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Abstract

In this paper, we describe a novel technique to extract
a polyhedral description from panoramic range data of a
scene taken by a SceneModeler laser range finder. First,
we introduce a reasonable noise model of the range data
acquired with a laser radar range finder, and we derive
a simple and efficient approximate solution of the optimal
fitting of local planes in the range data under the assumed
noise model. Then, we extract stable planar regions from
the range data by using both the distribution information of
local surface normals and their spatial information in the
range image. Finally, we describe a method which builds a
polyhedral description of the scene using the extracted stable
planar regions of the panoramic range data with 360Æ field
of view in a polar coordinate system. Experimental results
on complex real range data show the effectiveness of the
proposed method.

1 Introduction

In recent years, in connection with the appearance of fast
and safe laser range finders with high ability of wide range
sensing, such as Cyrax and SceneModeler, range data has
become a convenient mean for acquiring 3-dimensional in-
formation from a scene. Scene modeling and understanding
using range data became attractive because 3D information
about the scene, which is very difficult to be recovered ac-
curately and stably from 2D image or 2D stereo images,
is directly available from the range data. In this research,
we consider the problem of extracting a polyhedral descrip-
tion of a scene from panoramic range data taken with the
SceneModeler laser range finder. This problem is important
because the polyhedral description is not only useful and
efficient for modeling from huge amount of range data (for
example, there are 8000 � 1400 points in the range data
of one scene taken by SceneModeler), but also plays a ba-
sic role in a hierarchical scheme of model description. In
such a modeling scheme, the polyhedral description can be

used as a base for generating a mesh model for more accu-
rate representation of details of the range data, as well as
for constructing a high-level description by deriving higher
order surfaces from the first-order planar surfaces.

Many techniques for range data modeling have been pro-
posed in the past, but here we only review some methods
which are related to the construction of polyhedral mod-
els from range data[1-10]. Faugeras et al.[1,2] proposed
a method which segments the range data into planar and
quadric patches by region growing, using local surface nor-
mals and quadric features. Taylor[7] segmented range im-
ages into planar regions by a spit and merge approach using
the local surface normals. There are also other methods
which used a similar approach of using the local surface
normals with a region growing or clustering techniques[3,4].
On the other hand, Jiang et al.[5] and Haindl et al.[6] chose a
special approach in which each scan line of the range data is
segmented into straight line segments and then the straight
line segments are merged into planar regions. Bock et al.[8]
also proposed a method to extract planar regions with the
Hough transform using the edges in range data.

While most of the proposed methods consist in the seg-
mentation of range images, Hoover et al.[9] tried to build a
polyhedral model of the scene using the planar regions seg-
mented from range images. They used the topological rela-
tions of planar surfaces to describe the visible space of the
scene and introduced virtual planes to represent the invisible
space, that is, the occluded space of the scene. Fitzgibbon
et al.[10] built CAD models from range data using the pla-
nar and quadric regions obtained from the segmentation of
range data.

In this paper we propose a novel technique to extract a
polyhedral description from panoramic range data obtained
with a laser range finder. First, we derive an efficient and
effective method to approximately estimate the optimal local
plane fitting under the noise model. Second, we use both
the distribution and spatial information of the local normals
to extract the stable planar regions from range data and
use them to build a polyhedral description of the scene.
Third, we deal with panoramic range data with 360Æ field of



view, and consider how to derive a polyhedral description of
the panoramic scene in the polar coordinate system, using
the stable planar regions extracted in the previous steps.
Experimental results on complex real range data show the
effectiveness of the proposed method.

2 Local Plane Fitting

2.1 Noise model

The range data, which is acquired by a SceneModeler
laser radar range finder, is given by a set of 3-dimensional
points f(Xij ; Yij ; Zij)

>g. Here, ij is the lattice point in a
range image, and > stands for transposition of a vector. In
the panoramic range image, i and j stand for the indices
of pitch and yaw angles, respectively. The spatial sampling
error and the error in distance measurement are included in
the range data, and this can be modeled as noise. Compared
to the latter, the former is usually much smaller. Moreover,
it can be further reduced by calibration. Therefore, we can
omit the error in spatial sampling and consider only the error
in distance measurement. Fig. 1 shows this noise model.

^

Figure 1. Noise model of range data

Let nij = (xij ; yij ; zij)
>; jjnij jj = 1 be the radial di-

rection of a 3-dimensional point P ij = (Xij ; Yij ; Zij) and
lij be the distance from a sensor to P ij . Let ^

P ij be the
real position of P ij , and l̂ij be the distance from ^

P ij to
the sensor (that is, the real distance of P ij). Assume that
the error between lij and l̂ij obeys a Gaussian distribution
N(0; �). As we can assume that a spatial sampling error
is close to 0, nij can be regarded as the real radial direc-
tion of point P ij . Therefore, the relation of the observed
point Pij = (Xij ; Yij ; Zij)

> and its real position P̂ ij can
be written as the following equation.

P ij = nij(l̂ij + �ij) = ^

P ij + nij�ij (1)

where �ij obeys the Gaussian distribution N(0; �).

When the real position ^

P ij of the observed point P ij is
on a plane, the following formula is obtained.

AP ij + d = Anij�ij (2)

where A = (a; b; c).

Given some sample points of a plane, an optimal fitting of
the plane can be acquired by solving the following weighted
least-squares problem.
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Subjected to: jjvjj = 1

where v = (A; d)> is the parameter of a plane to be esti-
mated, and N is the number of sample points.

Since the weights contain the parameters to be estimated,
it is difficult to obtain the analytical solution of the above
minimization problem directly. An iterative method called
the re-normalization method[11] was proposed to compute
the optimal estimation. However, since it adopts an iterative
strategy, it is time consuming. In this section, we give
an approximate solution for the minimization problem in
Equation (3).

2.2 Least-squares approximation

Using Eq. (2) and the relation P ij = nij lij , we obtain
the following formula.

AP ij + d =
AP ij

lij
�ij =

Anij�ij � d

lij
�ij

= Anij

�2ij

lij
� d

lij
�ij (5)

Let �l be the average value of lij in a local region, and
�ij =

lij
�l

. If we multiply both sides of Eq. (5) by �ij=d,
we obtain the following equation.
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(6)

The right-hand side of the above equation consists of
two items of the first and second order of the noise ratio.
Generally, since the ratio of the noise is far smaller than 1,
the second order item can be omitted. Therefore, the optimal
plane fitting problem can be approximated by a weighted
least-squares problem, and the direction of the normal of
the plane is given by the following formula.

d = [
X
i;j

�2ijP ijP
>

ij ]
�1
X
i;j

�2ijP ij (7)

where [M ]�1 stands for the inversion of matrix M .
The comparison of experimented results[12] on synthetic

noise range data and real range data with ground truth shows
that the proposed method has similar performance as the
renormalization method, which was seen as the optimal
method under the noise model hypothesis.
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3 Stable Planar Region Extraction

The local surface normal at each pixel is estimated by
the above method, using a 7 � 7 window centered at the
concerned pixel. Note that jmax + 1 ! 0 in the polar
coordinate system. The local surface normals of a plane in
the range data have similar values which form a distribution
in the space of the local surface normals. On the other hand,
the plane appears as a region of pixels connected together
in the range image. Therefore, in this research, we use both
the distribution of local surface normals in the normal space
and the spatial information of the corresponding pixels to
extract planar regions from the range data.

3.1 Histogram of local surface normals

The local surface normals n = (nx; ny; nz) can be ob-
tained by normalizing (a; b; c), which were estimated in the
above section, with the sign undetermined. If we constrain
the direction of the local surface normals to point to the out-
side from the sensor, the signs of the local surface normals
can be determined uniquely. The obtained local surface
normals are distributed on a sphere, and we represented the
spherical space by two ring-like regions on the sphere as
shown in Figure 2.

�y(n)

�xz(n)

�yz(n)

�x(n)

Figure 2. Histogram space of the local normals

Here �xz(n) is the yaw angle of the vector in xz plane
which is projected from local surface normal n. �y(n) is
the pitch angle in the y direction of n. �xz(n) and �y(n)
are computed as follows.

�xz(n) =

8<
:

arccos( nxp
n2x+n

2
z

) if nz � 0

arccos( nxp
n2x+n

2
z

) + � otherwise
(8)

�y(n) = arcsin(ny) (9)

Similarly, �yz(n) and �x(n) are computed as follows.

�yz(n) =

8<
:

arccos(
nyp
n2y+n

2
z

) if nz � 0

arccos(
nyp
n2y+n

2
z

) + � otherwise
(10)

�x(n) = arcsin(nx) (11)

In the overlap region in the two rectangular coordinate
systems, there will exist two equivalent distributions which
correspond to the same distribution in the original spherical
space. In this case, we use any of them for region extrac-
tion, and the equivalent distribution in the other rectangular
coordinate system will be extracted simultaneously.

Because the latticed squares in the rectangular histogram
spaces are projected from trapezoid-like patches with dif-
ferent areas in the original spherical space, we scaled the
histogram along the � axis in the rectangular coordinate
systems to preserve the homogeneity of the voting density
of the histogram, by the following formula:

h0(��; ��) =
1

sin(��)
h(��; ��) (12)

where h(�; �) stands for the histogram, and (��; ��) should
be substituted by (�xz ; �y) or (�yz; �x) in the actual com-
putation.

3.2 Estimation of distribution of local normals

First, the highest peak Peakmax is detected from the two
histogram spaces of Fig. 2, and a plane is assumed to ex-
ist in the range data, whose local surface normals formed
the detected peak. Then, the range data points fPimjmg
whose local surface normals are equal to Peakmax are de-
tected from the range image. When Pimjm belongs to a
plane, its neighborhood N(Pimjm), including Pimjm , is
much likely to belong to the same plane. Therefore, we
can use N(Pimjm) as sample points to estimate mean vec-
tor M and the covariance C of the distribution of the local
surface normals of the plane.

Using the estimated distribution of the local surface nor-
mals of the plane with respect to Peakmax, we can extract
its corresponding region(s) in the range image. First, we
extract the points whose local surface normals are located
within � interval of the distribution. That is, the extracted
points fPrg satisfy the following condition:

dr = (n(Pr)�M)>C�1(n(Pr)�M) < 1:0 (13)

where n(Pr) is the local surface normal at Pr.
The extracted points include nearly 2=3 of the popula-

tion of the distribution, and provide a dense sampling of the
plane. Based on these points, we perform a dilation oper-
ation with a constraint that the local surface normal of the
extended pixel Pe must be within 4� range from the cen-
ter of the estimated distribution, that is, de < 4:0, which
corresponds to the interval containing 99:9% of the popula-
tion of the distribution. After the constrained dilation, the
significant regions whose area is bigger than a threshold T
are extracted. In our experiments, we adopted a hierarchical
plane extraction strategy which set T to different values at
each stage.
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3.3 Hierarchical strategy for plane extraction

When there are both planar and curved surfaces in the
range data, as a curved surface has variable local surface
normals, a part of its local surface normals may be consistent
with that of a given plane. In this case, a part of the curved
surface will be extracted along with the plane. Therefore, the
approximation of curved surfaces by planar patches will be
influenced by the planes which exist in the range data. The
similar thing may also occur on planes which have similar
normals.

To reduce the undesired extraction of small regions de-
scribed above, we adopted a hierarchical strategy for plane
extraction. It consists of three levels. At the top level, only
the planar regions with area greater than 1600 pixels are ex-
tracted and the smaller regions are left to the next stage. The
resolution of the histogram space of local surface normals
is set to 1Æ. In the middle and bottom levels, planar regions
greater than 800 and 400 pixels, respectively, are extracted.
The resolution of the histogram space is set to 2Æ to deal
with a larger variance of the local surface normals of the
patches of some curved surfaces.

3.4 Region merging

Although our method can extract regions properly under
a quite hard condition of overlapping of the distribution,
there may be some planes which are divided to some parts.
In this research, we use the Wilcoxon test to check if two
neighboring regions can be merged together.

Let R1 = fP (1)
i g and R2 = fP (2)

j g be two neighbor-

ing regions. Let fEs(1)i g and fEs(2)j g be the fitting errors
of regions R1 and R2, respectively, using their own plane
equations, and fEo(1)i g and fEo(2)j g be that of R1 and R2,
using the plane equation of the other region. Then we apply
Wilcoxon test to test whether fEs(1)i g and fEo(2)j g come

from the same distribution. The same is done for fEs(2)i g
and fEo(1)j g. If one of the tests succeeds, then we regard
(R1; R2) as a candidate pair of regions which can be possi-
bly merged. The details of the Wilcoxon test are omitted as
they can be found easily in some statistics textbooks.

Suppose that fEs(1)i g and fEo(2)j g passed Wilcoxon test,

we compute the variance �1 of Es(1)i and the mean m2 of

Eo
(2)

j . If m2 � �1, we merge R1 and R2.

4 Polyhedral Description

The planar regions extracted from the range data are sur-
rounded by edges of three kinds: boundary edges indicate
the boundary of the data, jump edges indicate a signifi-
cant variation of depth in neighboring pixels, and crease (or
roof) edges are formed by two neighboring planar regions.
While the crease edge lines can be computed directly from

the plane equations of two neighboring planar regions, the
edges of the other two kinds, which are called discontinuity
edges in the rest of this paper, must be transformed into
line segments in order to represent each planar region with
a polygon. In a rectangular image coordinate system, the
Hough transform can be applied for line extraction, but in
the panoramic range data of a 360Æ field of view, the range
data is represented in a polar coordinate system, in which a
3D straight line is projected as a curve. In this section, we
first create an ordinary rectangular image coordinate system
for each region and establish a one-to-one mapping relation
between the two coordinate systems. Then we propose a
modified Hough transform which uses the rectangular im-
age coordinate system for voting and peak detection, and
the polar coordinate system for line segment extraction. Fi-
nally, a polyhedral description of the scene is built by using
the extracted line segments of discontinuity edges and the
crease edges.

4.1 Correspondence between polar and rectangu-
lar coordinate systems

Let the world coordinate system be denoted as
(Xw; Yw; Zw). The local coordinate system for a planar
region R is set to an orthogonal coordinate system whose
Z-axis is equal to the normal of R, and it is denoted as
(Xr; Yr; Zr). The two coordinate systems have the follow-
ing relation:

(Xr; Yr; Zr)
> = Rr(Xw; Yw; Zw)

> (14)

where Rr is a 3 � 3 rotation matrix which transforms the
normal of R to the Z-axis in the world coordinate system.

The problem here is to establish a one-to-one correspon-
dence between the lattice points (ip; jp) of the rectangu-
lar image plane in (Xr; Yr; Zr) coordinate system and the
spherical lattice points (is; js) of the polar coordinate sys-
tem in (Xw; Yw; Zw). If we map (ip; jp) and (is; js) to the
image plane of Z = 1 in (Xr; Yr; Zr) and the image sphere
with radius of 1 in (Xw; Yw; Zw), respectively, as shown in
Eqs. (15) and (16), then their correspondence relation can
be obtained easily using Equation (14):0

@ xp
yp
zp

1
A =

0
@ (jp � j0)=sx

(ip � i0)=sy
1

1
A (15)

where (i0; j0) is the image center, and sx and sy are the
horizontal and vertical scaling factors, respectively, which
map the coordinates in the standard image plane to the lattice
points in an image.0
@ xs

ys
zs

1
A =

0
@ cos(js=sa)cos(is=sa + �min)

sin(is=sa + �min)

sin(js=sa)cos(is=sa + �min)

1
A (16)

where sa is the angle resolution and �min is the minimum
of the pitch angle in range data.
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Using Eqs. (16) to (18), we can map (is; js) to (ip; jp)
as follow.�

jp
ip

�
=

 
sx

r11xs+r12ys+r13zs
r31xs+r32ys+r33zs

+ j0

sy
r21xs+r22ys+r23zs
r31xs+r32ys+r33zs

+ i0

!
(17)

where rij is the ijth element in the rotation matrix Rr, and
xs; ys and zs are represented as functions of is and js, which
are defined in Eq (18).

A straight line ajp+bip+c = 0 in the rectangular image
(ip; jp)will be mapped to a curve in the sphere image (is; js)
of the polar coordinate system as follows.

asx(r11xs + r12ys + r13zs) + bsy(r21xs + r22ys + r23zs)

+(c+ aj0 + bi0)(r31xs + r32ys + r33zs) = 0 (18)

where xs; ys and zs should be substituted by functions de-
fined on is and js in Eq (16).

4.2 Hough transform of discontinuity edges

We use Eqs. (17) and (18) to develop a modified Hough
transform algorithm which extracts curve segments corre-
sponding to straight lines in the orthogonal coordinate sys-
tem from the spherical image in the polar coordinate system.

Let us consider the discontinuity edges of region R. The
discontinuity edge pixels f(is; js)g in the spherical image
in the polar coordinate system are transformed to f(ip; jp)g
in the rectangular image, using Eq. (17). Then, we use
f(ip; jp)g to vote in the Hough space (�h; �h), and de-
tect the highest peak (�peak ; �peak) in the Hough space.
The peak (�peak ; �peak) corresponds to a straight line of
cos(�peak)jp + sin(�peak)ip � �peak = 0.

Using Eq. (18), we can obtain the curve C(is; js) in the
spherical image in the polar coordinate system. We extract
the longest curve segment S1 from f(is; js)g, which lays
within a range of width W of C(is; js). In the experiments,
W is set to 3 pixels.

The curve extraction processing is repeated on the re-
maining edge pixels until no curve longer than L pixels can
be extracted. Here L is a threshold and is set to 3 pixels in
our experiments.

While the curves are extracted from the spherical image
in the polar coordinate system, their connective relations are
also saved for the computation of their crossing points.

4.3 Crease edges

An iterative expanding operation, bounded by jump and
boundary edges, is carried out on the extracted regions
fRi; i = 1; �; rg so that the neighboring regions touch each
other, and the adjacent relationship f(Ri; Rj)g between re-
gions is found.

Let the plane equations of Ri and Rj be aiX + biY +
ciZ+di = 0 and ajX+bjY +cjZ+dj = 0. The equation
of the crease edge of the two neighboring regions (Ri; Rj)

in the image sphere of the polar coordinate system can be
computed directly.

By eliminating the constant items of di and dj of the
two plane equations of Ri and Rj , we obtain the following
equation.

(aidj�ajdi)X+(bidj�bjdi)Y+(cidj�cjdi)Z = 0 (19)

Dividing two sides of Eq. (19) by
p
X2 + Y 2 + Z2, we

get the curve equation of the crease edge in the sphere image
of the polar coordinate system as follow.

(aidj � ajdi)xs + (bidj � bjdi)ys + (cidj � cjdi)zs = 0
(20)

where xs; ys and zs are represented as functions defined on
sphere image coordinates (is; js) in Eq (16).

For any pair of neighboring regions, if the crease edge
computed above does not pass through near the adjacent area
of the two regions, the crease edge is judged as a false crease
edge and the adjacent boundary is regarded as a discontinuity
edge, which is passed to the Hough transform algorithm
described above.

4.4 Building polyhedral description

A polyhedral description of the scene can be easily built
by using the extracted line segments of discontinuity edges
and the crease edges. As the connective relations can be
detected from the edge pixels in the sphere image in the polar
coordinate system, the cross points of the edges, i.e., the
vertices of the polygons of planar surfaces, can be computed
easily. Using the plane equation of each planar region, the
3D coordinates of the vertices can be obtained.

The extracted polygon planar regions and their neighbor-
ing relations are described by an attributed graph denoted
as:

G = fR; F; E ; Hg
where R = fRig is the set of nodes which corre-
sponds to polygon regions in the range image, F =
f(f1(Ri); ::::; fm(Ri))g denotes the set of feature vectors
which characterizes the regions. In our work, F de-
notes the coefficients of the plane equations of the regions.
E = fEig is the set of edges of the polygon regions, and
H = f(h1(Ej); :::::; hn(Ej)g denotes the set of feature vec-
tors which characterizes the edges, including crease edges or
discontinuity edges, edge directions and the two endpoints
of the edges.

5 Experimental results

We applied the proposed method to the range data of
some scenes taken by SceneModeler. In this section, we
present the experimental results for one of these scenes.

Figure 3 shows the panoramic range data acquired in our
laboratory with the SceneModeler. The range data is shown
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Figure 3. Panoramic range data acquired with SceneModeler.

Figure 4. Local surface normals.

C
A1 B A2

Figure 5. Histogram of local surface normals (left: histogram space of (�xz; �y); right: that of (�yz; �x)).

A

B
B

C
C

Figure 6. Regions corresponding to the three highest peaks.

Figure 7. Regions extracted (top: at the first level; bottom: the final results).
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by the grey levels of the distance of the scene from the
sensor. Figure 4 shows the local surface normals computed
by the method described in Section 2. The local surface
normals are shown in pseudo color. Figure 7 shows the
histograms, which were described in Section 3. We can see
that there are two equivalent distributions A1 and A2 of the
local surface normals in the two spaces, due to the overlap
between them. Figure 6 shows the planar regions of red,
green and blue colors which correspond to the first, second
and third highest peaks, respectively.

The top image in Figure 7 shows the planar regions which
are extracted at the first level, where the labels of the regions
are shown in pseudo-color. The bottom image in Figure 7
shows the final results of planar region extraction, which
is an integration of the regions extracted at different levels.
Figure 8(a) and (b) shows the 3D views from outside and in-
side, respectively, of the scene displayed by COSMO player
using the VRML model transformed from the polyhedral
description. From the experimental results, we can see that
a good approximation of the polyhedral representation of
range data has been acquired.

b) View from inside.

a) View from outside.

Figure 8. VRML model of polyhedral description.

6 Conclusion and future work

In this paper, we proposed a novel method to extract a
polyhedral description from the panoramic range data of a
scene taken by the SceneModeler laser range finder. First,
we derived a simple and efficient method to approximately
estimate the optimal local plane fitting under a noise model
of laser radar range finder. Then, we extracted stable planar

regions from the range data by using both the distribution
information of local surface normals, which were computed
by the proposed approximation method, and their spatial
information in the range image. Finally, we proposed a
modified Hough transform algorithm, which uses the rect-
angular image coordinate system for voting and peak de-
tection, and the polar coordinate system for line segments
extraction, to transform jump and boundary edges of the pla-
nar regions into line segments. Using those line segments
together with the crease edges of neighboring regions, we
built a polyhedral description of the scene. Experimental
results on complex real range data show the effectiveness of
the proposed method.

We are now planning to integrate the polyhedral descrip-
tions obtained from the range data at multiple viewpoints.
Texture mapping using images of omni-directional cameras
also arises as a future work.

References

[1] O.D. Faugeras M. Herbert and E. Pauchon, “Segmentation
of Range Data into Planar and Quadratic Patches”, Proc. of
CVPR-83, pp. 8-13, 1983.

[2] O.D. Faugeras and M. Hebert, “The Representation, Recog-
nition, and Locating of 3-D Objects”, The International Jour-
nal of Robotics Research, Vol. 5, No. 3, pp.27-52, 1986.

[3] R. L. Hoffman and A. K. Jain, “Segmentation and Classi-
fication of Range Data”, Trans. on PAMI, Vol. 9, No. 5,
pp.608-620, 1987.

[4] A. Hoover, G. J. Baptiste, et al., “An Experimental Compari-
son of Range Image Segmentation Algorithms,” IEEE Trans.
on PAMI, Vol. 18, No. 7, pp.673-689, 1996.

[5] X. Jiang and H. Bunke, “Fast Segmentation of Range Data
into Planar Regions by Scan Line Grouping,” Machine Vision
and Application, Vol. 7, No. 2, pp.115-122, 1994.

[6] M. Haindl and P. Zid, “Fast Segmentation of Planar Surfaces
in Range Images”, Proc. of 14th ICPR, pp.985-987, 1998.

[7] R.W. Taylor M. Savini and A. P. Reeves, “Fast Segmentation
of Range Imagery into Planar Regions”, Computer Vision,
Graphics, and Image Processing, Vol. 45, No.1, pp. 42-60,
1989

[8] M.E. Bock and C. Guerra, “A Geometric Approach to the
Segmentation of Range Images”, Proc. of 3DIM, pp.261-
169, 2000.

[9] A. Hoover, D. Goldgof and K. W. Bowyer, “The space enve-
lope: A representation for 3D scenes,” Computer Vision and
Image Understanding, Vol. 69, No. 3, pp. 310-329, 1998.

[10] A. Fitzgibbon, D. Eggert and R. Fisher, “High level CAD
model acquisition from range images,” Computer Aided De-
sign, Vol. 29, No. 4, pp. 321-330, 1997.

[11] Y. Kanazawa and K. Kanatani, “Reliability of Fitting a Plane
to Range Data,” IEICE Trans. on Inf. Syst., Vol. E78-D,
No.12, pp. 1630-1635, 1995.

[12] C. Wang, H. Tanahashi, H. Hirayu, Y. Niwa and K. Ya-
mamoto, “Comparison of Local Plane Fitting Methods for
Range Data”, Proc. of CVPR-01, to appear.

7


