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Abstract

This paper presents an real-time interaction system
which consists of human motion tracking using skin-color-
based Gaussian blobs and human motion synthesis based
on real-time inverse kinematics. Our purpose is to do seam-
less mapping of human action in the real world into virtual
environments. In general, virtual environment applications
such as smart interaction require real-time human motion
tracking without special devices or markers. For the sake
of realization of smart interaction, we assume that virtual
objects existing in virtual environments can afford human
figure action, that is, the virtual environments can provide
action information for human figure model, or avatar. In
this paper, we demonstrate a real-time, on-line and smart
desktop interaction which realizes high-level action recog-
nition through interaction with virtual objects.

1. Introduction

Man-machine seamless 3-D interaction is an important
tool for various interactive systems such as virtual reality
systems, video game consoles, etc. To realize such inter-
action, the systems have to estimate motion parameters of
human bodies in real-time. Up to the present, as a method
for human motion tracking, many motion capture devices
with special markers or magnetic sensor attachments have
been employed. Since they need special marker-sensors,
they often impose physical restrictions on the objects, or
the humans.

On the other hand, recently, various image-feature-
based motion capturing systems which do not impose
such restrictions have been developed as computer vision
applications[1]. Although the vision-based approach still
has problems to be solved, it is a very smart approach which
can achieve seamless human-machine interaction. There-
fore, we are undertaking to develop an image-feature-based

motion capturing system, giving consideration to alleviat-
ing scene constraints and physical constraints imposed on
the system as little as possible.

To analyze human motion, image features such as blobs
(coherent region)[1][3][4] are usually employed. Many re-
searchers have developed skin-color region tracking and
stereo reconstruction methods using general region cluster-
ing. In particular,Pfinder[1] has shown that blob tracking is
applicable to many simple applications. Recently,purpose-
ful human motion[5] employing the above blob tracking has
been proposed. It is based on an analysis and synthesis
framework with dynamics engine[2] and an HMM based
multiple behaviour model. The method is applied to upper
body motion estimation, and temporary occlusion in the in-
tersection between blobs of both hands or head-and-hand
is handled, although the method does not solve the corre-
sponding problem yet. In gesture recognition systems, as
well as in human motion tracking, human motion primitives
are also dealt with. In these systems, gesture representation
is symbolically defined, and the system input acquired by
usual 2D vision process can be used as only 2D-based ac-
tion signals. Such 2D-based approaches are not appropriate
for our purpose, which has to generate actual 3-D body pos-
tures, or 3-D positions of head, arms, feet, etc.

In our case, i.e., in case of object manupulation in vir-
tual environments, the most important point is that every
task in the virtual environments is strongly related to, or af-
forded by, objects in the virtual environments. In particular,
if the work space is constrained only in a virtual environ-
ment, and if 3D human motions achieved in the real world
are only used to manipulate objects in the virtual environ-
ment, vision process can be simlified. In other words, the
virtual environment provides action information for human
figure model, and all the detected events can be interpreted
so as to be matched with the virtual environment, while mis-
matched interpretations can be abandoned. Use ofa priori
knowledge for the virtual objects can make vision process
robust and can make it possible for the stystem to under-
stand high-level action byafforded information, although



usual vision process focuses on real-world sensing under
uncertain environments.

See the following example of high-level action in a vir-
tual environment:

A user grasps a cup and a teapot,
he fills the cup with water,
and then he drinks the water.
Since the virtual objects are completely understood by

the system, action interpretation can be realized through in-
teraction among the objects and the user. High-level action
is represented by a chain of symbolized action fragments
through interaction with the virtual objects. As a result, mo-
tion trajectory constructed by the user’s input can be identi-
fied as an practical example ofinteraction scenario. More-
over, considering the scene context, detail of motion which
is difficult to acquire for vision process can be automatically
generated as a secondary motion.

In this paper, we present blob-based human motion anal-
ysis (Section 2), and a real-time motion synthesis method
which can estimate human postures with limited perceptual
cues (Section 3). And then we show an overview of our
real-time interaction system.

2. 3D Blob Tracking

In general, to extract a rough sketch of human body from
the image, coherent image regions, or Gaussian blobs are
mainly used as an effective visual features. However, in
fact, observed regions of a face and hands in the image var-
iously change their shapes, sizes and motions. In this case,
to classify pixels with skin color as a blob, that is, to seg-
ment each blob, the detailed shape of the blob should be
caught. In particular, since regions with skin color such as a
face or hands are uniform and have very similar colors, it is
almost impossible to make exact distinctions among them
only from color information. Therefore, not only color in-
formation but also shapes of region boundaries must be con-
sidered. Therefore, we introduce a deformable shape prop-
erty to Gaussian blob.

2.1. Skin Color Detection

As a low-level vision process, we use skin color detec-
tion to extract several blobs.

1. Background subtraction and detection of bounding
box: Bounding box containing a human body is detected
after background image subtraction and thresholding are ap-
plied.

2. Color identification: In this system, skin color regions
observed in an input image are interpreted as hands and a

face blobs. We assume their colors can be represented in
a simple parametric form which is relatively robust for il-
lumination changes. In other words, we assume their color
features (r,g,b) of each pixel are represented in the follow-
ing quadratic equations of intensityi:

R = R2i
2+R1i, G = G2i

2+G1i, B = B2i
2+B1i (1)

For skin color to be identified, six model parameters, or co-
efficients,R1, · · ·, B2 are estimated in advance from a train-
ing data set, or real skin color blob images. In color identi-
fication, system computes the following error between ob-
served color features (r, g, b) of a pixel and the model color
features (R, G, B) calculated, according to the above equa-
tion, from the intensityi of the pixel.

error = (r̂ − R̂)2 + (ĝ − Ĝ)2 (2)

where,r̂ = r/(r + g + b), ĝ = g/(r + g + b), R̂ = R/(R +
G + B), Ĝ = G/(R + G + B).
The system identifies color of a pixel as a color giving the
minimum error that is less than a certain threshold value.

2.2. 2D blob Tracking by Pixel Classification

Blob Formulation Gaussian blob (i.e., ellipse)e = (µ,Σ)
is described as a statistical Gaussian model, a meanµ and
a covarianceΣ. Since our explicit goal of 2D blob track-
ing is to estimateµ stably, it is necessary to do exact pixel
classification, or exact region boundary detection.

In addition, we extend a blob definition so that local de-
formation can be represented:

p(s) = e(s) + d(s) (3)

where, d is an additional deformation term ands is a
perimeter.

Initial labelling: In each frame, initial labeling of blobs
are executed as follows:

1. Skin color detection mentioned above is achieved,
and pixels within the bounding box are classified into
either skin color pixels, non-skin-color foreground
ones, or background ones.

2. Pixels classified as skin color ones are clustered into
initial blobs based on the spatial proximity to the
blobs detected in the previous frame.

3. Temporary moment parameters of each initial blob,
(µ’, Σ’) are calculated.
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Figure 1. (a)Deformable ellipse. (b)Local
search region.

Local boundary search by a deformed ellipse: The sec-
ond step is to estimate exact local region boundary using
(µ’,Σ’). For the sake of an estimation of the local region
boundary, a search region is aligned with envelop points of
the perimeter (seeFigure1). At each search points, likeli-
hood of region boundary is computed in the local support
(i.e., windowW ), and then the point having maximum like-
lihood is acquired. Although a visual feature of edgeness is
usually employed to detect region boundary, a lot of edges
within regions of shirt and pants, which are adjacent to re-
gion of skin color, are also observed. Therefore, in this pa-
per, as likelihood of region boundary, the following separa-
bility J(p) is employed.

if
∑

(xi,yi)∈W

n(xi, yi) > 0, then

J(p) =

∣∣∣∣∣∣
NW

2
−

∑
(xi,yi)∈W

p(xi, yi|skin)

∣∣∣∣∣∣

−1

(4)

otherwiseJ is set to minimum value.
p(xi, yi|skin) is likelihood of skin color,NW is the num-
ber of pixel within W , and n(xi, yi) = pip · µ′p (see
Figure1(b)). Hence,d(s) is determined byp which max-
imizes J(p). Because blobs often moves variously and
change their shapes non-rigidly, the correspondence calcu-
lation in successive frames is not robust. Therefore an ap-
proach without explicit correspondence calculation, which
consists of initial labeling and expansion/shrink of ellipse,
works better. By gathering the center of massµ within the
deformed ellipse again, the 2D position of a blob is exactly
modified.

2.3. Estimation of 3D blobs

When a 2-D blob is detected in two views, or in multi-
ple views, the 3-D position of the blob can be estimated by
stereo vision. In blob tracking, precise estimation is not re-
quired and, therefore, we have employed a simple but fast

multi-view fusion strategy. The algorithm of 3-D blob po-
sition calculation adopted here is as follows: according to
camera calibration information, for each of the views, a line
of sight, or a vector from the origin of the camera coordi-
nate system to the center of mass of the blob, is calculated.
Referring to the lines of sight, the 3-D position of each blob
is calculated. When a line of sight calculated for one view
is parameterized asT1 = o1 + t1d1 (t1 is a parameter),
and the rest of the lines of sight asTj = oj + tjdj (tj is
a parameter;j = 2, · · · , J), the intersection pointT is ap-
proximated as a point on the line of sightT1 whose average
distance to the other lines of sight is smallest in the sense of
the least squares error.

T = o1 −
∑J

j=1(d1 × mj,o1 × mj − nj)∑J
j=1 ||d1 × mj||2

d1, (5)

where

mj =
dj√

1 + ||oj × dj||2
,nj =

oj × dj√
1 + ||oj × dj||2

.

3. Model Fitting for Perception Data

3.1. Real-time Inverse Kinematics

Information acquired in 3D vision process is just 3-D po-
sitions of blobs, which correspond to a torso, a head, hands
and feet of human body. Therefore, to estimate the other
body posture from these cues, the number of which is less
than the degree of freedom of the body, we have to solve
the inverse kinematics. In our case, a human full body is
represented as a multi-part articulated object, or as 14 parts
with 23 degrees of freedom, and the 3D blob positions are
given as the goal positions, or the end effectors. Of course,
there are approaches in which knees and elbows are de-
tected based on contour analysis, or silhouette analysis, but
they cannot stably detect those positions for many postures.

The goals of inverse kinematics which we have designed
can be summarized as follows:

• Inverse kinematics of four connecting links, which
are two arms and two legs, can be solved in real-time.

• Even when goal positions (3-D blob positions) given
by 3D vision process are not precise, a solution can
be derived to some extent.

• The solution gives us continuous and natural-looking
motion of human body.

In our case, as mentioned above, the 3-D blob positions
acquired by the vision process are sometimes imprecise. In
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other words, the goal positions are sometimes established
at positions where physically possible solutions cannot be
derived. Therefore, we interpret each of the given goals as
the combination of the direction of goal and the distance to
goal. When the goal position is located where physically
possible solution can not be derived, we find a solution in
which the direction of the connecting link coincides with
the goal direction.

gw
i = TbRb(0, Ry

b, Rx
b)Rb′(Rz

b′ , 0, 0)
Tl1Rl1 (Rz

l1 , Ry
l1 , 0)Rl′1(Rz

l′1 , 0, Rx
l′1)

Tl2Rl2 (0, 0, Rx
l2) te

(6)

where gw
i = (gw

x , gw
y , gw

z , 1)T is a goal vector (i =
1, · · · , 4); Tb, Rb and Rb′ are matrices representing the
body pose;Tl1 , Rl1 ,Rl′1 , Tl2 andRl2 are pose matrices
related to link 1 (L1) and link 2 (L2) respectively;t e is a
translation vector related to the end-effector position of L2.

Here, some rotation elements are represented in two
matrices—Rl1 andRl′1 of L1, for example. We have di-
vided the original rotation matrix into two matrices to sim-
plify analytical solution of our inverse kinematics. InR,
Rz, Ry, Rx represent roll, pitch, and yaw angle respectively
(see [8]).

3.2. Natural-looking Motion Adaptation from Mo-
tion Capture Data

Parameters which are not represented explicitly in the
solution of the inverse kinematics, such as the pitch of el-
bow (Rz

l′1 ) (we call it characteristic angle), can be used
to control more natural-looking human body posture if nec-
essary. In this paper, we have used a pre-learned constant
value based on measurements of limb postures, which is
measured by using color-marker based motion capture de-
vice. The learning process is realized by estimating the typ-
ical characteristic angle for various real arm or leg motions.

4. Smart 3D Desktop Interaction

Based on the 3D vision process and the motion synthe-
sis the above mentioned, we have developed a real-rime 3D
desktop interaction system, which has vision-based 3D mo-
tion input, and which can control human figure model.

Features of the system are summarized as follows:

• Vision-based 3D motion input without any special
markers (head and hands)

• Real-time motion synthesis by model fitting, based on
analytical inverse kinematics from limited perceptual
data, or physically-based motion synthesis1

1 In this paper, the detail of the latter method is omitted.

• Error recovery for robust vision process

• Affordance-based high-level action recognition

• Support of variousinteraction scenarios

In the next, we show about affordance-based high-level
action recognition, and error recovery for robust vision pro-
cess.

4.1. Affordance-based Human Action Recognition

We assume that each object in the virtual environments
affords essential information about user’s actions. For ex-
ample, when a user stretches his arm for a cup, on the shelf
and grasp it, the virtual object, or the cup predicts that it
may be grasped and moved. Therefore, supposed that each
virtual object drives the reaction, an intentional action for
the user can be recognized for the system, according to 3D
action input estimated by the vision process.

Chaining action informationafforded by virtual objects,
or action fragments obtained through interaction among the
user and the virtual objects, high-level action recognition
can be realized. The concrete examples will be shown in
the experiments.

4.2. Error Recovery for Robust 3D Vision Process

Action informationafforded by virtual objects can also
make 3D vision process robust. We propose landmark mon-
itoring based on action informationafforded by virtual ob-
jects. The landmark indicates a 2D position of a virtual ob-
ject, which is calculated by projecting its 3D position for
each camera view. Our landmark monitoring algorithm is
achieved as follows: Using the virtual camera model de-
fined by calibration data acquired in advance, 3D positions
of virtual objects are projeted for each camera view. By
monitoring the projected 2D positions, even if the tracking
of the blob fails, the blob can be captured and tracked again
when the blob encounters the monitored landmark.Figure2
shows an example of projected landmark points overlayed
in the real images (four white blocks) and the objects (cube,
cup, cylinder and teapot).

For each visible object, whose action is defined, the fol-
lowing process is executed.

1. 2D monitoring Set search windows around each land-
mark point, and then check whether 2D blob is found
by observing skin color fragment.

2. 3D checking Check whether a 3D blob is found by in-
tegrating the results of multiple views. If a 3D blob
is found, then we determine it corresponds to a lost
blob, and the blob trajectory is modified.

The algorithm is also employed in detecting default user
position.
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Figure 2. (left) Four landmark points of virtual
objects. They are overlayed in two real im-
ages. (right) The virtual objects (cube, cup,
cylinder and teapot).

Camera

User

Figure 3. Interaction system overview: (left)
the real scene. (right) the virtual scene.

5. Experiments

A prototypical system developed here is a desktop-type
3D interaction system, and perform in real-time and on-line
from vision process to rendering. We have implemented the
system on a PC (Pentium III 850MHz x2), which has two
IEEE1394 based camera (Figure3). The system executes
three main modules: The first module is image capturing
and 2D image analysis, the second one is 3D estimation
and model fitting, and the last one is rendering and engine
of interaction scenario. A user controls CG avatar in the
virtual environment by handling his action. Registration of
real scene and virtual one is archived in advance.

In order to demonstrate high-level action recognition, we
have constructed a chain of user’s action events as an in-
stance ofinteraction scenario. The interaction scenario is
promoted through real-time interaction by user’s 3D mo-
tion.

scenario#1: Object manipulation - avatar handles
teapot and cup - Table1 shows the practical example of
the interaction scenario. The right column in theTable
1 indicates user’s input action, and the left column indi-
catesafforded motion with each virtual object. Observing
afforded action for each virtual object, high-level actions

which the user intends can be understood.Figure4 shows
several shots of the real interaction scene. The number in
theTable1 corresponds to scene number(1-8). No.1 is the
initial scene. No.2-8 correspond to the scenes after exe-
cuting the user’s (avatar’s) action in the scenario#1 respec-
tively. According to the scenario,afforded action is properly
derived, and interaction among the objects and the avatar is
realized. This means that recognition of high-level action is
achieved2.

1. 5.

2. 6.

3. 7.

4. 8.

Figure 4. Scenario#1: - Avatar handles a
teapot and a cup -

scenario#2: Interaction with virtual robot The next
scenario consists of interaction among the avatar and a vir-
tual robot.Figure5 shows several shots of the real interac-
tion scene.Table2 shows the practical example ofthe in-
teraction scenario. The number in theTable2 corresponds
to scene number(1-4). No.1 is the initial scene. No.2-4 cor-
respond to the scenes after executing the user’s (avatar’s)
action in the scenario#2 respectively. According to the sce-

2 In these shots, secondary motion should be generated fromafforded
action is omitted.
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nario,afforded action is properly derived, and then, robot’s
reactions are automatically generated from theirafforded
actions.

No. object afforded user’s action user’s action
left hand reaches CUP

CUP grasp and move
2 left hand reaches on the DESK
3 right hand reaches TEAPOT

TEAPOT grasp and move
4 right hand reaches CUP

CUP fill with water
5 return TEAPOT

TEAPOT release on the SHELF
7 left hand reaches mouth

CUP drink the water
8 left hand reaches on the DESK

Table 1. The practical example of Scenario #1.

No. object afforded action user’s action
2 hand reaches robot

ROBOT recognize handshake
and move robot’s hand

hand reaches robot’s hand
ROBOT keep handshake

3 shake hand
4 return hand

release handshake

Table 2. The practical example of Scenario #2.

6. Conclusion

In this paper, we have shown a real-time 3D interaction
system based on a human motion analysis without special
marker-sensors, and based on human motion synthesis. We
have adopted deformed blob model to catch exact skin blob
region. We have also introduced inverse kinematics to re-
alize human body motion synthesis from a limited number
of perceptual cues. We have applied these basic analysis
and synthesis techniques to smart interaction which works
in real-time and online. Assuming that virtual objects exist-
ing in virtual environments can afford human figure actions,
high-level action recognition can be realized.

As future works, we will plan to extend our interaction
system to physically controlled virtual environments, and
to adapt it to wider virtual environment by employing fulll
body motion. Events of the other real objects must be also
taken in virtual environments.

1. 3.

2. 4.

Figure 5. Scenario#2: Avatar shakes hand
with virtual robot.
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