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Abstract 
       Shape is one of the primary low level image features 
in Content Based Image Retrieval (CBIR). Many shape 
representations and retrieval methods exist. However, 
most of those methods either do not well capture shape 
features or are difficult to do normalization (making 
matching difficult). Among them, methods based Fourier 
descriptors (FDs) achieve both good representation 
(perceptually meaningful) and easy normalization. 
Besides, FDs are easy to derive and compact in terms of 
representation. Design of FDs focuses on how to derive 
Fourier invariants from Fourier coefficients and how to 
obtain Fourier coefficients from shape signatures. 
Different Fourier invariants and shape signatures have 
been exploited to derive FDs. In this paper, we study 
different FDs and build a Java retrieval framework to 
compare shape retrieval performance using different FDs 
in terms of computation complexity, robustness, 
convergence speed and retrieval performance. The 
retrieval performance of the different FDs is compared 
using a standard shape database.  
Keywords: CBIR, Shape, Fourier descriptors, Retrieval. 
 
 
1. Introduction 

 
In the newly emerged multimedia application CBIR, 

shape is exploited as one of the several primary low level 
image features for image retrieval [8]. Many shape 
representations and retrieval methods exist. However, 
most of those methods either do not well capture shape 
features or are difficult to do normalization (making 
matching difficult). Among them, methods based Fourier 
descriptors (FDs) achieve both good representation and 
easy normalization. Besides, FDs are easy to derive and 
compact in terms of representation.  

Various FD methods have been reported in the 
literature, these include using FD for shape analysis 
[10][12], character recognition [2][7], shape classification 
[5] and shape retrieval [3][9][11][13]. In these methods, 
different shape signatures and different Fourier invariants 

have been exploited to obtain FDs. However, FDs derived 
from different signatures has significant different 
performance on shape retrieval. In this paper, we compare 
shape retrieval using FDs derived from different shape 
signatures and from different Fourier invariants in terms of 
computation complexity, robustness, convergence speed 
and retrieval performance. The rest of the paper is 
organized as following. In Section 2, we introduce FD and 
affine Fourier invariants. Section 3 discusses different 
shape signatures used to derive FD and in Section 4, we 
analyze the convergence speed of the Fourier series of 
each shape signatures. Section 5 gives retrieval 
performance of each FDs. We concludes the paper in 
Section 6.  

 
2. Fourier Descriptors 
 
      For  a  given  shape  defined by a  closed  curve C  
which in turn  is represented by a one  dimensional 
function  u(t), called  shape  signature. At every time t, 
there is a complex u(t), 0<t<T, T is  the period of t. Since 
u(t) is periodic, we have u(t+nT) = u(t). The discrete 
Fourier transform is given by  
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The coefficients an,  n = 0, 1, …, N-1, are used to derive 
Fourier descriptors (FDs) of the shape. 
 
2.1 Fourier Descriptors 
 

The general form for the Fourier coefficients of a 
contour generated by translation, rotation, scaling and 
change of start point from an original contour is given by: 

 
an = exp(jnτ)⋅⋅⋅⋅exp(jφ)⋅⋅⋅⋅ s ⋅⋅⋅⋅ an

(o) 

 
where an

(o) is the nth Fourier coefficient of the original 
shape. To achieve translation, rotation invariance, phase 
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information of the an are ignored and only the magnitudes 
|an| are used. Scale invariance is achieved by dividing the 
magnitudes by the DC component, i.e., |a0|. The 
normalized Fourier coefficients are called FD. The 
similarity between a query shape Q and a target shape T is 
measured by the Euclidean distance between their FD 
representations. Different u(t) have been used to derive 
FD, they will be discussed in Section 3. 
 
2.2 Affine  Fourier Invariants 
 
      The above normalization generates shape descriptors 
invariant under translation, rotation, and scaling. It is also 
desirable for a shape representation to be invariant to 
affine transform to address shapes obtained from different 
views of objects. Arbiter [1] has proposed the use of the 
following affine invariants as Fourier descriptors. 
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where Uk = (Xk, Yk )T and Xk, Yk are the Fourier coefficients 
of x(t), y(t) respectively,  p is a constant and p≠0. 
However, Qk cannot be derived from the shape signatures 
described in Section 3. To derive affine Fourier invariants, 
the Fourier transform derived from an analytic solution 
originally used by Arbert [1] is used. 
 
3. Shape Signatures 
       
      Fourier descriptors are derived from a shape signature. 
In general, a shape signature u(t) is any 1-D function 
representing 2-D areas or boundaries. Different shape 
signatures have been used to derive FD, in this section we 
describe these shape signatures in details. In the following, 
we assume the shape boundary coordinates (x(t), y(t)), t = 
0, 1, …, N-1, have been extracted in the preprocessing 
stage, t usually means arclength. In our implementation, 
the shape boundary points are extracted through a 8-
connectivity contour tracing technique [6]. For notation 
convenience, different function names will be employed to 
denote different shape signatures.  
 
3.1 Complex Coordinates 
 
       A complex coordinates function is simply the complex 
number generated from the boundary coordinates: 
 
z(t) = [x(t)- xc] + i[y(t)- yc] 
 
where (xc, yc) is the centroid of the shape, which is the 
average of the boundary coordinates 

∑
−

=

=
1

0
)(1 N

t
c tx

N
x  ∑

−

=
=

1

0
)(1 N

t
c ty

N
y  

 
z(t) is a straightforward representation of shape boundary. 
z(t) is a translation invariant signature. The advantage of 
using complex coordinates function is it involves no extra 
computation in derive shape signature.  
 
3.2 Centroid Distance 
 
      The centroid distance function is expressed by the 
distance of the boundary points from the centroid (xc, yc) 
of the shape  
 
r(t) = ([x(t) – xc]2+ [y(t) - yc]2)1/2 

 
r(t) is invariant to translation. Computation of r(t) is  low. 
Figure 1 shows the centroid distance signatures of the an 
apple shape (referred to as the apple in this paper).  
 

 

Figure 1. The centroid distance signatures of an apple. 
 
3.3 Chord Length Signature 
 
      The chord length function r*(t) is derived from shape 
boundary without using any reference point. For each 
boundary point p, its r*(t) is the distance between p and 
another boundary point p′ such that pp′ is perpendicular to 
the tangent vector at p. This definition can cause 
ambiguities when the line of pp′ pass through more than 
one boundary points. To solve this problem, another 
constraint is added by limiting pp′ within the shape. For 
example, in Figure 2(a), p1 is one of the candidates for p′, 
however by checking the middle point p2 of pp1, p1 should 
be eliminated because p2 is not within the shape. If p2 is 
still within the shape, the middle point of pp2 and the 
middle of p1p2 are checked by the second constraint. This 
process is repeated until a middle point is found to be 
outside the shape. If after this recursive checking process, 
no outer middle point is found, then p′ = p1. The r*(t) 
overcomes the biased reference point (which means the 
centroid is often biased by boundary noise or defections) 
problems, however, the non-reference-point representation 
can cause problem when shape is traced in different 
directions. For example, for point q on shape (b), its chord 
length will be qq1 when tracing in counter clockwise, 
however, it will be qq2 when tracing in clockwise. This 
will result in quite different shape signatures for mirrored 
shapes. In addition, r*(t) is very sensitive to noise, there 
may be drastic burst in the signature of even smoothed 
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shape boundary. To reduce noise sensitivity, a post-
processing using an average filter (width=7) is attempted 
to eliminate false features (Figure 2(b)(c)). r*(t) is 
invariant to translation. The computation to derive r*(t) is 
expensive. 
 

  
(a)           (b) 

 

 
(c) 

 

 
(d) 

                     
Figure 2. (a) chord length at p; (b) multiple chord length at 

q; (c) r*(t) of (a); (d) average smoothed r*(t) of (c). 
 

3.4 Cumulative Angular Function 
 
      Intuitively, the tangent angles of the shape boundary 
indicate the change of angular directions of the shape 
boundary. The change of angular directions is important to 
human perception. Therefore, shape can be represented by 
its boundary tangent angles: 
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where w, a integer, is a jump step used in practice. 
However the tangent angle function θ (t) can only assume 
values in a range of length 2π, usually in the interval of [-
π, π] or [0, 2π]. Therefore θ (t) in general contains 
discontinuities of size 2π. Because of this, a cumulative 
angular function is introduced to overcome this problem. 
The cumulative angular function ϕ(t) is the net amount of 
angular bend between the starting position z(0) and 
position z(t) on the shape boundary 
 
ϕ (t) = [θ (t) - θ (0)]mod(2π)    (3.4.2) 
 
ϕ (t) is continuous at places where θ (t) is multiples of 2π. 
ϕ (t) is 2π periodic, it is suitable for Fourier transform. 
The normalized variant of ϕ (t) is defined by Zahn and 

Roskies [10] using normalized arclength (assuming 
boundary is traced counter clock-wise) 
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The subtraction of t from the cumulative angles makes 
ψ(t)≡0 for a circle and ψ(t)≠0 for other shapes. This 
conforms to human intuition that a circle is “shapeless”. 
An example of ψ(t) is given in Figure 3. 
 

   
Figure 3. ψ(t) of the apple. 

 
ψ(t) is invariant under translation, rotation and 

scaling. Cumulative angular signature uniquely describe a 
shape. However, boundary noise can cause much bigger 
change in the representation than the change in centroid 
distance therefore, the structure of ψ(t) is usually much 
more rugged than r(t) (Figure 3). Since cumulative angular 
signature is derived from boundary tangents which are 
actually the first derivatives of the boundary coordinates, 
it usually contains discontinuities in the representation. As 
can be expected, its Fourier series converge rather slowly 
(see Section 5). 
 
3.5 Curvature signature 
 
        Curvature is a very important boundary feature for 
human to judge similarity between shapes. It is not 
surprise that many researchers use curvature for shape 
representation. Curvature function is given by 
 
 κ(t) = dθ /dt                                                      (3.5.1) 
 
where θ is defined in (3.4.1). Although curvature is 
important curve feature, there is a problem for using 
curvature as shape representation. For many digital curve, 
especially for polygonal curve, θ(t) is a step function, so 
κ(t) is zero almost everywhere and infinite at the discrete 
jumps of θ(t). This makes κ(t) a poor candidate for shape 
representation. In order to use κ(t) for shape 
representation, a smooth curvature function should be 
derived. It is appealing to use Fourier reconstructed shape 
to derive curvature as the reconstructed shape is an 
approximation to the original shape and is smooth. The 
reconstructed ψ(t) is used to derive the smoothed 
curvature k(t) [10]. Figure 4(a)(b) show the different 
curvature signatures of the apple. It is clear that (b) is 
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more stable than (a). Although k(t) works well for polygon 
shapes, however, for non-polygon shapes, shape features 
may be lost in the smoothed curvature representation. 
 

 
          (a)          (b) 
 

Figure 4. (a) κ(t) of the apple;  (b) k(t) of the apple. 
 

3.6 Area Function 
 
        When the boundary points change along the shape 
boundary, the area of the triangle formed by the two 
boundary points and the center of gravity also changes 
(Figure 5(a)). This forms an area function which can be 
exploited as shape representation. 
 
 

  
    (a)           (b) 

 
 

 
(c) 

 
Figure 5. (a) area function of the apple; (b) area of a 
triangle; (c) A(t) of the apple. 

 
For the triangle formed by o, p1 and p2 in Figure 5(b), 

its area is given by [35] 
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For each boundary points, the area of the triangle with 5 
degree angle at vertex o is calculated. Figure 5(c) shows 
the A(t) of the apple. 
      It has been found that A(t) is very similar to r(t). 
However A(t) is more computation expensive than r(t). 
Due to the numerical error in calculating angles, A(t) is 

more rugged than r(t). The derivation of A(t) involves 
more computation than that of r(t). A(t) is linear under 
affine transform, this property can be exploited to generate 
affine invariant FDs from A(t). However, this linearity 
only works for polygon shape sampled at its vertices. For 
polygon shape which is sampled at every point, the A(t) 
may not be linear under affine transform due to the change 
of boundary perimeter. The sampled points on the original 
shape may not exist at where they are on the affined shape. 
The vertices are usually kept after affine transform, but 
finding vertexes and polygon approximation are 
themselves non-trivia issues.  
 
4. Convergence Speed 

 
In the above, different shape signatures have been 

described in details. The shape signatures are used to 
derive FDs, which are the normalized Fourier coefficients 
of Fourier transform on a shape signature (Section 2). In 
practice, to represent a signal, only finite number of 
coefficients are used to approximate the signal. To use 
limited Fourier coefficients to represent a shape, the 
Fourier series has to be truncated to finite elements. For 
shape retrieval application, the number of coefficients to 
represent a shape should not be large, therefore, the 
convergence speed of the Fourier series derived from the 
signature function is crucial. The faster the convergence, 
the less number of Fourier coefficients is needed to 
represent the shape. In the following we study the 
convergence speed of the Fourier series derived from each 
shape signature function. 
      Ten very complex shapes (Figure 6) are selected to 
simulate the worst convergence cases in the database. The 
average convergence speed  for each signature function is 
calculated. For z(t), r(t), r*(t) and A(t), their spectra are 
normalized by a0, or the DC component. For κ(t), ψ(t), 
k(t), their spectra are normalized by a1, or the first Fourier 
coefficients. Qk is itself a normalized invariants. The 
number of normalized spectra greater than 0.01 is given in 
table 1. 
 
 

 
 

Figure 6. 10 complex shapes used to simulate worst 
convergence speed of FD. 
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Table 1. Comparing convergence speed of Fourier series 
of each shape signature 
 

 
Signature functions 

 
Number of 

normalized spectra 
greater than 0.1 

 
Number of 

normalized spectra 
greater than 0.01 

 
r(t) 15 120 
r*(t) 40 360 
A(t) 20 210 
z(t) 10 50 
ψ(t) 40 280 

κ(t) ∞ ∞ 
k(t) 100 600 

Qk 20 100 

 
From the table, it clear that r(t), z(t), and Qk converge 
rather fast, r*(t), A(t), and ψ(t) converge satisfactorily, k(t) 
converges rather slowly, while κ(t) converges so slowly 
that very large number of coefficients is needed to 
represent the shape effectively, which is not practical in 
shape retrieval application. If we set Fourier coefficients 
with normalized spectra energy greater than 10-2 as 
significant shape features, then 60—600 Fourier 
coefficients will represent shape well in most cases. If we 
note that except z(t), all the other signature functions are 
real functions, therefore, only half of the coefficients are 
distinct. Then for r(t), z(t), and Qk, 60 Fourier coefficients; 
for r*(t), A(t), and ψ(t), 150 Fourier coefficients and for 
k(t) 200 Fourier coefficients are reasonable choice of 
number of coefficients as shape representation, taking into 
consideration of the tradeoff between accuracy and 
efficiency.  
 
5. Retrieval Performance 
 
      To test the retrieval performance of the FDs derived 
from the discussed shape signatures and affine invariants, 
a Java online indexing and retrieval frame work is 
implemented and a database consisted of 1400 shapes is 
created from Set B of the MPEG-7 contour shape 
database. The shapes in Set B are grouped into 70 classes 
of perceptually similar shapes. Most of the shape images 
in set B are quite large (400×400 to 800×800), to save 
computation cost in the indexing, either sampling or 
scaling can be exploited. In the implementation, all the 
shape images in the database are scaled to 128×128, the 
signatures are derived from all the points on the shape 
boundaries. 

All the 1400 shapes in the database are used as 
queries. The common retrieval performance measure –  
precision and the recall [14] – are used as the evaluation of 
the query results. For each query, the precision of the 
retrieval at each level of the recall is obtained. The result 
precision of retrieval using a type of FD is the average 

precision of all the query retrievals using the type of FD. 
The average retrieval performance of each FD is shown in 
Figure 7. 

It is clear from Figure 7 that the retrieval performance 
of the 7 methods falls into three groups. The first group 
which includes centroid distance and the area function has 
the highest performance. The performances of affine 
invariants, chord length and the position function are 
comparable and are significantly lower than that of the 
first group. The precision of the position function drops so 
sharply that it can only recall nearly half of the similar 
shapes. The curvature and the psi function gives the lowest 
performance, this indicates that the first and the second 
derivatives of the shape boundary are very unreliable. On 
average, retrieval using FDs derived from the centroid 
distance has significantly higher performance than that of 
the other methods. It has a nicely smooth degradation of 
precision, showing it’s robust in terms of precision and 
recall. Although area function and chord length show 
some advantages over centroid distance in that the area is 
invariant under affine transform and the chord length does 
not need any reference point, the vertices finding problem 
in the area representation and the symmetry and noise 
sensitivity problems in the chord length representation 
reduce the retrieval performance. The affine invariants is 
designed for polygon shape representation, its retrieval 
performance for generic shapes is not desirable. The 
position function and the psi function representations have 
been widely adopted in shape recognition, especially 
character recognition, however, their use for generic shape 
retrieval is not desirable compared with the other 
representations. Although a smoother curvature k(t) is 
used as shape representation in place of the very versatile 
curvature κ(t), the retrieval performance proves it is a poor 
shape representation. 

In order to test that how the increase and the decrease 
of number of FDs will actually affect the retrieval 
performance, retrievals using different number of FDs are 
tested. In this test, FDs derived from r(t) is used as shape 
descriptors. From the test, it has been found that the 
increase of the number of FDs over 60 to describe the 
shape does not significantly improve the retrieval 
performance. The actual retrieval performance does not 
degenerate significantly when the number of FDs is 
reduced to 10. This means that for efficient indexing and 
retrieval, 10 FDs are sufficient for shape representation.  
 
6. Conclusions 
 
      In this paper we have made a study of Fourier 
descriptors generated from different shape signatures and 
using different Fourier invariants. The study focuses on 
shape retrieval application. It has been found that centroid 
distance r(t) is the best shape signature among the other 
shape signatures discussed in this paper in terms of 
robustness, computation complexity, convergence speed 
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of its Fourier series and retrieval performance of its FDs. 
Although position function z(t) and cumulative angular 
function ψ(t) are dominantly used in deriving FDs in the 
literature, r(t) outperforms them in shape retrieval 
application. The advantages of area function A(t) and 
chord length r*(t) over r(t) are overcome by the non-
robustness nature within them, no gain on retrieval 
performance is obtained by those advantages. The affine 
Fourier invariants Qk does not perform well for generic 
shapes or non-polygon shapes. Curvature is not suitable 

for deriving FDs due to the very slow convergence nature 
of its Fourier series. The study also finds that the actual 
number of FDs to describe a shape is quite small, i.e., 10 
FDs are sufficient to describe a shape. This low 
dimensions of FD feature of a shape makes FD very 
suitable for shape indexing and retrieval. In the future, the 
combination of FDs with region based method will be 
studied, to deal with very complex shapes and to improve 
its distinguishability of structurally similar but 
perceptually dissimilar shapes.  
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Figure 7. Average retrieval performance of different FD. 
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