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Abstract

This paper presents a technique for automatic moving
object segmentation based on dynamic programming. This
technique consists of three phases: motion region
identification, motion edge extraction and contour linkage.
New algorithms for contour linkage are proposed for the
present technique. The algorithms can track the object's
motion edges in the motion regions as well as detect the
existing edges of the still object in the scene. Its
computational efficiency is realized by the use of localized
edge extraction in motion region and the state
independence of dynamic programming. Simulation results
demonstrate that the proposed technique can efficiently
segment video streams with good visual effect as well as
spatial accuracy and temporal coherency in real time.
Keywords: Moving object segmentation, Dynamic
programming, Motion edge, Contour linkage

1. Introduction

Moving object segmentation aims to partition an image
sequence into moving objects and to track the evolution of
the moving objects along the time axis. Many applications
related to video compression and transmission, and
pattern recognition rely on moving object segmentation.
Moving object segmentation techniques are also important
tools for content-based video coding and manipulation,
and interactive multimedia applications. Moving object
segmentation usually divides the contents of a video frame
into semantic regions that can be dealt as objects. These
semantically segmented objects can be coded so that
object-based manipulation of video content can be realized
in interactive multimedia applications. For example, in the
context of the MPEG-4 [6,7] standard, a video is
considered to consist of independently moving objects
and is encoded object by object. In the MPEG-7 [9,10],
segmented results based on the frame-to-frame motion
information or abrupt shape change can be utilized for a
high-level description.

This paper describes a technique for automatic
moving object segmentation based on dynamic
programming. This technique consists of three phases:
motion region identification, motion edge extraction and
contour linkage. The flow diagram of this technique is
shown below.

Fig. 1 Flow diagram of the proposed technique

2. Related works

A number of techniques and algorithms have been
proposed for moving object segmentation in the past, each
of which has its particular features and applications.

Arch and Kaup proposed a moving object
segmentation technique using a statistical approach in
[3,4]. They model the characteristics of pixel difference for
background between two consecutive frames as a
gaussian distribution. A change detection mask (CDM) is
yielded by thresholding the frame difference image. The
CDM is a binary image in which pixel differences exceeding
the threshold value are declared as being intensity-
changed or, otherwise, as being intensity-unchanged.
Since this technique relies on frame intensity difference,
unsatisfactory segmentation results are obtained in slow
object motion or lack of object motion.

Meier and Ngan proposed an automatic segmentation
technique for moving objects using a binary image model
to track a moving object [5]. The binary model is derived
from an edge image and is updated every frame to keep the
changes in location and shape. The detection of a moving
object is made on the basis of binary model matching
between two consecutive frames using Hausdoff distance.
However, in order to obtain reliable segmentation results,
the initial segmentation result should be precise enough to
localize the boundary of a moving object so that the object
boundary is well identified in the subsequent frames. The
advantage of this technique lies in its capable of tracking
an object that stops moving for a certain period of time.



2

However, the segmentation results depend on the success
of the initial segmentation at the first frame.

In the structure of our technique, the frame difference
and the edge image are combined to extract the motion
edge. Then the contour linkage algorithm is used to form a
complete contour. The key feature of the proposed moving
object segmentation technique is the dynamic-
programming-based contour linkage algorithm. The
algorithm allows the proposed technique to track the
object’s motion edges in the motion regions as well as to
detect the existing edges of the still object in the scene.
Another feature of the proposed technique is its
computational efficiency resulting from the use of localized
edge extraction in motion region and the state
independence of dynamic programming. That is to say that
the optimal decision for each of the remaining states
derived from current state does not depend on the
previous states or decisions.

This paper is organized as follows. In section 3, the
video object segmentation technique is described.
Promising simulation results are reported in Section 4.
Conclusion and future work are followed in Section 5.

3. Moving object segmentation based on
dynamic programming

3.1. Motion region identification

In video streams, motion region can be identified by the
difference between consecutive frames, which is calculated
by comparing each pixel in one frame and its
correspondent in the other. Given that the luminance in
video stream is not very variable, the difference of the
consecutive frames indicates the object’s changes of
location and shape. In practice, because of the infection of
random noises, the pixel pair in region without motion also
has a non-zero value. To distinguish the noises and real
motion, a threshold has to be introduced. That is to say, if
the difference is greater than the given threshold, we
consider that the difference is caused by real motion. Let
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T denotes the threshold, 0 denotes the pixel without real
motion, and 1 denotes the pixel with real motion. If these
two frames are consecutive frames, then j = i –1.

After identifying the motion region by frame
difference, we need to remove all the irrelevant points and
blocks. A region-labeling algorithm is exploited to finish

this task [1,2]. After the scan of the binary image denoting
motion region, all connected blocks are labeled, and the
algorithm eliminates the blocks in which the number of
points is smaller than a threshold.

The frame difference of consecutive frames identifies
the motion region efficiently. The motion region along with
its neighbor region always covers up the accurate edge of
moving object (motion edge). So the dilate operation has
to be performed on the motion region after identification.

3.2. Motion edge extraction

After calculating motion region by difference of frames, we
will extract the motion edge of the current frame fn
according to the Laplacian filter.

The Laplacian is a scalar second-derivative operator
for functions of two dimensions. It is defined as:
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Since it is a second derivative, the Laplacian will

produce an abrupt zero-crossing at an edge. Compared
with the wide range of large gradient value resulted from
the first derivatives, the abrupt zero-crossing of the
Laplacian can be used to locate the precise edge. The
Laplacian is a linear, shift-invariant operator, and its
transfer function is zero at the origin of frenquency space.
Thus, a Laplacian-filtered image will have zero mean gray
level.

If a noise-free image has sharp edges, the Laplacian
can find them. The binary image resulted from thresholding
a Laplacian-filtered image at zero gray level will produce
closed, connected contours when interior points are
eliminated. The presence of noise, however, imposes a
requirement for lowpass filtering before the use of the
Laplacian.

A Gaussian lowpass filter is a good choice for this
pre-smoothing. Since convolution is associative, we can
combine the Laplacian and Gaussian impulse responses
into a single Laplacian of Gaussian kernel:
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This impulse response is separable in x and y and thus can
be implemented efficiently. The parameter σ  controls the
amount of smoothing.

Thus, we can get rid of the noises and extract the
accurate motion edge through the abrupt zero-crossing in
the motion region.

3.3. Dynamic-programming-based contour
linkage
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3.3.1. Important theorems of dynamic programming
The deterministic decision-making process consists of five
parts: stage, decision, stage transform rule, cost and goal,
five parts. The basic model for the definition of
deterministic decision-making process (deterministic
dynamic programming) is described below.
Definition: the deterministic decision-making process
(deterministic dynamic programming) is a quintuple {X
U Tk xk uk vk xk uk VkN xk pkN }
({X,U,T,v,V} in brief).
1) X is the stage space. The k-th stage set is Xk, its element

is xk, viz kk Xx ∈
.

2) U is the decision space. The k-th permissible decision
set is Dk(xk), its element is uk(xk), viz

UxDxu kkkk ⊂∈ )()(
.

The permissible decision from x0 is
p0N(x0)={u0(x0),u1(x1),…,uN-1(xN-1)}, and its permissible

decision set is P(x), viz 
)()( 0000 xPxp Nn ∈

.
The permissible decision of k-N sub-process is
pkN(xk)={uk(xk),…,uN-1(xN-1)}, and its permissible decision set

is PkN(xk), viz 
)()( kkNkkN xPxp ∈

.
3) T is the stage transform rule: xk+1=Tk(xk,uk).
4) Vk(xk,uk) is the effect (cost) of decision uk that is applied
on the k-th stage xk, called cost function. It is defined on

the DX ×  space.
5) V0N(x0,p0N(x0)) is the whole effect (whole cost) of the
process when taken decision p from x0, called goal function.
It is a quantitative function defined on the whole process
(including its all sub-process). The goal function can be
expressed in the form below, and it is strictly monotone.
V0N(x0,p0N(x0))=V0N(x0,x1,…,xN)

   =V0N(x0,u0,u1,…,uN-1)
VkN(xk,pkN(xk))=Uk(xk,uk,Vk+1(*xk+1,pk+1(*xk+1)))
Function U should be strictly monotone with respect to
variable Vk+1,N.
The goal function is the sum of the costs in all stages:
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From the above conditions and rules, we can get the

optimum theorem in dynamic programming, which serves
as the theoretical base of dynamic programming.
Theorem 3.3.1.1:

If 
∑

−

=

=
1

0
00 ),())(,(

N

j
jjjoNoN uxvxpxV

, then the permissible

decision 
*
oNp

 is the optimal decision of {X,U,T,v,V} if and

only if: for every k, when 0<k<N and 00 Xx ∈
,

=))(,( 0
*
00 xpxV NoN

))]}(,([))(,({ **

)(
0000

)( *
00

kkNkkN
xp

kk
xp

xpxVoptxpxVopt
kkNk

+ .

Theorem 3.3.1.2 (optimum theorem):
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sub-process must be the optimal decision.
Theorem 3.3.1.3:
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3 3 2 Contour linkage in motion region using dynamic
programming
After extracting accurate edges by Laplacian edge detector,
we have to link the edges to form continuous contour in
motion region. Firstly, the image smoothed by Gaussian
smoothing filter will have some blur boundaries. So there
will be some edges extracted by Laplacian edge detector
have widths greater than one pixel. We use the thinning
algorithm [3] to thin these edges. Secondly, we have to
find out the start point and the end point of the contour
segment contained in the motion region. The width and
height of the motion region’s circum-rectangle are width
and height respectively. If width is great or equal to height,
then the edge points on the left and right limit serve as the
start and end point respectively (if such points are more
than one, choose the upper-left and bottom-right ones).
Otherwise, the edge points on the upper and bottom limit
serve as the start and end point (if such points are more
than one, choose the leftmost and rightmost ones).

The contour of the moving object must be continuous,
so we use the equation below to calculate the cost of path
from one edge point to another. Di,j denotes the distance
between edge point i and edge point j.
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Wi,j denotes the cost of the path from edge point i to

edge point j.
Di,j 1 2 3 4 5 6 7 8 >8
Wi,j 0 2 8 10 200 400 800 1200 2000

Table 1 Cost of continuity
Because of the continuity of the contour, Wi,j is set to 200
when the distance is 5.

At the same time, the contour segment in a motion
region is unique. Thus, the direction of the contour
segment starting from the start point should be toward the
end point. We use the equation below to calculate the cost
of each candidate point’s direction, in which Li denotes
the distance between the current candidate point (xi yi)
and the end point (xl yl).

22 )()( lilii yyxxL −+−=
 )5(

Ci denotes the ratio of Li and the minimum distance
between the scanning line containing xi and the end point,
and Ui denotes the direction cost of point i.
Ci 1 1.1 1.2 1.3 1.4 1.5 >1.5
Ui 0 2 4 6 8 200 1000

Table 2 Cost of direction
Because of the uniqueness of the contour segment’s
direction, Ui is set to 200 when the ratio is 1.5.

From the cost equations above, we can define the cost
of the whole contour segment below.
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Xi is the candidate point in the i-th scanning line.
According to the basic model described in 3.3.1, the

optimal goal function is:
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K denotes stage (viz the k-th scanning line), k=0,1,..., n-1;
xk denotes the stage variable in stage k. If given the state
of a certain stage in the process, the process after that
stage is not influenced by the states of previous stages,
only influenced by the current stage’s state. This feature is
called state independence, and it is an important feature in
dynamic programming. uk(xk) denotes the decision taken at
state xk in stage k; pkN(xk) is the permissible decision in k-N
sub-process, in which pkN(xk)={uk(xk),…,uN-1(xN-1)}; vk(xk,uk)
is the effect (cost) of decision u taken at state x in stage k;

)( kk xf
 is an performance indicator of the whole process,

which is a deterministic quantitative function defined on
the whole process (the goal function).

According to the deduction of theorem 3.3.1.3, we get
)]},([),({min)( 1
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. T(xk,uk)
denotes the stage transform rule from stage k to stage k+1.

At last, the mathematical model of the contour linkage
problem in motion region can be expressed as:
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In the process of seeking the optimal goal function of
this mathematical model, we can get all the contour points
in motion region by going through the stages. Because no
guarantee of the continuity of the motion edge is
confirmed before, there will be some short lines inserted
between the motion edges by the seeking process, and the
resulted contour segment is continuous in the motion
region.

3 3 3 Contour linkage outside motion region using
dynamic programming
Because the moving object is not always a rigid-object,
and the motion is occurred only on part of the object, the
contour extracted from motion region is not always
complete. That is to say, the contour is not continuous
outside the motion region. So we have to take advantage
of the image information to find out the contour segments
between the end points of the contour in the motion region.
These contour segments are between pixel-pairs, that
consist of one end point in a contour segment extracted
from one motion region and the most proximate end point
in the contour segment extracted from another motion
region. Considering the difference in color and brightness
between edge points and other points, we use the
equation below to signify this difference.

3/)]()()[( 111 −−− −+−+−= iiiiiii bbggrrt
 )9(

The subscript i denotes the i-th point in a scanning line.
To make the cost of each stage comparable, we define

the cost by the equations below.
)(max 1max iwidthi tT ≤≤=

 )10(
%)100/(1 max ×−= TtC ii  )11(

width is the length of the scanning line. It is obvious that
the smaller the Ci, the more likely is the point an edge point.

We know that the contour of the moving object must
be continuous, so we use the equation below to calculate
the cost of path from one edge point to another. Di,j
denotes the distance between edge point i and edge point j.
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Wi,j denotes the cost of the path from edge point i to
edge point j.
Di,j 1 2 3 4 5 6 7 8 >8
Wi,j 0 2 8 10 200 400 800 1200 2000

Table 3 Cost of continuity
Because of the continuity of the contour, Wi,j is set to 200
when the distance is 5.

From the cost equations above, we can define the cost
of the whole path:

∑ ∑
= =

−
+=

n

i

n

i
xxx iii

WCV
1 2

, 1

 )13( .
Xi is the candidate point in the i-th scanning line.

According to the deduction of theorem 3.3.1.3, the
optimal goal function is also:
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K denotes stage (viz the k-th scanning line), k=0,1,..., n-1;
xk denotes the stage variable in stage k; uk(xk) denotes the
decision taken at state xk in stage k; vk(xk,uk) is the cost of

decision u taken at state x in stage k; 
)( kk xf

 is the
performance indicator of the whole process; T(xk,uk)
denotes the stage transform rule from stage k to stage k+1.
The final mathematical model of the contour linkage
problem outside motion region is:
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In the process of getting the optimal goal function of
this mathematical model, we obtain all the contour points
outside the motion region by going through the stages.
Thus, we get a complete contour of the moving object.

4. Experiments

Currently, there is no commonly accepted measure to
evaluate the system performance for automatic
segmentation. The spatial accuracy and temporal
smoothness are two important measures of the quality of
segmentation results. The spatial accuracy of an estimated
binary video object mask at frame t is defined as [8]:
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where 
ref
tI

 and 
est
tI

 are the reference and the estimated

binary object masks at frame t, respectively, and ⊕  is the

binary "XOR" operation. The temporal coherency )(tC  is
defined as:
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where tI
 and 1−tI

 are binary object masks at frame t and

t-1, respectively. Temporal coherency )(tC est

 of the

estimated binary mask 
est
tI

 should be compared to

temporal coherency )(tC ref

 of the reference mask 
ref
tI

.
Any significant deviation from the reference indicates a
bad temporal coherency.

The proposed technique is applied to “Hall Monitor”
sequence, and compares the result with those of the
techniques described in [3] and [5]. Fig .2 shows the
spatial accuracy, in which the reference binary object mask
is obtained manually. Fig. 3 shows the temporal coherency,
and fig.4 shows the segmented results.

Fig.2 Spatial accuracy

Fig. 3 Temporal coherency

(a)                        (b)                       (c)
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(d)                        (e)                       (f)
Fig. 4 Original frames and segmented frames

We see from these results that our dynamic-
programming-based segmentation technique gives good
visual effect as well as spatial accuracy and temporal
coherency.

The proposed technique is implemented on a 500MHz
Pentium III PC, and the system also runs on video streams
with a frame size of 320*240 pixels captured by a USB
video camera. The process of capturing, moving object
segmentation and result showing can reach the speed of
15Hz, which meets the requirement of real-time process.

5. Conclusion and future work

Despite the fact that the human visual system can easily
distinguish moving objects, automatic moving object
segmentation is known to be one of the most challenging
issues in the field of video processing. An automatic
segmentation technique of moving object is presented
which incorporates motion edge extraction with contour
linkage based on dynamic programming. The motion edge
extraction allows this technique to utilize the motion
information, thus provide more reliability than do image
segmentation techniques. We separate the contour linkage
problem into two modules. For the contour segment in
motion region a linkage algorithm which emphasizes on the
continuity is proposed. For the contour segment outside
motion region a linkage algorithm which emphasizes on
color, intensity and gradient is used. The proposed
technique exhibits better segmentation performance than
some existing techniques do.

Two problems still exist. One is that when the motion
edge accounts for only a small part of the whole contour,
the technique will reduce to an image segmentation
technique. The other is that when more than one object
appear in the scene, the proposed technique will merge
them. So future work will emphasize on incorporation of
user interaction to circumvent these ill-posed problems in
image understanding and computer vision.
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