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Abstract

   Image segmentation is an essential processing step for
many image analysis applications. So far, there does not
exist a general method that is suitable for all the image
analysis applications. In this paper, we propose a novel
pixon-based multi-resolution method for image
segmentation. The key idea to our approach is that a
pixon-based image model is combined with a MRF model
under a Bayesian framework. In our method, we put
forward a new pixon definition scheme that is more
suitable for image segmentation than the “fuzzy” pixon
scheme. Experimental results demonstrate that our
algorithm performs fairly well and the computational cost
decreased sharply compared to the traditional MRF-
based algorithm.

1. Introduction

   Image segmentation is the process of segmenting an
image into several disjoint regions whose characteristics
such as intensity, color, texture etc, are similar. It is a key
step in early vision problem and it has been widely
investigated in the field of image processing.
   A large number of segmentation techniques are
available in the literature. But, there does not exist a
general algorithm that can excellently perform the
segmentation task even for all light intensity images,
which is the most common type. Available segmentation
techniques include thresholding [1], region growing [2],
clustering [3], classifier [4], neural network-based
approaches [5], deformable models [6], MRF model-
based approaches [7]. Thresholding does not take into
account the spatial characters of an image. This makes it
sensitive to noise. The primary disadvantage of region
growing is that it requires manual interaction to obtain the
seed point. Clustering algorithms do not require training
data, but they do require an initial segmentation. Classifier
methods are pattern recognition techniques to partition a

feature space derived from the image using data with
known labels. Neural network represents a paradigm for
machine learning and can be used in a variety of ways for
image segmentation. Deformable models are physically
motivated, model-based techniques for delineating region
boundaries using closed parametric curves or surfaces that
deform under the influence of internal and external forces.
   The methodology of using MRF models to the
problem of segmentation has emerged later and has
created a lot of interest. Markov random fields have been,
and are increasing being used to model a prior beliefs
about the continuity of image features such as region
labels, textures, edges and so on [8]. The main
disadvantage of MRF-based methods is that the objective
function associated with most nontrivial MRF problems is
extremely nonconvex and as such the minimization
problem is computationally very taxing. To reduce the
computational burden, some approaches based on multi-
resolution techniques have been reported [9][10]. The
essence of MRF frame work on multi-resolution is that it
starts processing images at a coarse resolution, and then
progressively refine them to finer resolution.
   In this paper, we propose a novel image segmentation
method, in which “pixon” concept is incorporated. The
“pixon” concept is firstly put forward by Piña and Puetter
while doing astrophysical image restoration [11]. The
essence of “pixon” concept is that the spatial scale at each
site of the image varies according to the information
embedded in the image. Like the photographic grain size,
we would record the picture information with large
photographic grains in portions of the image with coarse
structure. We need only fine grains when we need to
record fine spatial structure. This means that the picture
information can be dealt with by using variable sized cells,
with the cell sizes set so as to capture the spatial
information present. When doing image restoration and
image reconstruction, “fuzzy pixon”, a pixon definition
scheme using local convolution, is used. In “fuzzy-pixon”
scheme, once the kernel function is selected, the shape of
the pixons does not vary, and only the size can change.
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But, “fuzzy pixon” is not suitable for image segmentation.
We put forward a new pixon definition scheme, whose
shape and size can vary simultaneously. By incorporating
the “pixon” concept, the segmented image can be
expressed by a concise model, so the computational cost
can be discreased greatly.
   The outline of the paper is as follows. In section 2, we
give a brief description of the pixon concept and our
pixon definition scheme. Section 3 devotes to the
introduction to a Markov random field defined on our
pixon-based image model. In section 4, we explain the
proposed image segmentation scheme. Section 5 gives out
the experiment result and the conclusions are listed in
section 6.

2. Description of pixon model

   In this section, we will give a concise review of the
pixon concept and our pixon definition scheme. The main
idea of the pixon concept is that at each point in the image
there is a finest spatial scale of interest and that there is no
information content below this scale. To further explain
the pixon concept, let us think about photographic grain
sizes. We would record the picture information with large
photographic grains in portions of the image with coarse
structure. We need only have fine grains when we need to
record fine spatial structure. This means that the image
information can be dealt with by using variable sized cells,
with the cell sizes set so as to capture the spatial
information present. In a word, the pixons are cells with
variable shape and size, which locally define the
resolution of the data. The size, shape and position of all
pixons over an image are collected into a pixon map,
which gives a multi-resolution description of the image
with various spatial scales. Because different parts of an
image often do not exhibit a uniform spatial resolution,
the pixon map, as a multi-resolution language, suggests
itself. It gives the finest spatial scale at each portions of
the image.

2.1. Fuzzy pixon

   When doing astrophysical image restoration and
reconstruction, Piña and Puetter gave out the fuzzy pixon
definition scheme [11]. The image is modeled by the local
convolutions of a pseudo-image and a pixon map. To
formalize the definition, at each pixel in the image, the
image is written as
             ( ) ( )( )tIKtY p⊗=

                 ( ) ( )dvvIvtK pt ,∫=          (1)

where ( )vtKt , is the pixon kernel function. One
commonly used functional form is a circularly symmetric
pixon shape, which is truncated paraboloid. In the fuzzy

pixon definition scheme, once the pixon kernel function is
selected, a pixon is completely determined by its size. So,
the pixon shape does not vary and only the pixon size
change according to the observed image. By picking a set
of pixons, a pixon map gives a multi-resolution
description of the image.

2.2. Our pixon definition scheme

   The key aspect of any pixon definition scheme is the
ability to control the number of degrees of freedom used
to model the image. In other word, the pixon definition
scheme should give out a optimum scale description of
the observed image. The fuzzy pixon definition scheme is
suitable for image restoration and reconstruction, but it is
not fit for image segmentation. Our pixon definition
scheme can be described as follows:

              t
n

i
iPI

1=

=                  (2)

where I is the pixon-based image model; n is the
number of pixons; iP is a pixon, which is made up of a
set of connected pixels. The mean value of the connected
pixels making up of the pixon is defined as the pixon
intensity. Both the shape and size of each pixon vary
according to the observed image. After the pixon-based
image model is defined, the image segmentation problem
is transferred to a problem that labels the pixons. To
determine the set of pixons, we must obtain the number of
the pixons, the shape of the pixons. By maximizing

( )XIP , where I is the set of pixons and X is the
observed image, we can obtain an optimum pixon set.
Because the number of the pixons and the size of the
pixons can not be known in advance, it is difficult to
optimize ( )XIP . In our current implementation, we use
the method in [12] to obtain the pixon-based image model
and it is expressed by a graph structure. An example is
illustrated in Fig1. In Fig1a, 1P , 2P , 3P , 4P and 5P
represent five pixons, which form the pixon-based image
model. The pixon-based image model can be expressed by
the graph structure illustrated in Fig1b.
                                                         
3. Markov random field on pixon-based
image model

   Our Pixon-based image model is represented by a
graph structure ( )ETG ,= , where T is the finite set of
vertices of the graph, which represents the pixons in the
image model, and E is the set of edges of the graph,
which indicate that the two pixons are neighbors [13]. To
define a Markov Random Field on the pixon-based image
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model, we firstly introduce the following:
1) Neighbors: Two pixons are called neighbors if there is

an edge connecting them in the graph structure, which
means that there is at least a pair of neighboring pixels
belonging to the two pixons respectively.

2) Neighborhood system: a neighborhood system on the
graph structure G  can be expressed as

{ }TtNN t ∈= | , where tN  is a set of pixons in

T which are neighbors of the pixon t .
3) Clique: a clique is a fully connected sub-graph of G .
One of a finite set S of labels will be assigned to each
pixon in the image model. Such an assignment will be
called a configuration, which is denoted by ω . We
denote by tω the value given to the pixon t by the

configurationω . Let Aω  represent the configuration ω
restricted to the subset A of T , which is a configuration
on the smaller graph restricting T to pixons of A . A
Markov random field is defined if and only if the two
following conditions are satisfied:
1) ( ) 0>ωP
2) ( ) ( )

tNttTt PP ωωωω || =−

Ιt can be proved that each Markov random field is a Gibbs
distribution [14], which can be characterized by

             ( ) ( )ωω Ue
Z

P −= 1
                (3)

where
             ( )

∑
−=

ω

ωUeZ                   (4)

  

       
                     (a)

     
                     (b)
Figure 1. (a) Pixon-based image model. (b) The
corresponding graph representation.

( )ωU  is an energy function defined on the set of all
configurations ω by
             ( ) ( )∑−=

C
CVU ωω              (5)

Where C is a clique, and ( )ωCV  is called clique

potential associated with the clique C .
 Thus, the joint probability ( )ωP can be determined by

specifying the clique potential functions ( )ωCV . How to
choose the forms and parameters of the potential functions
for a specific problem is a major topic in MRF modeling.

4. Pixon-based image segmentation with
MRFs

   In this section, we will introduce our new pixon-based
image segmentation algorithm in detail. Multi-resolution
techniques are receiving considerable attention in various
fields, such as image restoration, medical imaging and so
on. In the field of image segmentation, there are a number
of methods related to multi-resolution techniques.
Pyramidal schemes and the multi-channel image modeling
are two commonly used techniques. It can be seen that our
pixon-based algorithm is a multi-resolution method.

4.1. New algorithm for image segmentation

   Let X  represent the observed image and Y  the
segmented image, which is a configuration ω  of the
graph structure representing the pixon-based image model.
Let us assume that the noise in the observed image X  is
independent Gaussian white noise. In the Bayesian image
segmentation framework, the segmented image is
            ( )XYPY

Y
maxarg* =            (6)

Where
       ( ) ( ) ( )YPYXPXYP ∝            (7)

Since we assume the noise in the image is independent
Gaussian white noise. And, if pixon jP belongs to class

K , then nug kPj
+= , where 

iPg is the pixon

intensity, ku is the mean value of class K  and n is the

noise, ( )YXP  can be written as follows:

          ( )
( )
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Where M is the number of class, iΓ represents the i th

class, pg is the pixon intensity, which is the mean value
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of the pixels making up of the pixon, iu and iσ is the
mean gray level and the variance of the class i
respectively. ( )YXP  expresses fidelity to the observed

image X .
The prior model is based on a Markov Random Field

and assumes that the intensity profile is piecewise
contiguous, and the adjacent pixons are likely to have
similar constituents. The probability density of Y can be
described as follows:

                 ( )
( )
T
YU

e
Z

YP
−

= 1
           (9)

Where 
( )

∑
−

=
Y

T
YU

eZ is a normalizing constant and

( ) ( )∑=
C

C YVYU is an energy function. We only

consider the cliques including two pixons in this paper. So
the clique potential ( )YVC  is

         ( ) ( )
ji PP
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==

η
        (10)

 if pixon iP and pixon jP have the same label, 0=ijη ,

or, 1=ijη . When the pixon intensities of pixon iP and

jP are similar, and they have different labels, the clique

potential associated with the pixon iP  and jP  will be
large. This means that the pixons having similar pixon
intensities have high probability to be labeled same.

Applying a logarithmic transformation to Eq. (7), we
can obtain
      ( ) ( )[ ] ( )[ ]YPYXPXYP lnln +∝
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So, we define the energy function as follows:
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Where Y  represents the segmented image. iΓ  is the

i th class; pg is the pixon intensity of pixon P . iu and

iσ are the mean value and variance of the i th class

respectively. ( )YVc  is the clique potential. α is the
coefficient, which represents the trade-off between fidelity
to the observed image and the smoothness of the
segmented image. Through minimizing the energy
function (12), we can obtain the segmented image.

4.2. Optimization

   We assume that the class number M is known, and
the parameter α is selected by experience. So, the
parameters of the model denoted by θ only include the
mean value u and the variance σ of each class. Given
the observed image X  and knowing the parameters θ ,
we need to find Y that minimizes the energy function

( )YE . Finding a global minimum of ( )YE , given all
the configurations ω is a practically difficult task. The
difficulty is further compounded by the fact that the model
parameters necessary for the segmentation are not known.
Hence, we attempt to find the optimal segmentation while
estimating the optimal parameters for the segmentation.
Therefore, the segmentation problem can be expressed in
the following two-step processes:
         ( )** ,minarg θXYEY

Y
=           (13)

         ( )θθ
θ

,maxarg ** YXP=           (14)

   In a word, the optimum segmentation and parameters
for the models are needed to evaluate by the segmentation
algorithm. The optimal parameters should predict image
data with a maximum probability.
   Given the segmented image and the observed image,
we use maximum likelihood algorithm to estimate the
mean and the variance of each class.
   There are many local and global optimization
techniques one can use to optimize the objective function,
given the parameters of the model. The energy function is
non-convex and has many local minima, so simulated
annealing algorithm is often used to find the global
minimum of the energy function. But the computational
cost is very high. So we implement a sub-optimal
algorithm to optimize the energy function. As long as a
better initial solution is given, the sub-optimal algorithm
also can find a satisfied solution. The proposed optimizing
method can be stated as follows:
1) Initialize ΓN , which represents the number of classes;

NUM , which denotes the iteration
number;

Γ
⋅⋅⋅ Nuuu 21, and

Γ
⋅⋅⋅ Nσσσ ,,, 21 according

to an initial segmentation, which is obtained using K-
means method; 0=i , which is the iteration index.

2) Initialize our pixon-based image model, that is to
assign a label k  representing the k th class to each
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pixon P , which minimize the expression kp ug − .

3) To each pixon P , we execute the following operation:
For each pair of mean and variance
( )kku σ, ( Γ⋅⋅⋅= Nk ,,1 ), we compute the value of the

energy function. We assign pixon P a label, whose
corresponding energy function value is minimal.

4) Repeat step 3 for L times. Then, according to the
newly obtained segmented image, we re-estimate the
mean value and variance of each class using a
maximum likelihood algorithm.

5) 1+= ii . If NUMi < , go to step 3, otherwise stop.

5. Experimental results

In this section, we illustrate the efficiency and power of
our approach and make a comparison with the traditional
MRF-based method using three images viz.,
1) a synthetic noisy image with three labels and size 128
×128 ( see Fig2( a));

2) the Baboon image of size 512×512 with gray scale
resolution of 256 gray scales (see Fig3 (a));

3) the Pepper image of size 512×512 with gray scale
resolution of 256 scales (see Fig4 (a));

   In order to see the pixon information of the images,
we displayed the edge pictures of the pixons in Fig2 (b),
Fig3 (b) and Fig4 (b) . In these images, white color
represents the edges of the pixons. There are more pixons
and the pixon size is smaller in the white parts of the edge
images than those in the black parts. From these edge
images of the pixons, we can see that there are more
pixons and the pixon size is smaller in the parts of the
original image, where there are more details. It
demonstrates that the pixon-based image model is a multi-
scale description of the image waiting for segmentation.
Fig2 (c), Fig3 (c), and Fig4 (c) give out the segmentation
results of the traditional MRF-based methods. The
segmentation results of our approach are illustrated in
Fig2 (d), Fig3 (d), and Fig4 (d). From these segmentation
results, we can see that the segmentation results of our
approach are comparable with that of the traditional MRF-
based methods. Moreover, the computational burden of
our approach is decreased greatly, which can be seen from
table 1 and table 2. In table 1, the column I , column II
and column Ⅲ are the number of pixons, the number of
pixels and the ratio between them respectively. In table 2,
the computational time required of the traditional MRF-
based method and our approach, based on 550MHz
processor are listed out by column I and column Ⅱ. And
the column Ⅲ gives out the ratio between them. To be
comparable, our approach and the traditional MRF-based
method adopt the same optimization method described in
section 4.2. From table 2, we can see that though it spends

some computational time to create the pixon-based image
model, the total computational time is decreased greatly.
So, we can conclude that the computational cost
decreased sharply when pixon concept is incorporated
into the image segmentation process, and at the same time
the segmentation results of our approach is comparable to
those of the traditional MRF-based method. We can also
see that images with more details need more pixons to
describe it and therefore the pixon size is smaller.

            
         (a)                       (b)
  

            
          (c)                      (d)

Figure 2. Segmentation results of synthetic image. (a)
Original image. (b) Edge image of the pixons. (c)
Traditional MRF method. (d) Our approach.

         
            (a)                     (b)

         
            (c)                      (d)

Figure 3. Segmentation results of the baboon image.
(a) Original image. (b) Edge image of the pixons. (c)
Traditional MRF method. (d) Our approach.

   The parameters used in our experiments are as follows:
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α in the energy function is 1500; the total iteration
number NUM is 20; L that determine the frequency to
re-estimate the parameters is 5, which means that after 5
iterations the mean value and the variance of each class
are estimated again.

         
 (a)                       (b)

         
        (c)                        (d)

Figure 4. Segmentation results of the pepper image. (a)
Original image. (b) Edge image of the pixons. (c)
Traditional MRF method . (d) Our approachl.

Table 1. Pixon and pixel number

Images I Ⅱ Ⅲ

Synthetic
Image 3155 16384 19.3%

Baboon Image 57400 262144 21.9%
Pepper Image 16138 262144 6.2%
Cortex Image 3408 40000 8.52%

Table 2. Computational time
  

Images Ⅰ Ⅱ Ⅲ

Synthetic
Image

8483 4096 48.2%

Baboon Image 133322 65904 49.4%
Pepper Image 132130 31494 23.8%
Cortex Image 15552 6159 39.6%

6. Conclusions and future work

In this paper, we proposed a novel image segmentation
algorithm, which is based on the pixon concepts and the
Markov random fields. In our algorithm, we put forward a
new pixon definition scheme that is more suitable for
image segmentation than the “fuzzy” pixon definition
scheme. Because pixon concept is incorporated into our

method, the computational cost decreased greatly
compared to traditional MRFs-based image segmentation
algorithm. Our algorithm has a high ability to resist noise,
which can be seen from Fig2, because our method is also
based on Markov random fields incorporating prior
knowledge into the segmentation process. The results
obtained indicate a promising direction for further
research on pixon-based image segmentation. The
experimental results demonstrate that our algorithm
performs fairly well and the computational cost is
decreased greatly.

In future, we will contunue our research on the
following aspects: 1) Perfecting our pixon definition
scheme for image segmentation; 2) Incorporating our
pixon definition scheme into other traditional image
segmentation method.
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