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Abstract

   In this paper, a novel algorithm for the separation of
gray and white matter from single sequence magnetic
resonance images is proposed. In our approach, the Polya
urn model is used to model the smoothness and
contiguous nature of the tissue regions. The order of the
neighborhood system used in the Polya urn model is
adaptive with the contents of the image. Moreover, an
adaptive window is used to resist the intensity
inhomogeneity of the magnetic resonance images, when
estimating the parameters of each cluster using the
expectation-maximization (EM) method. Experimental
results demonstrate that our approach can extract gray
and white matter from magnetic resonance images quickly
and exactly.

1. Introduction

   Separating gray and white matter from single
sequence magnetic resonance images is a very important
step in quantitative morphology of the brain. By
measuring the cerebral volume, brain development can be
assessed and difference between normal brain and those in
pathological states can be detected. The main obstacles to
the segmentation of magnetic resonance images are
thermal and electronic noise, intensity inhomogeneity, and
partial volume effects.
   In recent years, many methods have been proposed
and used to segment brain tissues from magnetic
resonance images [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [14]. These methods can be classified into two
categories: algorithms incorporating contextual
information [4], [5], [6], [7], [8], [9] and those classifying
pixels independently [1], [2], [3]. Thresholding, and seed
growing do not consider contextual information. Markov
random field (MRF) is often used to relate neighboring
pixels. In the MRF-based method, an energy function is

proposed and the segmentation problem is turned into an
optimization problem [4], [5], [6], [8], [9]. Usually the
optimization is NP-hard. Simulated-annealing (SA) is
successfully used to solve the optimization problem, but
SA has high computational cost [11]. Indeed, only when
impractically slow annealing schedules are followed,
theoretical convergence to the optimal solution is possible.
Recently, we have successfully applied the Polya urn
model to the segmentation of white matter lesions [7]. In
this paper, we use the Polya urn model to model the
spatial dependencies between neighboring pixels. An
image content based self-adjusting window is used to
compensate image intensity non-uniformity. A prominent
advantage of our approach is no need to optimize an
energy function. Our approach is an iterative process, and
only several iterations are needed to obtain a good
segmentation result.
   The outline of this paper is as follows. Image model is
described in section 2 to give some background
knowledge. Section 3 introduces the Polya urn model.
Section 4 describes the method used to estimate the
parameters used in the model. Section 5 devotes to a
detailed description of our approach. Experimental results
are given in section 6. Conclusions are listed in Section 7.

2. Image model

   Spatial intensity inhomogeneity induced by the radio
frequency coil in magnetic resonance imaging (MRI) is a
major problem in the computer analysis of MRI data. So
the model for the measurement process is
               ijijijij xby η+=               (1)

where ijy is the measured value; ijx is the value that
would be measured in the absence of noise or intensity
inhomogeneity; ijb is the grain field representing the

image intensity inhomogeneity presented at pixel ( )ji, ;
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and ijη  is additive spatially white Gaussian noise. The
corresponding probability density function is

        ( ) ( )σ,;, ijijijijijij xbygxbyp =         (2)

where ( )σµ ,;yg is a Gaussian density function with

mean µ and variance 2σ . This represents a
measurement process with a non-stationary mean,
governed by the tissue present within the pixel and the
corresponding bias field. We assume that ijb varies
slowly across the observed image.

3. Polya urn model

3.1 . Brief description of polya urn model

   In this section, we give a brief introduction to the
Polya urn model. When used in image segmentation, the
Polya urn model has the property of temporal and spatial
contagion [12].
    The Polya urn model is firstly put forward to model
the spread of a contagious disease through a population.
An urn originally contains T  balls, of which W  are
white and B  are black ( BWT += ). We consider an
image as a finite lattice of urns. Successive draws from
the urn are made and 1+Δballs of the same color as was
just drawn are added to the urn after each draw. For the
lattice of urns, the sampled ball must depend not only on
the composition of the pixel’s urn but also on the
composition of the neighboring urns to encourage
contagious behavior.
    Let ( )[ ]jiXX ,=  be an L-ary label image of

size KH × , where ( ) { }LjiX ,,2,1, ⋅⋅⋅∈  is the label of

pixel ( )ji, . We associate an urn

( ) ( ) ( ) ( )( )jiBjiBjiBjiu L ,,,,,,:, 21 ⋅⋅⋅  with each pixel

( )ji, , where ( )jiBl , is the number of balls of color l
in the urn. With this representation, the probability that
pixel ( )ji, belongs to class l  can be described as:

         ( )[ ] ( )
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   The general algorithm for contagion-based
segmentation process can be described as follows:
1) Initialization: Try to give the initial composition of

each urn associated with every pixel. We can use some
simple segmentation algorithms such as k-means
method to give a preliminary segmentation result.
Most of these initial segmentation algorithms assign
probabilities or derive a distance measure for every

pixel to each class label. The initial composition of the
urn corresponding to pixel ( )ji,  can be obtained by

           ( ) ( )[ ]ljiXPTjiBl =×= ,,        (4)
Where T is the total number of balls initially in the urn
and ( )[ ]ljiXP =,  is the probability that pixel

( )ji,  belongs to class l , which is obtained during the
initial segmentation.

2) Iterative urn sampling: The urn composition of each
pixel ( )ji,  at time t  is updated by sampling from a

combination of the participating urns ( )jivt ,1− . The
method of determining the participating urns is
discussed in section 3.2. ∆+1  balls of the same color
as the one sampled will be added to the urn of pixel
( )ji, . The above procedure is iterated until Nt = .
At time N , the final composition of each individual
urn determines the final labeling of the image.

   The idea behind the urn-sampling scheme is to
promote spatial contagion of the pixel labels. At the end
of the iterative process, homogenous regions should be
described by one label. It is in this sense that the urn
process generates MRFs. The asymptotic results to
provide insight as to why the urn sampling scheme allows
the initial majority color of a region to dominate the
population of the urns in that region can be found in [12].

3.2. Image context based determination of
participating urns

   In the iterative urn sampling step, the number of the
participating urns is of great importance. If the
participating urns are too large, the segmented image will
be over smooth. Otherwise, the dependency of
neighboring pixels will not be considered enough. So, we
try to determine the participating urns according to the
image context. The number of the participating urns is
changing with the pixel being processed. If there is much
information near pixel ( )ji, , the number of the
participating urns should be small, otherwise, the number
should be large. To introduce the process, we define the
following formulation:

                ( ) 2
2 ε

σ
λσ +=f             (5)

Where λ  is a constant; σ  is the standard deviation of
the Gaussian function; ε  is the residual, which can be
obtained by

        ( )
( )
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In the objective function, the item 2ε  represents the
difference between the filtered image by the Gaussian
filter and the original image; In the course of minimizing
the objective function, the first item tends to select larger
σ , but the second item’s effect is opposite. The finally
selected σ is the trade-off between the first item and the
second in the objective function. The parameter σ in the
image parts with more information will be smaller than
that in the homogenous region. The detailed description to
determine the participating urns are summarized as
follows:
1) A series of nσσσσ ,,,: 21 ⋅⋅⋅  is given.

2) We choose iσσ =∗ , which minimizes the objective
function (5).

3) The participating urns are made up of those urns within
a square window whose length of sides is 16 * +σ ,
and pixel ( )ji, is the center of the square window.

4. Model fitting using the EM algorithm

   A statistical model is complete only if both its form
and its parameters are determined. The procedure for
estimating the unknown parameters is known as model
fitting. For the Polya Urn model, the parameter set

( ){ }Lkkk ⋅⋅⋅== ,1,,σµθ  where L  is the class
number.
   Since both the class label and the parameters are
unknown and they are strongly independent, the data set is
said to be “incomplete” and the problem of parameter
estimation is regarded as an “incomplete-data” problem.
Many techniques have been proposed to solve this
problem, among which the EM algorithm [13] is the one
most widely used.

4.1. Brief review to expectation-maximization
(EM) algorithm

   Let X and Y be two sample spaces, and let H be a
transformation from X toY [13]. Let us assume that the
observed random variable y inY is related to an

unobserved variable x by ( )xHy = . That is, there are
some “complete” data x , which can be observed in the
form of “incomplete data” y . Let ( )θ|xp be the
parameter distribution of x , whereθ is the parameter
vector. The distribution of y , denoted by ( )θ|yq , is
also parameterized byθ . Since

           ( ) ( )
( )

dxxpyq
yxH∫ =

= θθ ||           (7)

The estimation ofθ  according to observed data y is an

incomplete data estimation problem. We can obtain the
expectation of ( )θ|xp according to the incomplete data
y , so we can estimate parameterθ  from the expectation

of ( )θ|xp .
    The EM algorithm, which is an iteration procedure,
includes two steps: E-step and M-step.
E-step: compute
           ( ) ( )[ ]tt yxpEQ θθθθ ,|, =         (8)
M-step: choose
           ( )tt Q θθθ

θ
,maxarg1 =+            (9)

Where tθ  denotes the values of the parameters estimated
at the t-th iteration.

4.2. EM algorithm based model parameters
estimating
  
    In our problem the “complete” data
is ( )( )( )ijij yljiXPy =,, , where ijy  is the gray value

of the observed image and ( )( )ijyljiXP =, is the

conditional probability that pixel ( )ji, belongs to tissue

class l , given the image intensity of ijy . But, only the

“incomplete” data ijy  is available. So applying the EM
algorithm, we obtain
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where

    ( )( ) ( ) ( )
( )ij

llij
t

ij
t

yP
lPyg

yljiXP
σµ ,;

|, ==  (12)

The value of the probability ( )lP  can be estimated
during the initial segmentation. Using the EM-algorithm,
we can obtain a good estimation of the model parameters.

4.3. Image intensity inhomogeneity compensation

   As we have mentioned, inhomogeneity in the
magnetic fields used during image acquisition and
magnetic susceptibility variations in the scanned subject
cause intensity non-uniformity in MRI prevent
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classification of pixel tissue content based solely on image
intensity. As a result, segmentation and quantitative
studies of MRI require compensation for the intensity
non-uniformity.

For pixels of a specific tissue type, the characteristic
intensity of the tissue type is assumed to be λµ=ijy ,

where { }L⋅⋅⋅∈ ,2,1λ is a label describing the tissue type
presented in the pixel, thus the measurement model (Eq.2)
can be rewritten as

         ( ) ( )σµλ ,;, ijijijijij bygxbyp =      (13)

let ( ) λλ µµ ijbji =, , the above formulation is

         ( ) ( )( )σµλ ,,;, jiygxbyp ijijijij =    (14)

So it is equivalent estimating the bias field or estimating
the model parameter µ  at each pixel site in the sense to
resist image intensity non-uniformity. In this paper, we try
to estimate the model parameter of each pixel site using
the EM algorithm introduced in section 4.2.
   Generally, the image intensity nou-uniformity varies
slowly across the image space, so we estimate the model
parameters on a lattice of M points spaced uniformly
through the image. We denote this spacing as sd , or the
sampling distance. We compute these local model
parameters at each lattice point { }Mm ⋅⋅⋅∈ ,2,1 on a
rectangular region centered about that point. The size of
the rectangle is hd , which is changeable according to the
location of that point. To accurately estimate the local
model parameters, there must be enough pixels that
belong to each tissue class respectively. But if hd is too
large, we cannot accurately estimate the model parameters.
So it is a key problem to select a proper hd . The method
that we used to choose an appropriate size of the rectangle
can be described as follows:
1) Initialization: Let S be the initial length of the sides of
the square window and KNNN ,,, 21 ⋅⋅⋅  be the least
number of pixels of each tissue class in the window
respectively.
2) Compute the pixel number of each tissue class in the
current window, which is represented by Knnn ,,, 21 ⋅⋅⋅ .

3) If kk NnNnNn ≥⋅⋅⋅≥≥ ,,, 2211 , stop. Or,

2+= SS , and then go to the step 2.
After the local model parameters are calculated out, we
can use interpolation algorithm to estimate the model
parameters of each pixel.
5. Our segmentation method with bias field

correction

In our algorithm, the distance of each pixel to a brain

tissue is defined by
            ( ) ( )jiujiyd ,, λλ −=           (15)

where ( )jiy , is the gray level of pixel ( )ji, and

( )jiu ,λ  is the mean value of the tissue class represented

by λ .
    Our method can be briefly described as follows:

1) Use the k-means method to give an initial
segmentation.

2) Use the expectation-maximization method to
estimate the mean intensity of each tissue class.

3) According to the initial segmentation obtained by
the k-means method, the urns are initialized.

4) Proceed the iterative sampling process that is
described in section 3.1 until the required iterative
times are satisfied.

5) Label the image according to the final composition
of the urns.

6. Experimental results

    In this section we give out the experimental results
on synthetic images corrupted with multiplicative gain
and on brain MR images and make a comparison with the
K-means method. We use a synthetic image (see Fig. 1(a))
to show the ability of resisting image intensity non-
uniformity of our approach. Fig. 1 shows a synthetic test
image. This image contains two-class pattern corrupted by
a sinusoidal gain field of higher spatial frequency. The
synthetic image is intended to represent two tissue classes,
while the sinusoid represents an intensity inhomogeneity.
This model is constructed so that it is difficult to correct
using homomorphic filtering or K-mean method. From
Fig. 1, we can see that our approach has succeeded in
correcting and classifying the synthetic data. The
segmentation results demonstrate that our method has the
ability to compensate for the image intensity non-
uniformity.

Fig. 2 and Fig. 3 show the results of applying our
approach to segment brain MRI images. The brain images
are segmented into three classes corresponding to
background, gray matter, and white matter. In the
segmented images, black color represents the background;
gray color represents the gray matter and white color is
the white matter. Compared to the segmentation  results
of the k-mean method, the segmented images of our
approach are much less fragmented. The reason is that the
k-mean method does not consider the contextual
information. As we know, Markov Random Field based
methods also can take advantage of the spatial contextual
information, but finding the global optimization of the
energy function is a very difficult problem. Using the
Polya Urn model, it is only need several iterations to find
a satisfying solution. The segmentation results
demonstrate that our approach have a higher ability to
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resist noise, due to making use of spatial context
information and the computational cost of our approach is
low.
   The parameters used in our approach is as follows:
The iterative sampling number 10=N ; the constant
λ in Eq. (5) is 0.003; The least numbers of pixels of the

three tissue classes denoted by 21 , NN and 3N  in the
self-adjusting window are 50, 70, 100 respectively. Notice
that these three parameters are selected by experience and
it will work in the range 40-100.

  

                   
           (a)                    (b)                        (c)                        (d)

Figure 1. Segmentation results on a two-class synthetic image corrupted by sinusoidal bias field.
(a) Original image. (b) Final result of the bias field. (c) K-means method. (d) Our approach

                         
               (a)                               (b)                                  (c)

Figure 2.  Segmentation results on brain MRI image.
(a) Original image. (b) Segmentation result of k-mean method. (c) Segmentation result of our approach.

  

                         
             (a)                                 (b)                                  (c)

Figure 3.  Segmentation results on brain MRI image.
(a) Original image. (b) Segmentation result of k-mean method. (c) Segmentation result of our approach.
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7. Conclusions and future work

   We have presented a novel method for the extraction
of gray and white matter by combing the Polya Urn
Model with the EM algorithm. The Polya Urn Model is
used to describe the interaction of neighboring pixels. We
also use the EM algorithm to estimate the parameters of
the Polya Urn Model. When estimating the parameters, a
self-adjusting window is used to resist intensity
inhomogeneity. Experimental results demonstrate that our
approach can extract gray and white matter successfully
and correct the bias field. Compared to the Markov
Random Based methods the computational cost of our
method is much lower. The further work on the
consideration of the partial volume effect and the
quantitative comparison on the performance of our
method with other methods are undergoing.
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