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Abstract

This paper presents our work on learning high level struc-
ture from human motion segquences, and its applicationsin
human figure tracking. We use a structured representation
(“ primitives” and their transitions) of complex motion and
propose a two-step unsupervised learning approach to re-
cover the natural “ primitives’ from unsegmented 3D-motion
captured sequences of complex human motion. The struc-
ture recovery is done under the MDL (minimum description
length) paradigm. Then the learnt dynamic model of human
motion is used in the CONDENSATION framework to suc-
cessfully track human motion in a video sequence. Experi-
mental results of ballet dancing sequences demonstrate that
our approach workswell. The learnt structureisalso used to
synthesize new video sequences.

1 Introduction

Human motion tracking and understanding have been
tive research topics in computer vision for a long time b
cause of their wide applications in recognition, animation a
human-computer interaction. Good survey on visual ana
sis of human motion and vision-based motion-capture can, a
found in [7], [13]. However, 3D human tracking from a 2

video sequence remains largely unsolved.

In 3D human tracking, a kinematics model is general
used and the problem is to recover the joint angles from
image sequence. Many factors contribute to the difficulty%

3D human figure tracking:

¢ kinematics has singular poses;
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Some of the difficulties can be alleviated by introducing
an appropriate dynamic model (i.e., how the object moves)
which serves as a prior. For complex human motion, such as
dancing, gymnastics and Kung Fu, which are made up of a
number of basic moves or “building blocks”, a single dynamic
model is in general insufficient, instead, a structured dynamic
model is preferred.

Much previous work has been done in modeling complex
human motion model and they can be largely categoried into
two classes. The first class is by supervised learning. Mixture
motion model is used for tracking in [9]. But the primitives
are pre-defined and segmented manually for training.

The second class of approach, unsupervised or semi-
unsupervised human motion modeling, avoids such tedious
and error prone process of manual segmentation. In [3],
HMM (hidden Markov model) is learnt for human locomotion
(walking, running). But the topology of the HMM is given

d it is difficult to extend it to more complex motion. In

ﬁ, each primitive follows a different dynamic law (acceler-
Hon) which can be used to differentiate each other. Variable
ngth Markov models (VLMM) [6] were learnt to model hu-

n behavior. However, simple heuristics such as low veloc-

oty points at the boundary of two primitives was employed for

segmentation. SLDS (switching linear dynamic systems) are

IF(arnt in [14] for classifying human motion. [2] also learned

hg/IMs for complex motion such as dancing. It employed
fvery complicated optimization process and the high level
structure is still hidden in the HMM.

In this paper, we adopt the unsupervised approach and aim
to recover the original primitives in a systemetic way. Mini-
mum description length (MDL) criterion is used for structure

+ camera projection loses depth, and introduces an ob$ggqyery and an explicit two-step coarse to fine method is pro-

vation singularity and reflective symmetry;
¢ large number of DOFs (20+ for full body);
e complex human dynamics;

posed. In both steps, MDL guarantees the conciseness of the
recovery, thusleading to original or nearly original primitives.
Once learnt, the structured representation can then be used in
tracking and synthesis. An overview of our system is shown

+ various image noises including complex backgroung, rig 1.

non-rigid motion of body and clothing, change of illu-

mination, etc.

Itis worth mentioning the ballet dancing data we use in our
experiments. To learn the motion model, we use 10 sequences

LThis work was done while the first two authors were visiting Microsoff captured 3D motion of a ballet tutorial, 4428 frames (about

Research, China.

3 min) in total. We try to model the arm movements (4 DOFs



for each arm}. By assuming symmetry between the leftarm We propose a two-step coarse to fine approach to find the
and the right arm, we effectively double the amount of traiMDL efficiently. First we solve the language problem with
ing data. Allthe sequences for tracking are captured by a rége quantized discrete data. The quantization and the repeated

ular video camera. symbol removal reduce the problem scale greatly so that a
search is applicable. And then the segmentation points are re-
5 Condensation Video nput fined in the motion domain.
tructure Recovery,
Tracker .
- 2.1 Clustering posesto symbols
M Eﬁ?ﬁmd In order to transform the multi-dimensional continuous-
valued poses into a discrete domain, vector quantization (VQ)
vQ b d+d bed is needed. We used the fuzzy C-mean algorithm to cluster the
Seafh ceagabed. Mixure poses. And then the close-by clusters were merged to achieve
abledladlabled|.. Dynamical | —p " e Segmentation a relatively uniform resolution. This resulted in 21 clusters,
Seg. K-mea% Model which we label with letter frona to u.
o \ A

Each frame is replaced by the label of the cluster which it
belongs to. And adjacent frames having the same label are
merged. Therefore, the 20 motion sequences are transformed
into 20 sentences, the one corresponding to the motion se-
guence in Fig.4 is shown in Fig.2.(a) as example.

Structured
¢ Representation
Figure 1: The overall system diagram.

2 Learning Structured Mode 2.2 Structurerecovery in discrete series

T _ - 2.1 MDL criteri
Our objective is to recover the original “building blocks’2 2.1 criterion

or primitives of the motion sequences and segment the Y& code the sentences in a dictionary-based approach. The

quences accordingly. Fig.4 shows a motion sequence (fgljgl des.cr.iption length is the sum of the description Iength
joint angle trajectories of a ballet dance) and the segment ghe ‘:'C;'Og‘i‘w and th:t of the Lext expl;efsed by the n-
result. The problem is analogue to the language problemdfﬁedS of the |ct|on§ry. | ssur:e t g voca udary contdﬂgs
which the vocabulary of an un-separated (i.e., no space, &85 S{wl""’wN.} whose lengths and counts dre.../v an

text is to be found. c1,...cn respectively. The text has a total word counfidf=

If we think of the language problem, there are a large nu&v:lci' The dl'ctlonary IS not gompressed Wh”ef the text 1S
ber of solutions since every sub-string can potentially becgmpressed with Huﬁman coding. The description length is
word and there seems to be no way to know which set of \}Ia_en computed as:
cabulary is the original one. But the real vocabulary has the DL = DLgiet + DLteyt
property that it provides a concise coding of the text. And this DLgict = XL 1;
coding conciseness can be well described by MDL, which is DLieot = =S ¢ log, (55)
widely used in unsupervised learning and is known to give hu- The minimum DL criterion satisfies the general require-
man interpretable results. ments for a good structured representation: the number of

Under the paradigm of MDL, the language problem is e&ords should be small; their repeating rate should be high;
sentially an un-separated text compression problem. Saane the words should be long (i.e., the compressed article
works have been done including [18] [12] [11]. In thesshould be short).
works, various heuristics (frequency, descriptive length gain oo
were applied and approximating results were found. The2 Findingthe MDL by search
approximating results are good for Compression of a hu@@ find the set Ofvocabularythatgivesthe MDL of the text by
dataset (natural language or DNA sequences) but they areS8gfch. The search procedure tries all possible combinations
sufficient for understanding. of the word candidates to see if they can be used to construct

Motion primitive finding introduces extra difficulty com-the text. And it finds the one that gives the minimum value
pared to the language problem in that there are possible vafiDL- Since the complexity of the search is exponential, we
ations in different instances of one primitive. In the motioRropose the following techniques to cut down the computa-

we study below, the velocity may be different. Besides, tHen- . _
motion signals are always corrupted by noise. First, we assume that no word is a sub-string of any other

word in the vocabulary. It enables us to search in vocabulary

!In ballet, the arms of the dancer have 4 standard pgses;, 1 **, 2", space instead of segmentation space, making the search more
and3”?. The arms stay in these poses as well as moving between them cient
the four poses, the arms are drooped naturally in front of the body, raised’in ’ . .
front of the chest, stretched to the left and right, and stretched above the head>€€0Nd, we screen the word candidates (all the sub-strings

respectively. of the text) based on the following claim.




Claim. If string s = s; + s2 and their occurrence count ~ ] ]
¢s = ¢s, = ¢s,, thens; ands, should be removed from the L]
set of word candidates.

) T e

Obviously, usings instead of{s;,s2} can only decrease . LM I
the description length. This cuts down the computation al__|/+— N/ | «JKW n 71/“ A
lot mainly because it avoids reaching a lot of solutions made—~.|__| 4| | L LT LT T Foime o
by the combinations of the sub-strings of the MDL vocabu- [ | "] 7 [™] 7 BL P 2 el T T
lary. The techniques make the search efficient and practica, = 3 1= el foeh B2 D oima i fese
for problems Of |arger scale F|gure 4The final Segmentation/labe”ng result of the first motion

sequence in the examples of Fig.2. The labeling and the initial seg-

223 Search result mentation is done in Sec.2.2, and the accurate segmetation is ob-

The sentences we got from Sec.2.1 are fed into the search faioed in Sec.2.3.

gram for vocabulary recovery. We obtained the set of vo- . o ] )

cabulary which gives the MDL of the sentences, and at the Refining segmentation in the motion domain

same time, the sentences are segmented. The 8 words cdeoing back to the original motion domain, the segmenta-

respond very well to basic ballet movements (transitions @n points we got from the previous step are coarse and need

tween standard poses) with the exceptiogiof which is the to be refined to get precise segmentation. Furthermore, there

small movement serving as a prefix sometimes before movinight be a static pose between two primitives that was dis-

from27¢to prep pose. Fig.3 shows how the recovered motidgiarded by our repetition removal. We add a static primitive if

primitives and their transitions correspond to human knowhe boundary symbol lasts more than 0.5 second between two

edge of ballet. Since we have found the correspondencé@dcent primitives. As a result, we added 4 static poses (

our recovered vocabulary with human knowledge, we willuse g, a, which correspond to the 4 standard pogesyp, 1°,

the label in ballet notation in the rest of the paper (pe>1 2"¢, 37%, in ballet notation respectively), so we have 12 prim-

instead ofrthnc, 2- >p instead ofgj r f , etc, wherg=prep) itivesin total. We use the segmental K-means algorithm [10]

After that, the segmented sentence is as in Fig.2.(d). to optimize an object function, again by the MDL criterion.
The search procedure only took 10 seconds, compared té&ssume we have N motion primitives (dynamic and static)

over 30 minutes without screening of word candidates.  1,...,V. And the entire motion data are segmented into M seg-

mentsSy,...,.Sy with labelsby, ..byy € {1,...N} respec-

(a) One of the input sentences: tively. The average length of all instances of primitivie ;.
mhncobdlaldbockgegegkckgegigjrfmhnckgegijrf The m'ean trajectory; of prlm.”.:lvei IS calculatgql by avera'g'
ing all instances of the primitiveafter normalizing them in
(b) Vocabulary recovered:
h jrf, gi ke, k bdla, ldb i length ().
mhne, gjrf, gi, gegke, kqe, obdla, ldboc, ptsui The objective function (1) we will minimize reflects the
(¢) The segmented sentence: MDL of the motion data.

mhnc obdla ldboc kge gegkc kge gi gjrf mhnc kge gjrf

Iy . B
E= aZf\;lli + BM + Ef‘i12j£1(sz{[ﬂ] - Pb,[]])z 1)

(d) Corresponding ballet movements:

p->1 1->3 3->1 1-»2 2->1 1-»2 2->2 2->p p->1 1->2 2->p The first term is the description length of the mean trajec-
Figure 2:Vocabulary recovery: The sentences (quantized from miries, the second term is the description length of the tem-
tion sequences, only one corresponding to Fig.4 shown here) aref@dal scaling factors and labels, and the third term is a likeli-
into the search program and the vocabulary and segmented sentehogs] term which is the description length for the residues as-
are the outputPrep, 1, 2, and3 are the 4 standard arm poses of theuming they are independent Gaussians [&5Indg are two
ballet dance. constants which are assigned as 1 in ourimplementation. The
objective function can be described as favoring the following
characteristics:

o A smaller number of primitives.

e The homogeneity of segments of the same label after

normalization in time.
¢ A smaller number of segments.
¢ Similarity of the segment and the primitive it belongs to.

Figure 3: The correspondence of recovered vocabulary (words on

edges) and their transitions with domain knowledge (see also foot-ltems 1 and 2 reflect the entropy of the model and item 4

note). reflects the cross-entropy of data and the model, which is sim-
ilar to the entropy representation in [2]. Compared with the



DL of text, the likelihood term is new since it does not exigtynamic property, a simple dynamic model will suffice. We
in the discrete domain. use al** order dynamic model [8]:

It should be noted that the objective function is a general
one with respect to segmentation point number, segmenta-

tion point positions and the segment labels. But minimizin\%herew is 2 vector of independent zero-mean one-standard
it from a random initial condition is very difficult due to thedeviatioﬁ Gaussian randompvariables.

large number of parameters and the complexity of the SOIu'['OnEach primitive has several instances in the training data.
ﬂer normalizing these segments in length, {i#g, 6, _1)

space. In our approach, we have a very good initial solutiR
from the search result, and only optimize on the pOSitionSé)airs are used to compute the unknowngin Dy using LMS
itting. And By is then estimated using both A; and Dy.

the segmentation points.

The segmental K-means algorithm, which is similar to E e transition matrix can be easily computed by counting.
algorithm, consists of two-step loops. In the first step, we findC idering diff i i d introduced
better segmentation point positions by searching in a small onsidering ditierent execution speeds we introduce
region around the original positions in a dynamic program- Speed fact0r§n, which follows a Normal dIS.tI’IbutIOI’I
ming fashion. And in the second step, we updBte... Pl (57}_1, os). This speed facto.r not only handles dlfferentex-.
according to the new segments. Since the initial value is F_utlon speeds, but also provides support for DTW (dynamic

ready close to the minimum, the algorithm converges afte e warping).

few iterations. As an example, the result segmentation of i2 Computing likelihood
motion sequence corresponding to the first sentence in Fig.
is shown in Fig.4.

Op = A1 0,1+ D+ Bow

%Ne treat each limb as a truncated cylinder and project it
with a scaled orthographic camera model with the same ap-
3 Monocular 3D Human Figure Tracking proximation as in [17]. The appearance mode! we are .using
is an integration of boundary and texture. Multiple cue inte-
Sfation provides more robust result than single cue in realis-
tic images. The two are integrated by simple multiplication
a?ssuming they are statistically independent.

3D human figure tracking is generally formulated as to r
cover the value of the jointangle§ , ...6,, }) of a kinematic
model from the image sequencfly;, ..., I, }). Recently, the
CONDENSATION framework [8] became popular in visu
tracking and has also been used in 3D human tracking in a
number of works (e.g., [4] [17]). Itis a sample-represented
Bayesian approach that calculates the posterior distribution
rather than a single most likely value. Thus it is more robust
than Kalman filter in case of singularities and discontinuities

{/i,;; {] A A Fi=kl1:

|

[5], which are not rare cases in human motion. Therefore, we \<Iﬂ }/
use the CONDENSATION framework in our tracking task. 3 b\\ Uj’/
The main idea of CONDENSATION is as follows. Using ol TS meke | R

Bayesian theory, the posterior for framés decomposed into
y Y hep P @) (b) ©

a dynamic model (or the prior) of the object being traCkeiglgure 5:Computing likelihood. (a) Texture windows overlaid on

(f(%'@”‘l)) ang .“ki“h.OOd offthet Céglg;r?iosngoomé?n'original image (see text); (b) Straight lines fitted; (c) schematic view
gles)d, measured inthe image featu (P(L710x)) [8I: of matching line segments.

P(0n|0n-1, 137°) = aP(6,]0,-1) P(1;716,) .
3.21 Measuring boundary match

where®,, = {0:...6, } is all the configurations up to frameThe boundary in the image is computed first by the Canny
n, anda is a normalizing factor. The posterior distribution ogdge detector, then approximated with a straight line segments
each frame is evaluated by propagating a set of samples o{i§iag LMS fitting with a certain error limit (see Fig.5.b).
state over time. The details of the algorithm can bg fou.nd iNThe straight line segments are matched with the projected
[8]. CONDENSATION only provides a framework in whichjimp poundary lines with a virtual spring method (see Fig.5c).
both thg dynamic model and the likelihood measure need g put a spring on each of end of the line segment, and the
be designed. other end of the spring can move on the projected model line.
3.1 Mixturedynamic model This results in a force from the spring. The sum of the forces

Our structured motion representation naturally leads t®5Poth endst” = Fy + I, reflects how far the image line
mixture dynamic model in which each primitive has its OW'ﬁegment is fr.on) th'e projected model line. Thg larger the force
dynamic model and the primitives transit according to a tral§ the less similarity they have. An exponential decay factor

sition matrix. Since each primitive has relatively homogenolifs@Pplied to make line segments far away from model limb
boundaries have little effect.



T —

3.2.2 Measuring texture match — —_—
Template matching has been used to match appearances (e_‘— ‘—'_ ‘—
[17]), but it provides little generalization in spatial relation- ~~ ~" " 77 ’ T
ships, thus sensitive to non-rigid motion and projection ap- left arm

proximation distortion. A feature histogram of a region is of- —‘ —‘ H

ten used in blob-based tracking systems, but it provides ni— - | |
constraint on spatial distributions. Here use a tradeoff of the”™" ™" " 7 © 77 7 F : T

two extremes. We divide the objects into a number of small rightarm

blocks (see Fig.5a), and each block is represented with a Bigure 6: Likelihood weighted sample number (for a frontal view
togram. The color distribution is learnt from the first frame&equence of both arms) belonging to different primitives and the seg-
The learnt distributio® and the observed distributid®’ are mentation basedonit. Darker means higher likelihood. The horizon-
compared with Kullback-Leibler divergence. Distributions dél axis is the time, and the vertical axis represents the 12 primitives

the different blocks are assumed to be independent. (8 moves and 4 standard poses).

3.3 Handling appear ance distortion ) . _thetorso have the same color; and the arms and the torso have
Generally, appearance models have some distortion frefa-occlusion especially in the side view sequence.
real figures due to the approximation. We observe that thispegpite all the difficulties, our tracker can track both the
distortion is not uniform in different pose-viewpoint combitqntal view and45° side view sequence (388-frame, 282-
nations due to camera projection. Taking the arm for exaffyme respectively) fairly accurately with 512 samples. Fig.7
ple, inmost appearance models, the most severe distortiongfss some of the key frames as well as rendered images with
curs when the arm is pointing straight at the camera, i.e. {88uvered model inother complementary viewpoints.
measured valu®(1°**|#) has the greatest error from its real To compare the performance, we also tracked the se-
value, thus should not be heavily relied upon. quence using a generic constant velocity model as the dy-
We introduce a distortionfacterc [0, 1]to representhow namic model. In all trials with the same number of samples,
much distortion is expected. In our appearance model Wet?&&king began to drift right after the** pose. With more

v = 1 — (projected lengthmax length). We add the dis-g5mpes; the drift happened slightly later, but it still failed to
tortion factor into CONDENSATION by adjusting the likeli-{r5ck the entire sequences.

hood measurement towards the average measurefgas(
the following:

We found that the introduction of the distortion factor
played an important role in passing the difficult configura-
tions. Without it, it is very likely that the tracker is attracted
by some features that do not belong to the limb.

Its interpretation is that since we know we have a distorted At the same time, we obtained the segmentation of the
measure, we should not have the sample to flourish or go ¥£€0 sequence into the primitives according to the likelihood
tinct because of this measure; rather, we move its expect§ighted sample number of each frame. (See Fig.6) The seg-
survival rate towards 1 to keep it for later observation. mentation is fairly accurate. Obviously, this technique can

also be used for recognition if the primitives have syntactic
4 Resultsand Discussion meaning.

4.1 Tracking result 4.2 Synthesis of new video sequence

We tested our tracking algorithm on real video sequenceswjith the structured representation, and the video segmen-
Captured from different ViEWpOintS. We fit the human mOd%ﬂon (C||ps) Corresponding to the motion primitives (exam-
to the image in the first frame manua”y and then the progr% in F|96), we can generate new video sequence. [16] pre-
tracks it automatically. sented a way to generate a new video sequences of relatively

We show two of the sequences here (Fig.7). The most gifndom motion, and we have achieved the same goal for struc-
ficult part of the data, which makes it distinctive from mostred motion. First a primitive sequence is generated by ran-
previous works, is that the sequences include the configigm walk in the transition matrix, and then the primitives are
tion in which the arms almost point at the camera (aroupgplaced by the video clip of it. Due to limited data, we only

1%, Fig.7.(a) frame074), causing the most severe distortiganerate the motion where two arms have the same motion.
and the dancer stays in such configuration for a period of

time. Other challenges include: sequences that contain &in- Conclusion
gular configurationsyf-ep, 2" and3"¢ poses), motion dis- e have presented our work on unsupervised learning of a
continuities (at the boundary of two primitives); the arm angictured motion model of human motion and its application

2The AVI movies of the tracking and synthesis result are available E? 3D_ hu_man motion traCking and SynthGSiS-' Ol'Jr main con-
http://iris.usc.edu/taozhao/ballet/result.html tribution is the fully automatic recovery of the intrinsic struc-

w = (1—v) % P(I°°|0;) + v+ P(I°**|0)




ture (i.e., motion primitives and their transitions) and precis
segmentation of the motion primitives from structured huma
motion. The recovery is done under the MDL paradigm wit
a two-step approach which makes the optimization proce
more explicit and efficient. The structured representation r
vealed the data generating mechanism of the motion, thus
natural for various applications. frame072

In the later part of our work, we decomposed the dyna
ics of the underlying complex motion (ballet arm motion) intg
a mixture of simple dynamics. With this decomposition, we
performed tracking on challenging video sequences that &
otherwise difficult to track. At the same time, the video se
guences are segmented into video primitives correspondi
to the motion primitives to synthesize new video sequences, frame218 frame290 frame351
achieving video-based animation.

framelll
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framel61 frame222 frame259
(c)
Figure 7: Key frames of the tracking result (the overhead view
of the stick-figure is shown at the top of each image). (a) frontal
view sequence; (b) configurations of (a) rendered with a graphical
tool viewed from complementary viewpoints; (#J° side view se-
guence.



