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Abstract
Three of the most basic tasks in computer vision and

graphics are capturing, representing, and rendering objects
or scenes in as photorealistic a manner as possible. In this
paper, we describe our image-based approach to represent-
ing and photorealistically rendering objects using what we
call Inverse Concentric Mosaics(ICM). While ICM is fun-
damentally based on the Concentric Mosaics (CM) [12],
ICM permits visualization to be from the outside looking
in, which CMs do not allow. Using the ICM, objects can
be visualized with continuously and interactively changing
viewpoints. Photometric effects can be captured with ICM,
thus enhancing photorealism. Finally, the ICM can be very
easily acquired and processed. We show examples for syn-
thetic and real objects.

1 Introduction
Much work in computer vision and graphics has gone

into object and scene representation and rendering. Com-
puter vision is far more concerned about image data acquisi-
tion, analysis, and representation, while computer graphics
is similarly concerned about speed and realism of render-
ing. The convergence of these two fields is inevitable [6],
especially when there is a need for photorealistic rendering
of real scenes that conventional graphics cannot deliver.

Over the past few years, image-based rendering (IBR)
techniques have been demonstrated to be viable alternatives
to the conventional 3D model-based rendering. IBR, which
essentially uses images as substrates for rendering, has the
advantages of higher potential for photorealism and render-
ing speeds being independent of scene complexity. A sur-
vey on different types of image-based rendering techniques
can be found in [5].

1.1 Viewing objects using IBR

There has been a lot of work done on IBR, and we men-
tion only the more relevant approaches here. The reader can
refer to [5] for descriptions of other IBR techniques. Two
of the more well-known IBR techniques for object visual-
ization are Light Field Rendering [7] and the Lumigraph

[3]. Both are 4-parameter subsets of the plenoptic function
[1] used to represent ray space, and both adopt a 2-parallel
plane configuration. Unfortunately, they require a substan-
tial number of images to be effective. Other IBR techniques
attempt to reduce this requirement by adding more geome-
try to the representation. Examples include:

� Image-based objects [8], in which six Layered Depth
Images (LDIs) [11] are used.

� Multiple Center-Of-Projection [10], where central
strips with known depth distributions and camera mo-
tions are collected over different continuous views as a
single pixel plus depth image.

� Point sample rendering [4], where objects are repre-
sented as dense point samples. Each pixel has color,
normal, and depth information.

� View-based rendering [9], where views are synthe-
sized by combining nearest captured views of texture-
mapped 3D models. Each view-dependent 3D model
is captured using an accurate range sensor.

All these representations require accurate geometry for op-
timal quality of view reconstruction. This is less convenient
for producing inexpensive off-the-shelf solutions.

1.2 Concentric Mosaics

Concentric Mosaics (CM) [12] has been introduced to
visualize a wide set of scenes at a reasonable input size
cost and without sacrificing output quality. This is ac-
complished by further reducing the dimensionality of the
plenoptic function to three (namely, horizontal radial dis-
tance from a center, rotation angle, and vertical elevation).
The acquisition process is simple: images are collected
while rotating an outward-looking, forward-displaced cam-
era about a circular path.

Novel views are constructed by rebinning the appropriate
captured rays at interactive speeds. The CM is originally
intended to visualize wide scenes from the inside looking
out. In this paper, we describe a new variant, which we
call Inverse Concentric Mosaics (ICM). ICM retains all the
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advantages of CM while permitting visualization of objects
from the outside looking in.

The differences between CMs and ICMs are as follow:

� Capture. For CMs, rays are recorded from the inside
looking-out. For ICMs, the camera is fixed while the
object of interest is rotated.

� Depth correction. CMs use a global depth assumption
and ICMs use either global or local geometries.

� Scene. Most importantly, CMs represent scenes from
inside looking out, while ICMs are more appropriate
for visualizing objects from all around.

� Visibility. For CMs, the region for panoramic visibility
(necessary for visualizing wide scenes) is confined to a
disk. For ICMs, where the background is typically not
of importance, the region where the virtual camera can
be placed to see the object is unlimited. Areas not pre-
captured can be artificially filled with the background
color used.

1.3 Outline of paper
The remainder of this paper is organized as follows: Sec-

tion 2 discusses in detail the object-based ICM while Sec-
tion 3 describes the mechanisms of depth correction and
rendering. We show rendering results in Section 4, provide
discussions in Section 5, and conclude in Section 6.

2 Object-based ICM
Concentric Mosaics (CM) is a more specific form of

manifold mosaics. A manifold mosaic is constructed from
vertical slit images taken by a camera at different view-
points along any continuous path. A concentric mosaic is
a special case where this path is circular. All paths of the
concentric mosaics have the same center, i.e., all cameras
rotating on concentric circles. As a result, the CM is basi-
cally an approximated 3D plenoptic function parameterized
by the rotation angle, radial distance to rotation axis, and
vertical elevation. Our ICM uses the same parameteriza-
tion.

2.1 Creating the Inverse Concentric Mosaics
Generating an ICM for a synthetic object is easy, since

we can control the camera motion through software. We
used���������	
�� to prerender an object. The cam-
era is moved along a circular path while oriented towards
the object at the center and rendering at predefined intervals.
Once all the images are generated, all vertical stripes from
each image are rebinned to generate the ICM. For example,
if we have 1000 images, each with a resolution of�������,
then 320 concentric mosaics with dimension�������� are
created.

There are a number of ways to capture ICMs of real ob-
jects. We use a single fixed camera pointing towards an
object that is placed on a turntable (Figure 2). Since there

Figure 2. Capturing process for real objects

is an expectation that the entire scene changes with camera
viewpoint, we arranged the background to be of uniform
color to avoid artifacts during rendering.

The relative object-camera position is known with the as-
sumption of constant rotation speed and frame rate. Again,
as with the synthetic object, the ICM can be constructed us-
ing the images acquired. Two rebinned concentric mosaics
of a real object are shown in Figure 1. Each mosaic is re-
binned from 1319 images with resolution of���� ���.

2.2 Generating novel views

A concentric mosaic is composed of rays that are tangent
to a cylinder with a common axis. Constructing a novel
view is equivalent to computing the rays associated with
each constituent pixel. Each ray is retrieved based on its
proximity to the concentric mosaics. If the ray does not fall
exactly on a concentric mosaic, we can linearly interpolate
the closest stored rays on neighboring mosaics by applying
some depth compensation technique described later.
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Figure 3. Synthesizing ray �� associated
with novel view � . �� is interpolated from
rays � and ���, which lie on closest concen-
tric mosaics �� and ����, respectively.

Figure 3 shows how a ray�� can be extracted from con-
centric mosaics indicated by��� � � � � ����� ��� The radius
of concentric mosaic�� is  � ����	�������
, where
� is the radius of the capture camera path and����� is
the horizontal angle subtended by the��� slit camera.
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Figure 1. Two rebinned concentric mosaics of a bowl of fruits (see also Figure 7)

3 Depth correction
There is a problem associated with the CM: only a small

subset of the rays off the horizontal plane is stored, since
only slit images are captured. As a result, off-plane rays
have to be approximated from these slit images, leading to
the vertical distortions in the final rendered images.

Depth correction is typically applied to reduce the sever-
ity of this problem. One simple way is to assume infinite
constant depth.

3.1 Infinite depth correction

Infinite constant depth correction is equivalent to using
parallel rays to compute the desired ray in the concentric
mosaic. The infinite depth assumption is the worst limiting
case used in conjunction with linear interpolation.

Although linear interpolation with infinite depth can pro-
duce good image quality, it can result in blurred images. A
better way is to assume constant depth.

3.2 Constant depth correction

The analysis of plenoptic sampling [2] has shown that
if the sampling rate is higher above a certain bound, we can
produce antialiased images without the use of correct geom-
etry. The sampling rate for our experiments is chosen so that
it is higher than this bound. We use two depth assumptions
to interpolate a desired ray. They are constant cylindrical
and planar depth assumptions. Because these two assump-
tions are more accurate than infinite constant depth assump-
tion, we get better results using these two assumptions. The
two constant depth assumptions are shown in Figure 4.

The constant cylindrical depth is a global approximation
of the geometry. The depth persists even if the viewpoint
changes. On the other hand, the planar depth assumption
is essential a provision of view-dependent local geometry.
The approximated geometry changes with the position of
the novel view. Our rendering experiments show that both
global geometry and local geometry assumption are im-
provements over using infinite depth. This is how our ren-
dering algorithm works:
1. For a given novel view, repeat steps 2-4 for each vertical

object
Cylinder constant depth

Novel view

object

Planar constant
depth

(a) (b)

Figure 4. Depth assumption. (a) Constant
cylindrical depth, (b) View-dependent con-
stant planar depth.

strip.
2. Find two nearest concentric mosaics and its tangent
points with respect to the virtual camera center.
3. For each tangent point, use constant depth assumption to
find corresponding rays in concentric mosaic.
4. Linearly interpolate the two rays.
Depth correction can be even more generalized to using ar-
bitrary shapes, but this would require additional geometry
information of the object viewed.

4 Rendering results

We conducted experiments using synthetic and real
objects. All synthetic objects are rendered using
���������	
�� , while images of the real objects were
captured using a Sony DV camera. The images are com-
pressed using vector quantization (VQ). We chose VQ be-
cause it facilitates selective decoding and random access,
as demonstrated in Light Field compression [7]. Using VQ
with a codebook size of 16384, block size of�� �� �� �,
and image code length of 16 bits, a video of 1000 frames
(with resolution of�������) was compressed from 306MB
down to 22MB.

In addition to file compression, we also used a carefully
designed decode buffer system based on the line scheme
of CM [12]. For all our rendering experiments, we used a
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500MHz Pentium III PC. With the optimizations, we ob-
tained a rendering rate of about 45 fps with linear interpo-
lation for an output resolution of���� ���. For an output
resolution of�������, the rendering rate dropped down to
about 16 fps.

The first set of results is that of a synthetic object. The
number of images used is 1200, each with resolution of
��� � ���. The compressed data size is 22MB. Sample
views rendered using our ICM representation are shown in
Figure 5. We rendered this object using the constant cylin-
drical depth assumption. Parallax changes can be clearly
seen. The novel views also reflect the lighting changes in
the scene (Figure 5(d,e)).
The second set of results is that of a synthetic bonfire (Fig-
ure 6). This is an example of adynamic object with semi-
repetitive motion. Such objects can be efficiently rendered,
and with high quality, using our method. Here, 1400 im-
ages were used, each with a resolution of��� � ���. The
compressed data size is 24MB.

The third set of results is that of a real object (fruits in a
glass bowl) as shown in Figure 7. We used a Sony DV cam-
era to capture the object. A total of 2638 images were cap-
tured, each with a resolution of�������. The compressed
data size is about 36MB. The cylindrical depth correction
technique was used in this case.

5 Discussion

Compared with most other IBR techniques for render-
ing objects, ICM has the merits of easy capture, fast render-
ing (even without using graphics accelerators), and tolerable
data size. Rendering techniques that use very few input im-
ages generally require accurate geometry information. As a
result, they tend to rely on additional vision sensors or al-
gorithms to extract such information. ICM does not require
geometry information, at the expense of a higher input im-
age count.

More image-intensive representations such as Light
Field [7] and Lumigraph [3] can be used to render objects.
However, their database size is considerably higher because
they are 4D approximations of the plenoptic function. Like
the CM, the ICM is comparatively more practical. Both use
less data by limiting the viewpoints to within a planar re-
gion. The viewpoint restriction is, however, a small price to
pay.

Still, the size of an ICM can be large, even after com-
pression. In addition, the vertical distortion can be apparent.
By using more accurate depth information and compression
methods with selective decoding capability, or by rendering
and compressing within the same transform domain, it may
be possible to achieve higher quality view reconstructions
and higher compression ratios at the same time. This is a
subject for future work.

Another important topic for future work is the ability to

stream and randomly access ICMs. Enabling such capa-
bilities will have a significant impact on the practical use
of ICMs (and CMs) in web-based applications such as e-
commerce, virtual tourism, and games.

6 Conclusion
We have proposed a new representation for rendering ob-

jects, which we call Inverse Concentric Mosaics (ICM). It
inherits all the advantages associated with the Concentric
Mosaics (CM), such as easy acquisition, real-time render-
ing without the need for graphics accelerators, inclusion of
photometric effects, and no requirement for exact geometry.
Unlike the CM, ICMs permit objects to be viewed from all
around. One of the biggest advantages associated with the
ICM is that feature correspondence, one of the more diffi-
cult problems in computer vision, is not necessary.
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Figure 5. Rendered views of a synthetic object. (a-c) are three translated views. (d) and (e) are 2
rotated views. Note the significant parallax changes. The photometric variations have also been
captured (note the lighting changes between (d) and (e)).
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Figure 6. A bonfire rendered using ICM. Note that as the view is changed, the flame appears to
change in shape. This is because the interpolated rays originate from different frames (hence
different timeframes). This 3D dynamism is difficult to render in real-time in traditional graphics.

Figure 7. Three novel views of the real bowl of fruits. The upper two images are rotated views, while
the bottom image is the result of moving the virtual camera closer. Note the highlight changes.
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