pan-Tilt-Zoom Camera

��������	
�������
Philips Research USA, 345 Scarborough Rd., Briarcliff Manor, NY 10510, USA

Miroslav.Trajkovic@Philips.com

Abstract

In this paper, we describe an automated intruder
tracking engine (ITE), a software module that provides
automated control of a Pan-Tilt-Zoom camera to follow
a person and keep his/her image centered in the camera
view. The current application of the ITE is to simplify
the ease of use of security surveillance equipment.
Instead of having to manually follow an intruder with
the system joystick, the security operator simply needs
to identify the subject to the ITE module, and it will
track that person, leaving the operator free to more
closely observe the behavior of the subject.

1. Introduction

With the fast growth of sensing and video
technologies, it is increasingly becoming more
economical to use video-based systems in surveillance
and monitoring. These systems usually have a large
number of cameras and at the moment, the operator has
to monitor the entire facility on several monitors and
manually follow an intruder or suspect with the system
joystick. This is a tedious and often boring task, and
therefore prone to human errors. The goal of our
research is to develop software for facility wide
tracking that will be able to perform automatic tracking
of the target of interest. Hence, the operator will only
need to identify the subject to the ITE module, and it
will track that person, leaving the operator free to more
closely observe the behavior of the subject.

While there has been significant amount of work on
person tracking from the single static camera (e.g [3],
[9]) there has been much less work on people tracking
using multiple pan-tilt-zoom cameras, one exception
being [1] where PTZ camera is used in collaboration
with a parabolic mirror camera. The task of person
tracking with moving camera is much more complex
than the person tracking from a single camera, not only
because the fact that camera moves, but also because
the person is being seen from different view angles, and
is often partly occluded.

The overall architecture of the system presented in
this paper is given in Figure 1.

The first step in the tracking process is target
selection. In the current implementation, the operator
selects the target manually, by placing a rectangle on
the torso (required) and head and part of trousers
(optional) of the person being tracked. The rectangle
placed on the person will be referred to as the Target
Rectangle (TR), and we will track the person by
tracking his/her Target Rectangle. Once the TR is
selected, the parameters of its color model are found by
computing its color histogram.

Figure 1: The overview of the tracker functionality.

We then use motion detection to find moving areas
in the image, and use color matching to find the motion
area that corresponds to the TR. Once the TR has been

Video Input

Target Selection

Target Modeling

Motion Detection

Color Matching

Target Identification

Camera control

Image Alignment

2

identified, we issue velocity command so that camera
moves towards the TR and acquires the next image.
Clearly, in order to perform independent motion
detection, we have to identify the global motion (due to
camera movement) and then align images before and
after camera motion.

The paper is organized as follows. Section 2 provides
details about target modeling. The motion detection
algorithm is given in section 3, while the color
matching algorithm is given in section 4. The target
identification algorithm is described in section 5. The
camera control is presented in section 6, and the finally,
image alignment algorithm is given in section 7.

2. Person Appearance Modeling

The purpose of person modeling is to describe the
visual appearance of a person in a unique way in order
to be able to distinguish between the target being
tracked and other people/objects in the camera field of
view. There are many features that can be used for
robust person modeling including color, texture, shape,
facial characteristics etc. Unfortunately, precise and
robust person modeling would typically require high
resolution and computational resources that would
prohibit real time implementation. In order to achieve
real time performance of our system, we have modeled
the target appearance using its color distribution, more
precisely, the color histogram of the target rectangle.
The color histogram has the advantage that it is
relatively invariant to rotation and scaling, and does not
require particularly high resolution. In addition, an
efficient algorithm can be developed for histogram
matching. Another possibility is to model the color
distribution of the target using the mixture of Gaussians
([6]), but the disadvantage of this approach is that it
requires the use of Expectation-Maximization
algorithm, which may have problems with the
convergence.

2.1 Color model

The color images acquired from camera are usually
given by their R, G and B components. The
disadvantage of the RGB color model is that it does not
achieve the separation of brightness and chromacity
components of the color. This separation is important if
it is desired that the color model is invariant to changes
in light intensity such as shadows. For this purpose, we
have tested several color models (RGB, normalized
RGB, YUV, HSI) and concluded that the HSI color
model yields best results both in color/intensity
separation and separation between different colors.
Hence, we used this model in our system, although
other color models have been implemented as well, and
can be readily included.

The components of the HSI color model are hue,
saturation and intensity. Hue represents dominant color
as perceived by observer. Saturation refers to the
relative purity, or the amount of white mixed with the
color. Intensity is subjective measurement that refers to
the light intensity of the color.

The formulas for conversion from RGB to HSI are
non-linear and are given below:

−−+−

−=

−=

++=

−

))(()(2

3
cos

),,min(
1

)(
3

1

2

1

BGBRGR

IR
H

I

BGR
S

BGRI

 (1)

For more information about the HSI model and
derivation of above-mentioned equations, please refer
to [2].

2.2 Color histogram

In our implementation, the target color is given by its
color histogram. In order to achieve intensity
invariance, and to reduce the amount of computation,
we only use the chromacity (i.e. hue and saturation)
components of the image. Therefore, our color
histogram is two-dimensional, having m×n bins, where
m and n denote hue and saturation levels respectively.

We have experimentally determined that the hue
component of the image color is more important than
the saturation, and therefore we have finer resolution in
hue than in saturation (i.e. m > n). For practical
purposes, the number of bins should not be too high and
default values in our implementation are m = 32, n = 4.
An example of a color histogram for typical target is
shown in Figure 2.

Figure 2: Typical target and its color histogram. Bright areas
correspond to the high value of histogram bins.

2.3 Composite histogram

By examining the formula for hue in (1), it can be
seen that for the color along the gray line (R=G=B) hue
is not defined. Furthermore, small variations in color
components will result in a large variations in hue. As

3

an example for (R,G,B) = (101,100,100), (H,S,I) = (0,
0.0033, 100.333), while for (R,G,B) = (100,101,100),
(H,S,I) = (2.0944, 0.0033, 100.333). From this example,
we can conclude that for the colors close to gray, hue is
extremely sensitive to noise. This is nicely illustrated by
the color histogram given in Figure 2. One may notice
that in addition to the peak corresponding to the person
torso, there is almost uniform distribution across entire
histogram corresponding to the black trousers.

In order to account for this behavior in hue
component, we introduce a composite histogram
representation in the following manner:
• Identify all the pixels that lie within the torus of

radius r centered along the gray line and compute
their gray level (i.e. intensity) histogram.

• Compute the color histogram of remaining pixels
as described in section 2.2.

The color distribution of the target region is now
represented by the composition of their color and gray
histograms. The modified color histogram (for the
pixels rich in chromacity) for the person shown in
Figure 3 is shown bellow.

0
10

20
30

40 1

2

3

4

0

50

100

150

200

250

300

Figure 3: Modified color histogram obtained by removing
gray pixels from the target shown in Figure 2. Compared to
the histogram shown in Figure 2, this histogram has better
separation of colors (fewer uniformly spread pixels) and two
distinct peaks.

2.3 Histogram vector

The computational cost of histogram matching (see
section 4) is directly proportional to the number of bins
in the histogram. However, in typical histogram, only
small number of bins are of importance (i.e. the bins
whose colors are most frequent in the target), and
therefore, significant speed-up may be obtained if only
those bins are used.

As we are using MMX technology for histogram
matching, the best choice for number of bins being used
is of form k = 2l – 1, and in most of our
implementations l = 4 (k = 15 bins). It should be noted
that sometimes more bins should be used. However, our
experiments suggest that with 15 bins good trade-off
between speed and performance can usually be
achieved.

3. Motion Detection

To find moving areas, two consecutive gray level
images are subtracted and the histogram of the
difference image is computed. The difference image has
elements in the range –255 to 255 and its histogram will
usually have three modes as shown on Figure 4.

The largest mode is around zero differences and it
corresponds to the static regions of the image. The
difference in the image intensities from this mode is due
to noise and changes in lighting, hence, the mean of this
mode may not be at zero. Two other modes will occur,
one to the left and one to the right of the central mode.
These modes correspond to the pixels where change in
image intensity is high and they correspond to the
moving areas in the image.

Figure 4: Three modes histogram model used for detection
of moving areas.

The pixels in these modes can be considered as the
outliers in the original Gaussian distribution. Since they
will almost always constitute less than 50% of the total
number of pixels, they can be detected using a robust
estimation techniques such as RANSAC or the Least
Median of Squares (LMedS, see e.g. [5]).

The complete algorithm for motion detection is given
below:
1. Compute the difference image 12 IID −= and the

histogram of the difference image hD.
2. Compute)(median

,
ij

ji
D=µ .

Since the histogram of hD of D is already computed,
median of D can be computed very efficiently. Note
that µ corresponds to the mean value of the main mode,
and often this step can be skipped by assuming µ = 0
(There is no change in lighting between two images).
3. Compute standard deviation of the main mode as

()µσ −= ij
ji

D
,

median4826.1

4. Compute moving pixels as those that satisfy
condition

σµ 5.2|| >−ijD .

Filter the foreground image with a Box filter of a size
identical to the target rectangle to obtain IF. Ideally, the
target we are looking for will correspond to the
maximum of IF. However, due to noise and the error of
the method it may not always hold. Therefore, we

4

threshold IF and all the pixels whose value is higher
than the threshold t (t = c × target_size, 0 < c < 1), are
considered as potential candidates. The best candidate
is obtained by using a histogram matching algorithm
described in the next section.

4. Histogram Matching

The problem that we are addressing in this section is
the following: Find the area in a new image that has
histogram most similar to the target histogram.

To do this, we first have to define a measure of
similarity s of two histograms H1 and H2. In our work
we adopted the similarity measure defined in [7] which
is defined as the intersection of two histograms:

)),(),,(min(),(2
,

121 jiHjiHHHs
ji

∑= (2)

As the histograms are normalized, 10 ≤≤ s . A
typical similarity function between the target histogram
and an image is given in Figure 5.

Figure 5: A template, an image and the histogram
similarity function. Red areas correspond to high, while blue
areas correspond to low similarity.

Given that we do not deal directly with histograms,
but with the histogram vectors, equation (2) can not be
directly used and we use the following, two-step
algorithm:

Using a histogram vector h and the newly acquired
image I compute the "palette image" P, whose elements
are defined as

=
h

h

ofmbininsideisIifm

vectortheoutsideisIif
p

ij

ij
ij ,

,0

As the vector h has k = 2l – 1 elements, the palette
image P will have at most 2l different values. Therefore,
histogram similarity between the given target rectangle
and the same size rectangle of the image P whose upper
left corner is given by position (i, j) may be computed
using the following formula

∑
=

=
n

k
pij jis

1

)),(,min(hh (3)

where hp denotes the histogram of the particular
rectangle of the palette image, which has to be
computed at every pixel location, which, for an entire
image, is a major computational issue.

In order to speed-up the histogram computation we
propose a two-pass, incremental algorithm for the
histogram computation.

In the first pass, given a palette image P, we compute
a matrix of vectors (Hh) each element of this matrix be-
ing defined as a histogram of one line of the matrix P.

In the second pass, given a matrix Hh, we compute a
final palette histogram matrix (Hp) by simply adding
elements of Hh along the vertical line.

Additional improvement in speed is obtained by
noticing that there is a recursive relation between the
elements of the histogram matrices. Note that histogram
vectors),(jihh and)1,(+jihh may differ in at most

two elements, (due to inclusion of p(i, j+m) and
removal of p(i,j) into the)1,(+jihh) and this

difference is at most 1. In other words, if),(jihh is

computed, than)1,(+jihh may be computed in the

following manner:

;)],()[1,(

;)],()[1,(

),()1,(

−−+
++++

=+

jipji

mjipji

jiji

h

h

hh

h

h

hh

(4)

requiring only one increment and one decrement !!
Similarly, for a known),(jiph , it holds:

),(),(),()1,(jinjijiji hhpp hhhh −++=+ (5)

requiring only two vector additions which can be
efficiently implemented in MMX technology.

The introduction of the palette image and above-
mentioned histogram matching technique is a very
powerful tool, which makes possible real time
implementation of the histogram matching. The
computational time does not depend on the histogram
size, but only on the image dimensions. Typically, for
the image of dimensions 320×240, histogram matching
takes less than 100 ms.

5. Image Alignment

The purpose of image alignment is to find the
mapping between two images obtained by the same
camera at different positions, more precisely different
pan, tilt and zoom settings. It is well known that in this
case the mapping between the two images I1 and I2 can
be expressed in the following form:

ppp MsQRQ == −1’ (6)

where p and p’ denote the homogeneous image
coordinates of the same world point in the first and the
second image, s denotes the scale change, Q is the
internal camera calibration matrix, and R is the rotation
matrix between two cameras/camera locations.

Alternatively, this equation may be written as:

5

333231

232221

333231

131211

’

’

mymxm

mymxm
y

mymxm

mymxm
x

++
++

=

++
++

=
(7)

where (x, y) and (x’, y’) are pixel locations in the first
and second image respectively, and M = [mij]3×3 is the
homography matrix that maps (aligns) first image to the
second.

The main problem of image alignment, therefore, is
to determine the matrix M. From equation (6), it is clear
that given s, Q and R it is straightforward to determine
matrix M. While it is true in the ideal case, it is not
always applicable in practical situation, the main
reasons being that:
- we do not know exact values of s, Q and R;
- strictly speaking, equation (6) holds only if camera

center and the rotation center are identical, which,
in most PTZ cameras, is only approximately true;

- in order to retrieve precise values of camera
settings, i.e. pan, tilt and zoom values, the camera
has to stop which will create unnatural motion; and

- in some PTZ camera systems, retrieving camera
settings can take considerable time.

Hence, in our work, we compute the alignment
matrix M directly from the images, therefore requiring
no information about camera position and calibration.
Our algorithm requires point matches between two
images and is performed in following steps:
1. Scale-down images I 1 and I2.
2. Find corners at low resolution using any corner

detector. In particular, we used MIC corner
detector ([8]) since it has very good trade-off
between speed and performance. Other corner
detectors, such as Harris ([4]) may be used as well,
but the real time issue should be taken into account.

3. Using robust methods (RANSAC algorithm) find
the alignment matrix Ml at low resolution.

4. Find corners at a finer scale images (half the image
size in our case).

5. Perform corner matching at a finer scale image by
finding the best corners around positions predicted
by Ml.

6. Using robust methods (RANSAC algorithm) find
the alignment matrix Ml at finer resolution.

It should be noted that in our implementation zoom was
fixed and therefore at low resolution, we made
assumption that the image motion can be approximated
by translation and rotation in the image space. In other
words, at low resolution, we used the following
approximation of equation (7):

y

x

txyy

tyxx

++=
+−=

αα
αα

cossin’

sincos’
. (8)

This approximation has several advantages:
- Due to lower number of parameters, RANSAC is

exponentially faster.
- It is more stable than full modeling, as at low

resolution, there are many parameters that can be
neglected, and by using them no real improvement
is obtained.

If the zoom has not been fixed, then instead of formula
(8) we should use

y

x

txysy

tyxsx

++=
+−=

)cossin(’

)sincos(’

αα
αα

. (9)

where s denotes the scaling (zooming) factor. By
introducing new independent variables αcos1 sa = ,

αsin2 sa = , equation (9) becomes:

y

x

tyaxay

tyaxax

++=
+−=

12

21

’

’
, (10)

and RANSAC can still be executed very quickly.

6. Finding the Best Candidate

The drawback of histogram matching is that, in
general, it does not provide for a unique solution.
Namely, it may happen that more than one area in the
image has a histogram similar to the target histogram,
and our task is to: (1) find all these areas (target
candidates); and (2) determine which one of them is
most likely to correspond to the target location.

6.1 Finding target candidates

Target candidates are determined as local maxima of
the histogram similarity function, providing their
similarity function is higher than a certain operator
adjustable threshold. The local maxima are found using
a 5×5 window, and after that all the maxima whose
mutual distance is less than d (default 20) pixels are
merged into a unique local maximum.

Note that we consider only those maxima that belong
to the foreground region (only moving objects), and
additional one which is in the vicinity of the latest
target position (to allow for the stationary target). This
greatly reduces the number of false positives, but
unfortunately, they can still occur.

6.2 Selecting the best candidate

There are two approaches we considered for selecting
the best candidate:
- Temporal approach, i.e. select a candidate which is

closest to the predicted target position;
- Template matching approach, i.e. select a candidate

that is most similar to the target using a template
matching as the measure of similarity. For the time
being this is not implemented.

6

6.3 Predicting target position

Due to the highly unconstrained nature of the human
motion, we are only using a small number of frames
(five) to predict the position of the target in the
following frame. The target motion is modeled using a
constant velocity model:

tbbtyy

taatxx

t

t

10

10

)(

)(

+==
+==

(11)

where xt and yt denote the current target position (i.e.
position of the center of the target), and a0, a1, b0, b1

denote the parameters of the constant velocity model.
Given the velocity parameters a0, a1, the expected
coordinates of the point in the next frame are given by:

1101

1101

)1(~
)1(~

bykbby

axkaax

kk

kk

+=++=
+=++=

+

+ (12)

However, since the target can slow down rapidly, we
assume that the predicted position may be anywhere in
the line connecting points pk and pk+1, which may be
represented as

10, ≤≤⋅+= ttk npp (13)

and Tba][11=n .

The best candidate is determined as the one closest
to the line given by (13).

7. Experimental Results

The tracker engine described in this paper performs
tracking of a person with moving camera in the real
time, with frame rate of 5 -10 Hz. When a person is
being tracked in an area with no other moving objects,
the tracker achieves excellent performance, being able
to track the person over a wide range of velocities (from
very slow, to very fast, almost running). It is also able
to track the person in very different camera positions,
and generally, has very low dropout rate. Our
experiments show that the most difficult tracking
scenario occurs for the camera set at low heights and
the person walking quickly straight below the camera.
In this case, the angular velocity of the person is very
high, and due to physical restrictions on the camera
speed, the person can be lost. We are currently working
on the camera control mechanisms to overcome this
problem.

When there are multiple moving people in the field
of view, the matching rate varies from sequence to
sequence depending how different is the color
distribution of the target being tracked and the other
moving objects. If the tracked target meets with another
moving object, there is no guarantee that the tracker
will remain on the desired target. This problem can be

somewhat overcome by including more elements in the
histogram vector, by including some spatial information
into the histogram, and by including some additional
information about the trajectory. Even then, this is a
very difficult task that can present a challenge even to
the human operators.

When the tracked target is sufficiently different from
other objects being tracked, our system is able to track
it successfully over a period of time and is not
particularly affected by occlusions and people crossing.

8. Conclusion

In this paper we have presented a system for intruder
tracking and described the basic building components
of the system. The system operates in real time (5-10
frames per second) and allows for the partial or
temporary complete occlusion of the target being
tracked. It achieves very good performance when there
is only one target in the field of view, or the target is
sufficiently different from the other moving objects that
occlude it. The main novelties of the system are a real
time feature points based registration module, the
composite color-gray histogram description of the
target, and a fast recursive algorithm for histogram
matching.

9. References
[1] Cui Y. et al,"Indoor Monitoring via the Collaboration
Between a Peripheral Sensor and a Foveal Sensor", in
Workshop on Visual surveillance, Bombay, India, 1998.

[2] Gonzalez R., Woods R., "Digital Image Processing", 1992.

[3] Haritaoglu I., Harwood D. and Davis L., "W4 - Real time
detection and tracking of people and their parts". FGR 98.

[4] Harris C. and Stephens M., “A combined corner and edge
detectior”, 4th Alvey Vision Conference., pp. 147-151, 1988.

[5] Meer P., Mintz A. Rosenfeld A. and Kim D.Y., “Robust
regression methods for computer vision: A review”, Intl.
Journal of Computer Vision, vol. 6, pp. 59-70, 1991.

[6] McKenna S., Raja Y. and Gong S., “Tracking colour
objects using adaptive mixture models”, Image and Vision
Computing, vol.17, pp. 225-231, 1999.

[7] Swain M. and Ballard D., “Color Indexing”, International
Journal of Computer Vision, (1991), 21-32.

���	
�������	 ��	 ���	 ������	 ���	 �����	 ������	 �����������
Image and Vision Computing, vol. 16, pp. 75-87,1998.

[9] Wren C. et al, "Pfinder: real-time tracking of the human
body", TR 353, MIT Media Lab, 1995.

