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Abstract

In this paper, we presenta novel approach for im-
age databasequeryingbasedon a 3D iconic environment,
which supportsmulti-attributesimage descriptionanditer-
ative query refinement.A graphical interfaceenablesthe
userto createa queryscenebyinstantiatingandtransform-
ing domain-specific3D objects. Thequerysceneand the
databaseimagesare each associatedwith a descriptorof
sceneattributes,andrelevancefeedback is usedfor refining
queries.Thepaperinvestigatestheimpactof inexactimage
description,andrelevancefeedback, on theeffectivenessof
the proposedimage-retrieval approach. Experimentalre-
sults showthat imperfectimage descriptiondegradesthe
precisionof image retrieval without relevancefeedback. It
is alsoshownthat thequeryrefinementapproach,proposed
in thepaper, enhancesretrieval precision.

1. Intr oduction

Contentbasedimageretrieval (CBIR) hasbeenstudied
with much interest in the last twenty years. In particu-
lar, someattentionhasbeengivento developingtechniques
that allow the useof a virtual environmentto make visual
queries[2] [7]. Researchinto suchenvironmentshasbeen
identifiedasa key areafor CBIR [13]. Several investiga-
tions suchas[3] [8], have studied3D basedenvironments
for CBIR. Typically, they render3D modelsfrom several
viewpoints,andcompareeach2D view against2D database
images.

During theprocessingof a query, analyzingthecontent
of eachimageof a databasemight needlong processing
time. Queryprocessingtime canbe reducedby usingde-
scriptorsassociatedwith eachimage[15] [7] togetherwith
an indexing scheme. Such descriptorscan be generated
when the imageis addedto the database.This way, the
querywill only processthedescriptorinsteadof the image

itself, henceresultingin greaterprocessingspeedcompared
to analyzingthe imagedirectly. MPEG7[1] is a standard-
isationeffort that triesto unify approachesfor building de-
scriptorscapableof integratingvarioustypesof information
containedin animageor video.

In the investigationsreportedherein,we have chosento
focusonCBIR for anarrow applicationdomain,with acon-
strainedvocabulary for describingan image. This idea is
reinforcedby Smeuldersetal. [13] whosaythatthequality
of a searchenginetypically improveswhentheretrieval is
performedon a narrow domain. Although the techniques
presentedin this papercanbe usedin otherdomains,the
queryenvironmenthasbeenconstrainedto office furniture
andcomputerequipment,in theapplicationdomainconsid-
eredherein. Sucha tool would be useful for office inte-
rior designers,for example,who may requireaccessto a
databaseof imagesfrom office equipmentcatalogues.The
usercanchooseobjectssuchastables,chairs,desksor com-
puters,andplacethemwherever they want in a 3D virtual
room.Thelattercanbeusedasaquery, whichwouldreturn
realphotographsmatching2D viewsof thevirtual room.

An iconcanbedefinedasasymbolicmetaphorof anob-
ject in a scene.Iconscandenotea 2D or 3D environment.
The descriptorusedhereinis a compactrepresentationof
a 3D iconic environment;the descriptorcontainsinforma-
tion on theiconiccontentof thequery. Therearefour main
attributescontainedin a descriptor: the identifiersof the
icons,their spatialrelationship,their texture,andtheir mo-
tion.

Relevancefeedbackis an importantproblem[6] [13],
whichhasnotbeenfully solvedyet[4] [10]. OneCBIR sys-
temthat integratesrelevancefeedbackis known asMARS
[11]. By usinga weightedversionof the k nearestneigh-
bor rule, the systemis ableto usefeedbackinformationin
orderto weight significantfeatures.The featureweight is
calculatedby usingthe featurevariancefrom thesetof re-
trieved imagesconsideredto be relevant by the user. An-
othersystemthatintegratesrelevancefeedbackis known as
PicHunter[5]. By usinga probabilisticmethodbasedon



Bayesianstatistics,thesystemtriesto directthesearchand
predictwhat imagethe userwants,by looking at userac-
tions.

This paperaddressestwo problemsassociatedwith the
useof object-basedCBIR.Thefirst problemis thematching
a2D imagedescriptorwith a3D-basedquery. An important
issueis the imperfectobjectdetectiontypically inherentin
automaticextractionof imagedescriptors.Thepaperinves-
tigatesthe impactof inexact descriptordataon the effec-
tivenessof theretrieval. Thesecondproblemunderstudyis
theability to refinea queryby usingrelevancefeedback.

The main contributionsof the paperaretwofold. First,
the paperpresentsa framework adaptedto CBIR for 3D
queries,using object-basedmulti-attribute image search.
Second,wehavedevelopedanapproachfor relevancefeed-
backbasedon the weightedfeatureapproach,but the pro-
posedapproachdiffersfrom othersby thewaythecontribu-
tion of eachattributeis calculated.

2. CBIR framework

The retrieval processis executedin several steps,as il-
lustratedin Figure1. In the first stage,the usercreatesan
iconic querythat representsthe scenehe or sheis looking
for. Then,a descriptoris extractedfor the iconic represen-
tation of eachobject. The setof descriptorsthat compose
thefull queryarecomparedto theobjectdescriptorsof im-
agesfrom thedatabase.Thecomparisonincorporatesuser-
specifiedweightsfor thedescriptorattributes.Theusercan
thenselectthemostrelevantimagesreturnedby thequery,
or evenmodify thequeryparameters.A refinedquerywill
thenbeexecuted.Userfeedback,in form of selectionof the
most relevant imageswill affect the consequentlyrefined
query, by weighting the next matchesto promoteimages
similar to therelevancefeedbackimagesetandto theinitial
query.

3D Graphical
User Interface

Iconic Query

Descriptor

Iconic Descriptor
Database

Results

Relevance
Feedback

Figure 1. The CBIR cycle.

Smeulderset al. [13] stressthe importanceof a graph-

ical interface,andparticularly the interactionbetweenthe
userandthe searchengine. We addressthis challengeby
usingan interface,which enablesthe userto build queries
by using3D icons. The interfaceconsistsof a virtual en-
vironmentwherethe usercancreateicons,move them,or
changeicon properties.The motivationsfor this approach
aregivenhereafter. Unlike visualbasedqueries,text based
querieslack precision. It is almostimpossibleto describe
every detail of an imageusingwords. The main reasonis
that wordsmay carry differentmeaningsin differentcon-
texts. A visualquerycanbeconstructedusinga 2D or 3D
environment. Whenusinga 2D query, we facethe limita-
tion of restrictingthe query to a particularviewpoint of a
scene.However, a 3D queryopensCBIR to searchesfrom
any viewpoint. The 3D querywill be transformedto a set
of 2D views,whichwill becomparedwith thedatabaseim-
ages.However, the relevancefeedbackis performedusing
the2D viewsrepresentedby theimagesselectedby theuser
asrelevant.

In therestof this section,weexplainwhatinformationa
descriptorcontains,andhow theimagedescriptorattributes
are extractedfrom images. Finally, we explain how the
matchingis performed.

2.1. Imagedescriptor set

A descriptorcontainsfour typesof informationdescrib-
ing the iconic representationof oneparticularobjectin an
image. First, the identifier, written as a symbolic string
representingan object name. Extractinga nameis done
through shaperecognition,basedon an approachwhich
usesmultiple 3D viewpoints,which is outlinedin Section
2.2. The namehasan associatedquality coefficient which
representsthe confidencethat the shaperecogniserhad in
its object-labellingaccuracy. Thequalitycoefficientwill be
usedwhenprocessingthe query, to favour objectsassoci-
atedwith greaterlevelsof confidence.

The seconddescriptorentry is the spatiallocationof a
particularobject relative to others. Hence,the scenecon-
figurationis describedusingan object-centeredcoordinate
system[2]. In thispaper, extractingthespatialrelationships
hasbeenfully automated.By comparingorthogonalprojec-
tions of the spatiallocationof objects,the positionalrela-
tionshipsbetweenobjectsis expressedusingsemanticrules
suchas“object A is strictly after objectB” . This is based
on thework presentedin [2].

The third part of a descriptorcontainsthe photometric
propertiesof the object. This part is composedof two at-
tributes, the texture and the colour of the object. In the
work presentedherein, the colour hasbeenextractedau-
tomatically. This hasbeendoneby averagingthe valueof
pixelsacrossthesurfaceof theobject.However, thetexture
attribute, in the form of a descriptive word, hasbeeninput
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manuallybecauseautomatictextureanalysisis outsidethe
scopeof thework presentedin this paper.

A descriptorcouldalsocontainmotioninformation.This
partwouldbeusefulfor videoretrieval, but it is notconsid-
eredin this papersinceour databasecontainsonly static
images.

2.2. Object labelling for imagedescription
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Figure 2. Automatic extraction of object iden-
tifier for image description.

Therearemany differentwaysto createthe descriptors
of imagescontainedin a database.In this paper, we usea
semi-automatedapproach.Thetexturefieldsof thedescrip-
tor aremanuallycreated.Objectdetectionandlabelling is
doneautomatically, it relieson shape.Unfortunately, such
anoperationcannotbeperformedperfectly, andmayresult
in objectsnot properlydetected.Hence,Section3 presents
anassessmentof theimpact,of extractinginexactdescriptor
data,on retrieval effectiveness.

Theobject-detectionmethodcanonly detecttheobjects
containedin a pre-defined3D shape-modelqueryset.Con-
sequently, this will limit the choiceof objectsavailableto
theuserduringaquery. However, suchalimitation is unim-
portantfor many narrow applicationdomains.

The objectdetectionprocessis donein threesteps,il-
lustratedin Figure 2. First, the imageis segmentedinto
regions. The segmentationalgorithmis basedon the clus-
teringapproachdescribedin [15]. Then,a 3D shapemodel
of the relevant object is renderedin several views. Each
renderedview is comparedwith thesegmentedimageusing
a methodbasedon the generalisedHoughtransform[14].
The idea is to usea polygonalapproximationof the seg-
mentedshapeby dividing its contourat several key points
joined by line segments. Then, what the authorscall a
vector-pair transformis applied. A vectorpair consistsof
the two line segmentsjoined at one key point. For each
key point, we recordthe anglebetweenthe two segments.
Then,we matchsimilar vector-pair anglesfrom the query
imageanda segmenteddatabaseimage,andincrementthe
correspondingaccumulatorcells. Accumulatorcell values
aredividedby thesizeof theshape.Thebestmatch,repre-
sentedby theaccumulatormaximum,if above a threshold,

indicateswherethe object,seenfrom a particularview, is
likely to be located. The maximumacrossall views gives
thebestview correspondingto thedatabaseimage.Finally,
a similarity score,which indicateshow well the detected
shapematchedtheprojectionof the3D objectmodel,is at-
tachedto the shapeidentifier storedin the descriptor. It is
anticipatedthat the quality of the shapedetectionwill be
influencedby thenumberof viewschosento rendertheob-
ject. However, this issueis outsidethescopeof this work,
a possiblesolutionfor selectingoptimalviews is described
in [9].

2.3. Descriptor matching
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Figure 3. Descriptor comparison process.
A : Comparison based on object matc hing.
B : Comparison based on other scene de-
scription attrib utes ranked by the user in or-
der of impor tance . C : Evaluation of matc h
scores. D : Displa y of results with suppor t
for relevance feedbac k.

In contrastto our approach,in [2] theuserchoosesone
particularview of the 3D scene.In our system,whenever
the userdoesnot specifya view of interest,the camerais
movedaroundthespace,generatingmany possibledescrip-
tors, typically for aroundone thousandviewpoints. This
numbercorrespondsto a 10degreerotationsteparoundthe
axesof the world referenceframe. The distancefrom the
camerato theworld is unimportantheresincethetechnique
usedfor comparingspatialconfigurationis invariantto scal-
ing. Weextractfrom everyview of thescenea2D symbolic
description.If this symbolicdescriptionis sufficiently dif-
ferentfrom thepreviously generatedviews, thenit is com-
paredwith thedescriptorsof thedatabaseimages.

Comparisonof descriptorsis donein four steps,illus-
tratedin Figure3. First, pre-processingis appliedin order
to extractonly therelevantimagesfrom thedatabase.This
is doneby selectingonly the imagesthatpossessthe most
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importantdistinctivefeaturesspecifiedin thequery. For ex-
ample,if auserspecifiesthattheobjectidentifieris themost
importantdescriptorentry, we will selectonly the images
thatcontainmany of theiconscontainedin thequery. Up to
this stage,no spatialrelationsor photometricpropertiesare
involvedyet, only a comparisonon theshape-derivedicon
identifieris performed.Similarly, if any anotherattributeis
selectedasthemostimportantdistinctive feature,only this
attributewill beconsideredfor thefirst pre-processingstep.
In theparticularcaseof all theattributesbeingequallyim-
portant,thedescriptorcomparisonprocesscanbeexecuted
sequentiallyin any order.

Then, a comparisonof the remainingattributesof the
iconic descriptoris performed.Theweightassociatedwith
eachattributecomparisonis chosenby theuserwhenbuild-
ing thequery. Objectidentifierentriesin thedescriptorare
comparedby matchingcorrespondingidentifiervalues.The
numberof matchingobjects,betweenthe databaseimage
andthequeryscene,is dividedby thenumberof objectsin
thequeryscene.Thisgivesa percentagethatrepresentsthe
qualityof thematch.

Comparingthespatialconfigurationof thesceneis based
on the methoddescribedin [2], which usesa representa-
tion language,describingthespatialrelationbetweenscene
objects. Del-Bimbo et al. [2] usea symbolicdescription,
which is capturedby a setof formulas,expressingthemu-
tual relationshipbetweenpairsof objects.Eachspatialre-
lationproducedfrom thequeryscene,is comparedwith the
correspondingrelationin the image. A similarity score � ,
expressedasa percentage,is returnedaspart of the query
result.Thescoreis calculatedusingtheequation:

���������	��
 � (1)

where 
 representsthe numberof relationsthat satisfythe
correct configurationof the query scene,and

�
the total

numberof spatialrelationsspecifiedin thequeryscene.
The colour andtexturearecurrentlyusedasplacehold-

ers.However, in orderto produceexperimentalsresults,we
haveuseda simplemethodillustratingtheir contribution to
the comparison.Colour is comparedusingthe differences
in hueandsaturationcolour components.A percentageis
returnedwhich representsthe ratio betweenthenumberof
coloursfoundin theimagecomparedto thenumberof dif-
ferentcoloursspecifiedin thequeried.We do not consider
commonproblemssuchas noiseor colour variation, be-
causethey arechallengesin their own right, and they are
outsidescopeof this paper. Texture is comparedusingan
algorithmfor matchingtexturelabels,basedonanapproach
similar to the onefor matchingobjectidentifier descriptor
entries.

The final step is to computea quantitative score for
the match. The score,reflectingthe level of similarity of
sceneattributes, is calculatedby a weightedaveragingof

thematchscorefor individualdescriptorattributes.Thefor-
mulausedis

 �
��
������� ����� (2)

where ��� is the absolutevalue of the differencebetween
correspondingdescriptorentries,each � � is representedas
apercentage.� � representstheweightspecifiedby theuser
for the ����� descriptorattribute(theweightssatisfythecon-
straint � � � �

� � ). We usepercentagesfor descriptor
attributesimilarity scoresfor two reasons.First, all scores
are normalisedto the samescale. Another reasonis that
percentagesarequitemeaningfulasfeedbackto theuser.

2.4. RelevanceFeedback

The relevant imageschosenby the userorient the next
iteration of the search. This is doneby replacing � � by

� �
�"! � in Equation(2), whichbecomes:

 �
��
���"� � �

! �#��� (3)

where ! � is the frequency of occurrenceof descriptoren-
trieswhich aresimilar betweentherelevance-feedbackim-
agesetand the original query image. ! � is calculatedas
a count,of similar entries,divided by the total numberof
entry-similaritycomparisons.As in Section2.3, ��� mea-
suresthedifferencebetweenadatabaseimageandoneview
from the3D query.

3. Experimental resultsand discussion

Thefirst objectiveof ourexperimentsis to assesstheim-
pactof imperfectimagedescriptionon theeffectivenessof
imageretrieval, basedon theapproachdescribedin thepre-
cedingsectionof thepaper. Thesecondobjective is to as-
sesstheimprovementaccruingfrom relevancefeedback.

The testdatabasecomprises70 imagesshowing a room
which containsoffice furniture and computerequipment.
Shotsaretakenfrom differentlocations,andwith different
configurationof the scene. Imageswhich do not belong
to the applicationdomain (office furniture and computer
equipment)arenot includedin thetestdatabase.However,
thereis greatvariability in objectlocationandtype across
thedatabase,which increasesthe level of difficulty for the
retrieval task.For queryformulation,thesetof shapemod-
els is composedof eight different3D meshmodelswhich
representthreedifferenttables,acomputerscreen,aprinter,
acomputertowercaseandtwo typesof chairs.In theexper-
imentsreportedherein,wehaveusedfixedweightsin Equa-
tion 3, with correspondingvaluesof � �

�$��%'& , �)(
�*�+% , ,
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�)-
�.��%/�0& , �

� �1�+% �2& . Thesevalueswereobtainedex-
perimentally, they were observed to offer a good balance
acrosstheweightsof individualdescriptorattributes,for ef-
fective discriminationbetweenimages.Retrieval effective-
nessis assessedusinga precisionmeasure[13]. The pre-
cisionmeasurerepresentstheproportionof relevantimages
foundwithin thetenbest-rankedimagesin thequeryresult.
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Figure 4. Effect of descriptor quality on re-
trie val effectiveness, without relevance feed-
back.
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Figure 5. Effect of relevance feedbac k on re-
trie val precision. 324�5 is the average descrip-
tor quality coefficient.

Only the quality of the shapedetection,during the ex-
tractionof the object identifier descriptorattribute, is con-
sideredin theinvestigationof theeffect of descriptorqual-
ity. Hence,thesimilarity scoreattachedto theobjectiden-
tifier attributeof thedescriptor, is usedasa measureof de-
scriptorquality. Descriptorquality hasbeenmeasuredas
the averageof the similarity scoresfor every objectin the
descriptor. The imagesusedin the testdata,cover a wide
rangeof descriptorquality. Figure 4 shows the effect of

descriptorquality on retrieval effectiveness.It revealsthat
retrieval precisionincreaseswith descriptorquality.

Thelastsetof testsconcernsrelevancefeedback.Figures
5 and6 show that, for a given descriptorquality, retrieval
precisionimproveswith relevancefeedback.

4. Conclusion

The paper has presentedapproachesfor object-based
multi-attributeimagesearchusing3D queriesandqueryre-
finement.Imagedescriptionis built on an iconic represen-
tationof thescene.A 3D querycanberefinedby specifying
imagesrepresentingrelevant2D views. It hasbeenshown
thatretrieval effectivenessincreaseswith thequalityof data
containedin the imagedescriptor. It hasalsobeenshown
thattheproposedrelevancefeedbackapproachenhancesre-
trieval precision.

A possiblefuture directionof researchwould be to op-
timise the searchfor the relevant3D viewpoint to matcha
2D databaseimage.Thiswouldreducethetimerequiredfor
queryprocessinganddescriptorextraction. Anotherdirec-
tion for further researchis towarda betterobjectdetection
technique. A techniquecapableof interpretingocclusion
wouldenabletheadditionof depthrelationshipto theimage
descriptor. Finally, theway relative spatiallocationis rep-
resentedrequiresoptimizing. The currentobject-centered
coordinatessystemwill resultin many redundantrelations
whenprocessingclutteredimages.Solutionsfrom thefield
of spatialdatabasesare understudy [12]. Also, the con-
currentprocessingof descriptorattributes is under inves-
tigation. The aim is to minimise the effect of poor shape
identificationqualityon querymatching.
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