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Abstract 

 
Gait is an emerging biometric for which some 

techniques, mainly holistic, have been developed to 
recognise people by their walking patterns. However, the 
possibility of recognising people by the way they run 
remains largely unexplored. The new analytical model 
presented in this paper is based on the biomechanics of 
walking and running, and will serve as the foundation of 
an automatic person recognition system that is invariant 
to these distinct gaits. A bilateral and dynamically 
coupled oscillator is the key concept underlying this 
work. Analysis shows that this new model can be used to 
automatically describe walking and running subjects 
without parameter selection. Temporal template matching 
that takes into account the whole sequence of a gait cycle 
is applied to extract the angles of thigh and lower leg 
rotation. The phase-weighted magnitudes of the lower 
order Fourier components of these rotations form the gait 
signature. Classification of walking and running subjects 
is performed using the k-nearest-neighbour classifier. 
Recognition rates are similar to that achieved by other 
techniques with a similarly sized database. Future work 
will investigate feature set selection to improve the 
recognition rate and will determine the invariance 
attributes, for inter- and intra- class, of both walking and 
running. 
 
1. Introduction 
 

Dating back to the 5th century B.C., the study of human 
locomotion as well as individual variation during running 
and sprinting were reflected in ancient Greek art. Later, 
Shakespeare observed that we could recognise 
acquaintances by the way they walk. These observations 
suggest that people could be recognised not only by the 
way they walk, but also by the way they run. Aristotle 
described different types of animal gaits as well as human 
gait. He observed that human gait when walking, is 
symmetrical and when one walks, the body moves in an 
undulating manner. These observations inspired the 

development of this new model. 
Biometrics play an important role in individual 

authentication and recognition in today's society. Gait is a 
newly emergent biometric for which some techniques, 
mainly holistic, have been developed to recognise people 
by the way they walk. However, the possibility of 
recognising people by the way they run remains largely 
unexplored. Criminals not only walk naturally to escape, 
very often they run! Hence, a more robust gait recognition 
system which can handle both running and walking is 
essential. Our secondary objective is to promise that it 
might be possible to determine invariance relationships 
between walking and running, to improve application 
capability. 

Perhaps the earliest approach to gait recognition was to 
derive a gait signature from a spatio-temporal pattern[1]. 
Another approach was to project the images into 
eigenspace and the resulting eigenvectors were used for 
recognition[2]. Then, dense optical flow[3] was used to 
determine the relative phases of optical flow to form a 
feature vector to create a signature. A more recent 
statistical based approach combined canonical space 
transformation based on linear discriminant analysis with 
the eigenspace transformation which later incorporated 
the temporal information obtained from the optical-flow 
changes between two consecutive images to improve 
recognition capability[4]. Eigen analysis has also been 
applied to similarity metrics[5], again achieving 
encouraging recognition rates. Then, Shutler developed a 
technique that makes use of velocity moments, an 
extended form of centralised moments which have the 
ability to describe an object and its motion[6]. A recent 
approach for visual discrimination of children from adults 
in video, uses characteristic regularities present in their 
locomotion patterns[7]. Johnson demonstrated that gait 
recognition can also be achieved by using recovered static 
body parameters[8] of subjects.  

The earliest model-based human gait recognition 
system models human walking as a pendulum 
representing the thigh motion, which combined a velocity 
Hough transform with a Fourier representation to obtain a 
gait signature[9]. Recently, a model-based gait recognition 



 

 2

)2sin()( yyy tAtS φ+ω=

system, which includes the motion model of the thigh and 
lower leg rotation that describes both walking and 
running, provides promising recognition rates[10]. 
Nevertheless, this model lacks analytical precepts and is 
rather heuristic in nature. Here, we do not attempt to 
describe gait with a precise biomechanical model due to 
its high complexity. However, based on knowledge of the 
biomechanics of walking and running, we describe a new 
model that is invariant to these two distinct gaits, which 
appears sufficient to serve as the foundation of an 
automatic gait recognition system. This technique 
produces similar recognition results to those we achieved 
earlier[10] but without the need of parameter selection, i.e. 
a totally automatic manner. As such, this new model is 
better suited for a fully automatic gait recognition system 
which is invariant to walking and running. 
 
2. Gait Modelling and Analysis 
 

An understanding of the underlying mechanism of gaits 
is essential in order to develop a model well suited 
describing the motion. In terms of biomechanical 
definition, walking and running are distinguished firstly 
by the stride duration, stride length, velocities and the 
range of motion made by the limbs. The kinematics of 
running differs from walking in a way that the joints' 
motion increases significantly as the velocity increases. 
Secondly, by whether there exist periods of double 
support or double float. The most distinct difference 
between walking and running is that for walking there 
exists a period where both feet are in contact with the 
ground (double support), whereas for running, there exists 
a period where both feet are not in contact with the 
ground (double float).   
 
2.1 Pattern of Movement 
 

 
 
 
 
 
 
 
 
 

                   (a)                                       (b) 
Fig. 1: Thigh and lower leg rotation of the left and right 

leg with half a period phase shift. 
 
Human locomotion is naturally rhythmic producing a 

co-ordinated oscillatory behaviour. One of the unique 
characteristics of walking and running is bilateral 

symmetry, that is, when one walks or runs, the left arm 
and right leg interchange their direction of swing with the 
right arm and left leg, and vice versa, with half a period 
phase shift. Fig 1 shows the manually labelled thigh and 
lower leg rotation of the left and right leg measured from 
the vertical. This shows that the motions of the left and 
right leg are coupled by half a period phase shift. Hence, 
only one model is needed to describe the motion of both 
legs.  
 
2.2 The Analytical Motion Model:  
       Dynamically Coupled Oscillator 
 
2.2.1 Hip Motion. To ease data acquisition, the subjects 
are imaged walking and running on a motorised treadmill 
at constant velocities and because the horizontal position 
of the hip is known, the horizontal displacement of the hip 
is insignificant enough to be ignored. However, the 
vertical displacement of the hip is essential as it differs for 
walking and running. As depicted in Fig. 2, during 
running the amplitude of the displacement is bigger and 
has a relative phase shift with respect to the one for 
walking. This is described by Sy, 

 (1) 

where Ay is the amplitude of the vertical oscillation, ω is 
the fundamental frequency and φy is the relative phase 
shift. Since a gait cycle consists of two steps, the 
frequency is twice that of the leg motion that will be 
described in a later section. That is, every time we make a 
step, the body lowers and lifts, which gives the variations 
as shown in Fig. 2. Here, all the plots are normalised to a 
complete gait cycle so that they are invariant to speed. 
The superimposed graphs reflect the veracity of this 
simple model, by comparing the model generated vertical 
displacement of the hip with that of manually labelled 
data. The structure is clearly the same.  
 

 
 
 
 
 
 
 
 
 

                      (a)                                         (b) 
Fig. 2: The relative vertical displacement of hip during 

walking and running. 
 
2.2.2 Thigh and Lower Leg Motion. The human lower 
limb can be represented as two penduli joined in series, 
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see Fig. 3. This new model solves the differential 
equations obtained from the dynamic model of these two 
penduli. 
 

                   h 
  
                         θT   lT 
                      

                     mT       k     
 
                   lK      θK 
       
               a     mK     

Fig. 3: The dynamically coupled pendulum model. 
 
Let us consider the upper pendulum where the external 

force, F(t) = 0, the motion equation is 

 (2) 

where θT is the angular displacement from the vertical, 

Tθ!!  is the angular acceleration, Tm  is the mass and Tω  is 
the natural frequency. Solving the ordinary differential 
equation (ODE) gives the basic motion model for thigh 
rotation, which is  

 (3) 

where A and B are constants, and t is the time index which 
varies from 0 to 1.  

In reality, the motion of the lower pendulum is a very 
complex process that is hard to model precisely. As we 
seek a model providing a basis for recognition, we shall 
assume that the lower leg can be modelled as a driven 
oscillator where the force applied to it is related to the 
motion of the upper pendulum. Following an analogy of 
Newton's laws, by differentiating Eq.3 twice, we have  

 

 
(4) 

which contributes to the driving force to the lower 
pendulum. This force is given by  

 (5)

Similar to Eq. 2, the motion equation for the lower 
pendulum is 

 (6) 

Substituting Eq. 5 into Eq. 6, yields  

 (7) 

The solution for θK will comprise the general solution, θKg, 
and the particular solution, θKp, i.e. θK = θKg + θKp. The 
general solution is obtained by setting F(t) = 0 in Eq. 6,  
solving this gives 

 (8) 

where C and D are constant. A Wronksian method is used 
to find the particular solution. For simplicity, let 

K

K

T

T
mm ba ωω == , , and the result is 

Recalling that θK = θKg + θKp, by substituting Eq. 8 and 
Eq. 9, the complete solution for θK yields the basic 
motion model for the lower leg rotation, which is 

 

 

(10)

The motion models derived earlier are not sufficient to 
guarantee a good approximation. To mimic the motion of 
the leg, parameters need to be included to increase the 
flexibility of the models. Phase (φT), amplitude (E), offset 
(MT, MK) and scaling (F) are added to the original motion 
models that serve as the foundation of describing the 
motion of the thigh (Eq. 3) and the lower leg (Eq. 10) and 
yield, 

 (11)

 (12)

 
 
 
 
 
 
 
 
 
 

                           (a)                                          (b) 
Fig. 4: Sample output of the thigh and lower leg motion 
model superimposed with the manually labelled data. 
 

 

(9) 

m = mass 
θ = angular displacement 
l = length of the limb 
The subscripts T and K
denote thigh and knee. 
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An example of the waveform that can be produced by 
the thigh and lower leg motion models described by Eqs. 
11 and 12, with appropriate parameter selection, is shown 
in Fig 4.  As in Fig. 2, the structure of the response of the 
model appears very close to that of the manually labelled 
data. As expected the simple model does not match the 
thigh rotation precisely, but it can describe the gross 
motion of the lower leg, over one gait cycle. 
 
2.3 Structural Model of Thigh and Lower Leg 
 

Referring to Fig. 3, the structure of the thigh can be 
described by a point h that represents the hip and the line 
passing through h at an angle θT. The knee is then 

 (13)

where uT(t) is the unit vector of the line direction, h is the 
position of the hip and lT is the thigh length, as uT(t) =     
[-sinθT(t), cosθT(t)] and h(t) = [hx(0), hy(0) + Sy(t)], where 
hx(0) and hy(0) are the initial hip coordinates. 
Decomposing Eq. 13 into the x and y parts yields the 
coordinates of the knee point as, 

 (14) 

 (15) 

Similarly, the structure of the lower leg is given by a 
line which starts at the knee, that passes through k at an 
angle θk. The ankle a is    

 (16)

where uK (t) is the unit vector of the line direction, k(t) is 
the position of the knee and lK is the lower leg length, as 
uK(t) = [-sin(θK(t)), cos(θK(t) )] and k(t) = [kx, ky], where kx 
and ky is the point of the knee. Decomposing Eq. 16 into x 
and y parts yields the coordinates of the ankle as, 

 (17) 

 (18) 

Hence, the motion model based on the biomechanics of 
walking and running with the dynamically coupled 
oscillator as the underlying concept has been derived. 
These equations form the basis of the model to be used 
within the feature extraction technique to find the moving 
lines that correspond to a subject's leg. 
 
3. Feature Extraction 
 
3.1 Low Level Feature Extraction 
 

The subjects are filmed as video clips which are then 
digitized into individual image files and cropped to reduce 

computational cost. To reduce the complexity of the 
image, the Sobel edge operator is applied. A condition is 
applied, which effectively thresholds the x-component of 
the Sobel edge operator, to obtain only the leading edge. 
Fig. 5(a) shows the templates used to extract the (b) edge 
data and the condition applied to extract only the (c) 
leading edge. 
 

 
 
 
 
 
 
 

  (a) Grey scale          (b) Sobel edge     (c) Leading  edge   
Fig. 5: The process of transforming a greyscale image to a 
single edge data via Sobel edge detection with a threshold 

condition on the x- component of the operator. 
 
3.2 Evidence Gathering by Temporal Template    
       Matching 
 

A template, which is effectively a pair of moving lines 
that swing accordingly to the structural and motion 
models (described by Eq. 11 and Eq. 12) are then 
matched to the leading edge data. Temporal template 
matching is an evidence gathering process where the 
template, which varies with time, is matched with a series 
of images to find the desired moving object in the 
sequence of images. For simplicity, the mass, m, in 
Eq.11 and Eq. 12, is set to 1 and hence motion is 
dominated by the frequency, ω. No parameter selection is 
needed to differentiate between walking and running 
subjects (as it was in our earlier model[10]) due to the fact 
that this new model is invariant to walking and running 
gaits.  

The vote is essentially the intensity value of that 
particular pixel that falls within the template. The peak of 
the accumulator array is the position where most pixels 
in the template match those in the image. As such, the 
peak is deemed to be the point where the "best fit" lines 
exist. The results are the relative vertical displacement of 
hip, the thigh and lower leg rotation, measured from the 
whole gait cycle. As depicted in Fig. 6, the result of this 
technique appears to extract well the thigh and lower leg 
motion without the need of parameter selection, despites 
the fact that walking and running are two totally different 
gaits. The extraction angles are precise in the regions 
where the legs cross and occlude each other. However, 
slight disparity may occur, as shown in the middle image 
of Fig. 6(a), due to the fact that this model is designed to 
extract the "best fit" leg motion throughout the gait cycle, 

  

















−−−
=

















−
−
−

=
121

000
121

,
101
202
101

yx MM







≤
>+=

0,
0,

0

22

x

xyx
M
MMMedge



 

 5

but not to precisely model the biomechanics of these 
highly complex locomotion.  

 
 
 
 
 
 

(a) Running 

 
 
 
 
 

(b) Walking 
Fig. 6: Leg motion extraction results of running and 

walking via evidence gathering by temporal template 
matching superimposed in white. 

 
3.3 The Gait Signature 

 
The gait signature of a particular gait cycle consists of 

the phase and the magnitude components made up of the 
Fourier description of the thigh and lower leg rotation 
measured from the gait cycle. Due to the Time Shift 
Theorem, when comparing the phase components of the 
transforms for different subjects, the time domain signal 
should start at the same point to ensure a valid analysis or 
comparison. Therefore, each gait cycle of different 
subjects starts at the same point, the conventional choice 
is at heel-strike. Although the magnitude spectra show 
variation among different subjects, in order to further 
increase the inter-class separability, the magnitude 
components are multiplied by the respective phase 
components[9], to yield the phase-weighted magnitude 
(PWM), which is used as the gait signature. If θ(n) is the 
discrete angle (of thigh or lower leg rotation) extracted by 
temporal template matching based on the model described 
and is transformed by the Discrete Fourier Transform to 
give the frequency components, Θ(ejω), then the PWM is 

PWM(ω) = ( ) ( )ωω Θ∠•Θ jj ee  (19) 

Here the gait signature is formed from PWM 
components of the thigh rotation and PWM components 
of the lower leg rotation. The lower order components are 
chosen because the PWM components of the thigh and 
lower leg rotation are dominated by the lower order due to 
their greater magnitude values as shown in the polar plots 
in Fig. 7. Here, only the phase and magnitude (of the first 
three harmonics) of the leg motion of running is shown 
and is similar to those of walking. The magnitude of the 
higher order harmonics is relatively small and they are 
more likely to be dominated by noise. This is supported 
by a medical study which suggested that the maximum 
frequency content of human locomotion is 5Hz[11], that is, 
only the first five harmonics are sufficient to describe 
human locomotion.  

 
 

 
 
 
 
 
 
 
 
 
 

 
                       (a)                                          (b) 
Fig. 7: The polar plot of the magnitude and corresponding 

phase components of the (a) thigh, and (b) lower leg 
rotation in the case of running. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig. 8: Feature (phase-weighted magnitude) space of 5 

walking and running subjects. x: 1st component of θT; y: 
2nd component of θK ; z: 2nd component of θT . 

 
4. Results 
 

The database consists of fronto-parallel views of 7 
subjects, with 5 samples each, walking and running at 
their preferred speeds on the treadmill in their own choice 

1st harmonic 
2nd harmonic 
3rd harmonic 
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of clothing.  Each sample consists of one gait cycle (i.e. 
two steps), between heel strikes of the same foot. The 
angular displacement of the thigh and lower leg rotation 
(of both walking and running) is extracted via temporal 
template matching with the dynamically coupled oscillator 
model as the underlying template. Fig. 8 shows the feature 
space formed from the thigh and lower leg rotation. For 
visualisation purposes, only 3 of the PWM gait signature 
components are shown for 5 of the subjects. In general, 
clear class boundaries can be determined despite one or 
two stray samples. 

Classification is achieved via the k-nearest neighbour 
(k-nn) and results are analysed by cross validation with 
the leave-one-out rule. Table 1 shows the recognition rate 
achieved by this new model. In this case, using k=3 
appears to be more prudent. The recognition rate based on 
Mahalanobis distance matric appears to improve over the 
basic Euclidean distance matric. Likewise, the recognition 
rate could be further improved by applying a more 
sophisticated and intelligent classifier. Note also that the 
feature-space clustering for running and walking occurs at 
a subject level and this suggests that an invariance 
relationship exists for subjects (as indeed suggested by 
our model). The feature space dispersion for the class is 
different from that for the subjects, suggesting that a 
general invariance relationship for human walking and 
running is unlikely. 

 
Table 1: The recognition rates for walking and running via 

k-nn with Euclidean and Mahalanobis distance. 
 Walk(%) Run(%) 
k Euclidean Mahalanobis Euclidean Mahalanobis 
1 55 60 63 63 
3 66 74 71 77 

 
5. Conclusions and Future Work 
 

A new analytical model based on a dynamically 
coupled oscillator has been derived and shown to be able 
to describe both walking and running gaits without the 
need for parameter selection. This technique provides a 
consistent framework to extract running and walking 
subjects and yields a fully automatic gait recognition 
system for walking and running. With just a basic 
classifier, the technique achieves a reasonable recognition 
rate for walking and running subjects. We shall not be 
disconcerted by the recognition rate presented here, as our 
main objective is to develop a dynamic model which can 
handle walking and running gaits that is well suited for an 
automatic gait recognition system. Naturally, using a more 
sophisticated classifier could easily increase the 
recognition rate. Future work intends to investigate the 
feature set selection to increase the recognition rate based 

on the fundamental attributes that underlie the kinematics 
of the gaits and to determine the invariant mapping for 
walking and running. Due to the high inter-subject 
variability, we expect at best just be able to develop 
mapping for individual subjects, not a generic mapping 
across the population. 
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