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Abstract

In this paper, we presented a semantically structured im-
age database for content-based image retrieval. A class de-
scriptor is proposed to represent each class using a multi-
prototype model, which can be obtained by using a learning
scheme, such as the Unsupervised Optimal Fuzzy Cluster-
ing algorithm, on a group of sample images manually se-
lected from the class. Based on the proposed Image-Class
Matching Distance, a similarity measure at the semantic
level between an image and classes, images can be anno-
tated by tokens of classes. Hence, composite features of
images, including low-level descriptors, class descriptors,
and image annotation, are stored into a structured feature
database corresponding to the semantically structured im-
age database. From experiments, it can be concluded that
the performance of the semantically structured CBIR system
is improved greatly in terms of retrieval time and efficiency.

1. Introduction

Effective image indexing and retrieval techniques are im-
portant and critical to facilitate people searching informa-
tion from large image databases. In recent years, there are
intensive research activities in Content-Based Image Re-
trieval (CBIR) systems[8, 7, 5, 15, 4, 10, 6, 3, 1, 11]. In
these systems, images are represented using a set of low-
level descriptors, i.e. colour, texture, shape, etc. Such
descriptions are also a focus of recent MPEG-7 standard
committee[9]. However, there is the semantic gap between
low-level descriptors of images and the meaningful inter-
pretation of images by users. In order to introduce high-
level information of images into a CBIR system, images are
labeled using captions, text, keywords, etc., manually, such
as what the MIT’s Photobook[8] has done. Such a manual

process is too labor intensive for annotating thousands im-
ages. Therefore, we try to annotate images automatically,
and then organize these images into a semantically mean-
ingful structure. The annotation aims to capture the ma-
jor image content corresponding to human understanding.
The problem of automatic image annotation is therefore the
same as that of image classification. To solve it, there are
two issues needed to be addressed, i.e. the representation
of classes and the association of a new image with a certain
class.

In [11], vacation image classes are described using class-
conditional densities by studying low-level features of train-
ing images under the constraint that images belongs to one
and only one class. Bayesian decision rule is adopted to
classify the test image. In [1], images are described by the
nodes of a weighted graph, and classification is based on
nonmetric distances. Another method group images into
meaningful categories based on low-level features using a
self-organizing map[15].

In this paper, we propose the class descriptors which can
capture high-level concepts, through a learning scheme, of
images in a supervised fashion. First of all, images are
stored in a semantically structured database, which means
images are put into image classes defined manually and se-
mantically based on human understanding. Note that an
image can belong to two classes or more simultaneously.
There can be subclasses if necessary. Because the high-
level concept of an image class is very complex and highly
nonlinear, we assume here that it can be modeled by mul-
tiple prototypes, which can be obtained by using a learn-
ing scheme on a group of sample images selected manually
from a class. Each image in the database is categorized into
a class based on a proposed similarity measure, i.e. Image-
Class Matching Distance (ICMD), between the image and
classes at the semantic level. ICMD can match an im-
age with a class which is represented by a multi-prototype
model. After image categorization, the image can then be



annotated by the token of the class. Hence each image can
now be described by a composite feature set that includes
low-level descriptors, class descriptors, and image annota-
tion. Composite features of images are then stored into a
corresponding structured feature database. By introducing
these new attributes into a CBIR system, the performance of
image retrieval can be improved greatly. Motivated by the
above considerations, a CBIR system with relevant feed-
back in a structured database, named CBIR_S system, is
constructed.

The paper is organized as follows. The definition and
generation of class descriptors are presented in Section 2,
where Unsupervised Optimal Fuzzy Clustering (UOFC) al-
gorithm used for constructing class descriptors is briefly de-
scribed, and a similarity measure between an image and
classes at the semantic level is proposed. The semanti-
cally structured image and feature databases of the CBIR_S
system is presented in Section 3. Section 4 shows exper-
iments done for evaluating image retrieval performance of
the CBIR_S system. Finally, in Section 5, conclusions is
given.

2. Class Descriptors Generation

A learning scheme is proposed to obtain high-level in-
formation of images in a supervised fashion. The bootstrap-
ping of the learning scheme is the selection of some typical
images, i.e. sample images, from each available class by
human observers. Each class descriptor can then be gen-
erated by studying a set of low-level descriptors extracted
from sample images of the class, i.e. sample features. This
process mimics the learning process of humans. As a re-
sult, the system, just like an infant, can obtain the knowl-
edge about an image, say a flower image, by studying some
samples from the flower class. Then the concept of ‘Flower’
can be captured in the CBIR_S system quantitatively and a
class descriptor can be constructed to represent the Flower
class.

Because the description of an image class is a complex
nonlinear problem, we assumed that it can be characterized
by a multi-prototype model (see Figure 1). Therefore, the
class I can be represented as {pc},pch,-- - ,pck, }, where
pcl; is the jth prototype in the class I, and C* is the number
of prototypesin the class . In fact, the number of prototypes
is not necessarily same in every class. Moreover, each pro-
totype is not necessarily spherical and Gaussian. It can be
in any arbitrary shape. In other words, each prototype can
have any kind of distributions. In the case of Gaussian dis-
tributions, the class then can be represented by a Gaussian
Mixture.

In order to find the multiple prototypes in a class, a learn-
ing scheme is proposed. Here Unsupervised Optimal Fuzzy
Clustering (UOFC) algorithm is used. The UOFC algorithm
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Figure 1. The multi-prototype model representing
the class descriptor of the [th class.

performs automatic clustering of sample images of a class
in a kind of feature spaces, and finds the optimal number of
clusters. As a result, a cluster is a prototype of the class.
Consequently, a set of parameters of multiple prototypes,
e.g. centers, dispersion, size, etc., can be used to represent
the class.

2.1. The Unsupervised Optimal Fuzzy Clustering
(UOFC) Algorithm

Let us consider a collection of p; sample images in a
class I, and each image is represented by a low-level de-
scriptor vector f!, (i = 1,2,--- ,p;), forming the input data
set F*. Then the new modified generalized objective func-
tion proposed based on [14] for UOFC algorithm is given
as follows:
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where, ¢ is the number of the clusters, symbol (e) denotes
the inner product, V}, (i = 1,2,---,C") is the center of
the 4th cluster, m € [1,00) is a weighting exponent on
each fuzzy membership, and g € [0, 1] is a weighted value.
U = {1 } s the fuzzy membership matrix, and g, should
satisfy the following two conditions:

(i) 7, par = 1 forall k.
(i) pr > Y _jey par > 0 forall i,

The details of the UOFC algorithm can be found in our pre-
vious work[13].

Note that | - ||, stands for p-norm distance measurement,
where p > 0. Obviously, if p = 2, itis a Euclidean distance.



Then each cluster is spherical, and it can be described by a
single Gaussian distribution. As a result, the class can be
represented by a Gaussian Mixture. If p = 1, it is a Man-
hattan distance, and each cluster is rhomboidal. Moreover,
if p < 1, itis a nonmetric distance[1].

In order to validate the UOFC algorithm, a similarity ma-
trix R = {R;; } is used,

dp; + dp;

Ri; = dvy;

)
where, dp; measures the dispersion of the ith cluster, and
dv;; describe the dissimilarity between the th and jth clus-
ter. As a result, the similarity criteria between two clusters
is as follows,

1. The ¢th and jth cluster are separated, if R;; > 1. Then
the cluster number c is not changed.

2. The 4th and jth cluster can be merged, if B;; < 1.
Thenc=c¢—1.

The advantage for using the similarity criteria is that less
clustering iterations are needed to attain the optimal num-
ber of clusters, hence the computation complexity can be
reduced greatly.

If one image class ! can be clustered into C? prototypes,
and the jth prototype can be represented by the center le,
the size w', and the dispersion dp!;, then the class [ is de-
scribed as

cfl:{wi7‘/1l7dpl17"'7wl017VCl'l7dplCl} (3)

It is possible to sub-divided each class according to needs,
and then subclass descriptors can be obtained in a similar
way.

2.2. Similarity Measurement between Images and
Classes at the Semantic Level

In order to categorize an image into a certain class rep-
resented by multi-prototype, more sophisticated similarity
measurement between images and classes should be used.In
[11], a Baysian framework is used to classify images based
on obtained class-conditional densities. Unlike it, we pro-
posed a Image-Class Matching Distance (ICMD), a modi-
fied Earth Mover’s Distance (EMD)[10], to measure simi-
larity between an image and a class at the semantic level.
There are two main reasons for introducing the ICMD. One
is that much research in psychology suggests that human
similarity judgments are not metric[1], which means it does
not obey the triangle inequality even though it is symmetric.
Since classes are represented by the multi-prototype model,
the similarity measurement between an image and a class is
a matching problem between one point and several points

in a kind of feature spaces. Obviously, the commonly used
point to point distance calculation is not suitable.

Inspired by the Earth Mover’s Distance (EMD),
which has been successfully used for measuring image
similarity[10, 3], Image-Class Matching Distance (ICMD)
is proposed here to calculate the distance between a query
image and a class at the semantic level. Let f, be the fea-
ture of the image ). The class descriptor of the {th class is
cft = {pc}. Then the ICMD is defined as:

Zle flowg;dist(fy, pch)
31 flowg,

where, wé is the weight of the jth prototype in the /th class,
and can be set as the percentage of the prototype’s size né
over the whole class N'. flowg; is the optimal admissi-
ble flow from the query image @ to the class I that min-
imizes the numerator of Eqn. (4) subject to the following
constraints:

flowg; > 0,
Ol

Zflowqj <1, flowg; < wé-
gt (5)

c! c!
Zflowqj = min(l,Zwé).
j=1 7j=1

dist(fq,pcg.) is the ground distance. In this paper, we use
the normalized Euclidean distance[5] as the ground dis-
tance. Obviously, the smaller the ICMD between the image
and the class is, the more similar they are. If there is

ICMD(Q,1) = 4

cs
c= {cuCMch = IlII_i{l{ICMDql}} (6)

Then it can be concluded that the image () can be catego-
rized to the cth class, and @) can be annotated by the token
of the cth class, i.e. {a.}.

3. The Semantically Structured Image and
Feature Databases

In order to describe the characteristics of images, three
kinds of descriptors consisting of the composite features are
introduced. They are: 1) low-level descriptors, which rep-
resent characteristics of image contents. They can be global
features and/or regional features, and can represent differ-
ent kinds of attributes of image contents, e.g. colour, tex-
ture, shape, spatial, etc.; 2) class descriptors, which quanti-
tatively represent features of image classes at the semantic
level. Here, each class is described by a multi-prototype
model; and 3) image annotation, using tokens of classes



which images belong to. In fact, images are annotated us-
ing the semantically meaningful language. As a result, the
composite feature set of an image I; is

Feature; = {aj,cf', f;} (@)

where, a; is the annotation of 7;, that is also the token of the
class I. The image’s low-level descriptor is represented by
f;. Therefore, composite features of images in the database
are stored into a hierarchical composite feature database
corresponding to the structured image database (see Figure
2). For a class I, based on the selection of a kind of low-
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Figure 2. The structured composite feature
database.

level attributes of image contents, class tokens, class de-
scriptors, and low-level descriptors are then constructed or-
derly to represent images in the class. The feature database
corresponds to the image database, and both of them are
hierarchically organized. Moreover, different kinds of low-
level descriptors can be combined together to represent im-
age contents more completely.

There are two parts in the CBIR system with relevance
feedback in a structured database (CBIR_S), the off-line part
and the on-line one. The main work in the off-line part is
description of images, resulting in a hierarchical compos-
ite feature database. The image retrieval process is done

on-line. When a query image is presented through the inter-
action scheme, it is processed to obtain the composite fea-
ture. Then a list of relevant classes can be obtained using
ICMD. Only images within the most relevant class are com-
pared with the query image. That means images in other
classes are considered irrelevant, and they are not used at
all. Therefore, the retrieval reports the first £ most similar
images, which is visualized on the user-machine interface.
Based on the user’s perception, relevance comments can be
provided through relevance feedback, and then are intro-
duced into the system to dynamically improve image re-
trieval results to satisfy the user’s demand. Actually, users’
feedback can also be returned into the generating process of
image descriptors to revise representation of images.

4. Experimental Results
4.1. Performance Evaluation Measure

The retrieval efficiency measure used in [7] is adopted
here as the performance criterion. For a query image ¢, by
comparing with all K images (except the query image it-
self) using an index technique, the first (V, + T') images
are retrieved. Here, T is a positive integer which is used as
a tolerance to test the consistence of a retrieval algorithm.
If ngq is the number of successfully retrieved similar images,
the efficiency of retrieval can then be defined as:

gm0 ™
nr(T) = S
quo Nq T

The evaluation of a CBIR system’s performance looked at
both retrieval time and efficiency. All images from the im-
age database are used as query. When one image is selected
as a query, this image is removed from the database.

(8)

4.2. Constructing a CBIR system with a flat
database for Comparison

The CBIR system with a flat database (CBIR_F) means
that all images are randomly put into the image database,
and the corresponding low-level descriptors are conse-
quently stored into a feature database randomly too. As
a result, for retrieving similar images based on a selected
query image, distance between the query image and each
image in the image database is calculated. Here, the nor-
malized Euclidean distance is used. Then the first & most
similar images can be obtained.

4.3. A General Image Database
1249 general images extracted from MIT VisTex and

Corel Stock Photos are used here. All images are catego-
rized into 14 classes by a group of human observers for



the purpose of performance evaluation. Some classes in-
clude several subclasses. Sample images are selected for
each class and subclass manually. In the present work, only
colour and texture attributes are used to describe the con-
tents of images. Therefore, there are three kinds of low-
level descriptors of images, i.e. the global colour histogram
feature f., € R?5%, the global gabor feature f, € R*®, and
the global wavelet feature f,, € R?*[5, 2, 12].

Table 1. The average retrieval time and efficiency
(T' = 24) of the CBIR_S and CBIR_F system, re-
spectively.

Feat- | Average Retrieval | Average Efficiency

Time (ms) (%)

-ures | CBIR_S | CBIR_F | CBIR.S | CBIR_F
fuw 1.153 61.39 56.33 34.49
fq 2.354 69.62 61.74 34.98
fen 3371 | 17152 | 58.30 30.72

From Table 1, it can be seen that the average retrieval
time is reduced greatly in the CBIR_S system, say nearly
one-sixtieth of that of the CBIR_F system. Also, the aver-
age retrieval efficiency is improved greatly. In Figure 3, the
first 30 retrieval images are shown for using a human im-
age as the query. The global gabor feature is used to repre-
sent image contents. It can be seen that, unlike the CBIR_F
system, there is no irrelevant images in the retrieval results
using the CBIR_S system.

The comparison of retrieval efficiency between the
CBIR_F and CBIR_S system with different relevance feed-
backs for using the global gabor features is show in Figure
4. It can be concluded that the retrieval efficiency of the
CBIR_S system without relevance feedback is consistently
and nearly 20% above that of the CBIR_F system. However,
we should point out that image mis-annotation has adverse
effects on the retrieval efficiency. But relevance feedback
can compensate this error. Users can select from the n most
relevant classes whether or not the automatic selection is
wrong. Users can also remark the first presented retrieved
image that whether it has the same annotation to the query
image or not. If not, the system then presents retrieved
images from the second most similar class or from user’s
selection. The procedure is iterated until the user obtains
the best result. In fact, based on the structured database,
it is easier and faster for a user to input his/her comments.
Therefore, in Figure 4, after 3 relevance feedbacks, the re-
trieval efficiency of the CBIR_S system is over 80%. More-
over, in Figure 5, the comparison of retrieval efficiency for
the global gabor feature by using relevance feedback be-
tween different values of T is given. It shows that 7" has no
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Figure 3. The first 30 relevant images retrieved
using the global gabor feature for a human image

significant effect in retrieval results of the CBIR_S system.
The reason is that as soon as the right class is retrieved, the
retrieval result is the best already.

5. Conclusions

In this paper, we presented a semantically structured im-
age database for content-based image retrieval. A class de-
scriptor is proposed to represent each image class using a
multi-prototype model, which can be obtained by using a
learning scheme on a group of sample images manually se-
lected from the class. The Unsupervised Optimal Fuzzy
Clustering algorithm is used here to perform automatic clus-
tering of sample features of the class, and finds the opti-
mal number of clusters by grouping similar cluster together.
Based on the newly proposed Image-Class Matching Dis-
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Figure 4. The comparison of retrieval efficiency
between CBIR_S and CBIR_F with different rele-
vance feedbacks for using the global gabor feature.
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Figure 5. The comparison of retrieval efficiency
for using the global gabor feature by relevance
feedback between different values of T.

tance, a similarity measure at the semantic level between
an image and classes, images can be annotated by tokens
of classes. Hence, each image is described by a compos-
ite feature set that includes low-level descriptors, class de-
scriptors, and image annotation. Composite features of im-
ages are then stored into a structured feature database cor-
responding to the semantically structured image database.
The performance of the structure CBIR system is compared
with that of a flat CBIR system by average retrieval time
and efficiency. It can be seen from our experiments that the
average retrieval time of the structure CBIR system is only
one-sixtieth of that of the flat CBIR system, while the aver-
age retrieval efficiency is improved greatly.
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