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Abstract
This paper presents our work on learning high level struc-

ture from human motion sequences, and its applications in
human figure tracking. We use a structured representation
(“primitives” and their transitions) of complex motion and
propose a two-step unsupervised learning approach to re-
cover the natural “primitives” from unsegmented 3D-motion
captured sequences of complex human motion. The struc-
ture recovery is done under the MDL (minimum description
length) paradigm. Then the learnt dynamic model of human
motion is used in the CONDENSATION framework to suc-
cessfully track human motion in a video sequence. Experi-
mental results of ballet dancing sequences demonstrate that
our approach works well. The learnt structure is also used to
synthesize new video sequences.

1 Introduction
Human motion tracking and understanding have been ac-

tive research topics in computer vision for a long time be-
cause of their wide applications in recognition, animation and
human-computer interaction. Good survey on visual analy-
sis of human motion and vision-based motion-capture can be
found in [7], [13]. However, 3D human tracking from a 2D
video sequence remains largely unsolved.

In 3D human tracking, a kinematics model is generally
used and the problem is to recover the joint angles from the
image sequence. Many factors contribute to the difficulty of
3D human figure tracking:

� kinematics has singular poses;

� camera projection loses depth, and introduces an obser-
vation singularity and reflective symmetry;

� large number of DOFs (20+ for full body);

� complex human dynamics;

� various image noises including complex background,
non-rigid motion of body and clothing, change of illu-
mination, etc.

1This work was done while the first two authors were visiting Microsoft
Research, China.

Some of the difficulties can be alleviated by introducing
an appropriate dynamic model (i.e., how the object moves)
which serves as a prior. For complex human motion, such as
dancing, gymnastics and Kung Fu, which are made up of a
number of basic moves or “buildingblocks”, a single dynamic
model is in general insufficient, instead, a structured dynamic
model is preferred.

Much previous work has been done in modeling complex
human motion model and they can be largely categoried into
two classes. The first class is by supervised learning. Mixture
motion model is used for tracking in [9]. But the primitives
are pre-defined and segmented manually for training.

The second class of approach, unsupervised or semi-
unsupervised human motion modeling, avoids such tedious
and error prone process of manual segmentation. In [3],
HMM (hidden Markov model) is learnt for human locomotion
(walking, running). But the topology of the HMM is given
and it is difficult to extend it to more complex motion. In
[1], each primitive follows a different dynamic law (acceler-
ation) which can be used to differentiate each other. Variable
length Markov models (VLMM) [6] were learnt to model hu-
man behavior. However, simple heuristics such as low veloc-
ity points at the boundary of two primitives was employed for
segmentation. SLDS (switching linear dynamic systems) are
learnt in [14] for classifying human motion. [2] also learned
HMMs for complex motion such as dancing. It employed
a very complicated optimization process and the high level
structure is still hidden in the HMM.

In this paper, we adopt the unsupervised approach and aim
to recover the original primitives in a systemetic way. Mini-
mum description length (MDL) criterion is used for structure
recovery and an explicit two-step coarse to fine method is pro-
posed. In both steps, MDL guarantees the conciseness of the
recovery, thus leading to original or nearly original primitives.
Once learnt, the structured representation can then be used in
tracking and synthesis. An overview of our system is shown
in Fig. 1.

It is worth mentioning the ballet dancing data we use in our
experiments. To learn the motion model, we use 10 sequences
of captured 3D motion of a ballet tutorial, 4428 frames (about
3 min) in total. We try to model the arm movements (4 DOFs
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for each arm)1. By assuming symmetry between the left arm
and the right arm, we effectively double the amount of train-
ing data. All the sequences for tracking are captured by a reg-
ular video camera.

Figure 1: The overall system diagram.

2 Learning Structured Model
Our objective is to recover the original “building blocks”

or primitives of the motion sequences and segment the se-
quences accordingly. Fig.4 shows a motion sequence (four
joint angle trajectories of a ballet dance) and the segmented
result. The problem is analogue to the language problem in
which the vocabulary of an un-separated (i.e., no space, etc)
text is to be found.

If we think of the language problem, there are a large num-
ber of solutions since every sub-string can potentially be a
word and there seems to be no way to know which set of vo-
cabulary is the original one. But the real vocabulary has the
property that it provides a concise coding of the text. And this
coding conciseness can be well described by MDL, which is
widely used in unsupervised learning and is known to give hu-
man interpretable results.

Under the paradigm of MDL, the language problem is es-
sentially an un-separated text compression problem. Some
works have been done including [18] [12] [11]. In these
works, various heuristics (frequency, descriptive length gain)
were applied and approximating results were found. The
approximating results are good for compression of a huge
dataset (natural language or DNA sequences) but they are not
sufficient for understanding.

Motion primitive finding introduces extra difficulty com-
pared to the language problem in that there are possible vari-
ations in different instances of one primitive. In the motion
we study below, the velocity may be different. Besides, the
motion signals are always corrupted by noise.

1 In ballet, the arms of the dancer have 4 standard poses:prep, 1 st, 2nd,
and3rd. The arms stay in these poses as well as moving between them. In
the four poses, the arms are drooped naturally in front of the body, raised in
front of the chest, stretched to the left and right, and stretched above the head
respectively.

We propose a two-step coarse to fine approach to find the
MDL efficiently. First we solve the language problem with
the quantized discrete data. The quantization and the repeated
symbol removal reduce the problem scale greatly so that a
search is applicable. And then the segmentation points are re-
fined in the motion domain.

2.1 Clustering poses to symbols
In order to transform the multi-dimensional continuous-

valued poses into a discrete domain, vector quantization (VQ)
is needed. We used the fuzzy C-mean algorithm to cluster the
poses. And then the close-by clusters were merged to achieve
a relatively uniform resolution. This resulted in 21 clusters,
which we label with letter froma to u.

Each frame is replaced by the label of the cluster which it
belongs to. And adjacent frames having the same label are
merged. Therefore, the 20 motion sequences are transformed
into 20 sentences, the one corresponding to the motion se-
quence in Fig.4 is shown in Fig.2.(a) as example.

2.2 Structure recovery in discrete series
2.2.1 MDL criterion
We code the sentences in a dictionary-based approach. The
total description length is the sum of the description length
of the dictionary and that of the text expressed by the in-
dices of the dictionary. Assume the vocabulary containsN

wordsfw1,...,wN g whose lengths and counts arel1,...,lN and
c1,...,cN respectively. The text has a total word count ofM =

�
N
i=1ci. The dictionary is not compressed while the text is

compressed with Huffman coding. The description length is
then computed as:

DL = DLdict +DLtext

DLdict = �
N
i=1li

DLtext = ��
N
i=1ci log2(

ci
M
)

The minimum DL criterion satisfies the general require-
ments for a good structured representation: the number of
words should be small; their repeating rate should be high;
and the words should be long (i.e., the compressed article
should be short).

2.2.2 Finding the MDL by search
We find the set of vocabulary that gives the MDL of the text by
search. The search procedure tries all possible combinations
of the word candidates to see if they can be used to construct
the text. And it finds the one that gives the minimum value
of DL. Since the complexity of the search is exponential, we
propose the following techniques to cut down the computa-
tion.

First, we assume that no word is a sub-string of any other
word in the vocabulary. It enables us to search in vocabulary
space instead of segmentation space, making the search more
efficient.

Second, we screen the word candidates (all the sub-strings
of the text) based on the following claim.
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Claim. If string s = s1 + s2 and their occurrence count
cs = cs1 = cs2, thens1 ands2 should be removed from the
set of word candidates.

Obviously, usings instead offs1,s2g can only decrease
the description length. This cuts down the computation a
lot mainly because it avoids reaching a lot of solutions made
by the combinations of the sub-strings of the MDL vocabu-
lary. The techniques make the search efficient and practical
for problems of larger scale.

2.2.3 Search result
The sentences we got from Sec.2.1 are fed into the search pro-
gram for vocabulary recovery. We obtained the set of vo-
cabulary which gives the MDL of the sentences, and at the
same time, the sentences are segmented. The 8 words cor-
respond very well to basic ballet movements (transitions be-
tween standard poses) with the exception ofgi, which is the
small movement serving as a prefix sometimes before moving
from2

nd toprep pose. Fig.3 shows how the recovered motion
primitives and their transitions correspond to human knowl-
edge of ballet. Since we have found the correspondence of
our recovered vocabulary with human knowledge, we will use
the label in ballet notation in the rest of the paper (i.e.,p->1
instead ofmhnc, 2->p instead ofgjrf, etc, wherep=prep)
After that, the segmented sentence is as in Fig.2.(d).

The search procedure only took 10 seconds, compared to
over 30 minutes without screening of word candidates.

Figure 2:Vocabulary recovery: The sentences (quantized from mo-
tion sequences, only one corresponding to Fig.4 shown here) are fed
into the searchprogram and the vocabularyand segmentedsentences
are the output.Prep, 1, 2, and3 are the 4 standard arm poses of the
ballet dance.

Figure 3:The correspondence of recovered vocabulary (words on
edges) and their transitions with domain knowledge (see also foot-
note).

Figure 4:The final segmentation/labeling result of the first motion
sequence in the examples of Fig.2. The labeling and the initial seg-
mentation is done in Sec.2.2, and the accurate segmetation is ob-
tained in Sec.2.3.

2.3 Refining segmentation in the motion domain
Going back to the original motion domain, the segmenta-

tion points we got from the previous step are coarse and need
to be refined to get precise segmentation. Furthermore, there
might be a static pose between two primitives that was dis-
carded by our repetition removal. We add a static primitive if
the boundary symbol lasts more than 0.5 second between two
adjacent primitives. As a result, we added 4 static poses (m,
c, g, a, which correspond to the 4 standard poses:prep, 1st,
2
nd, 3rd, in ballet notation respectively), so we have 12 prim-

itives in total. We use the segmental K-means algorithm [10]
to optimize an object function, again by the MDL criterion.

Assume we have N motion primitives (dynamic and static)
1,...,N . And the entire motion data are segmented into M seg-
mentsS1,...,SM with labelsb1, ...bM 2 f1; :::Ng respec-
tively. The average length of all instances of primitivei is li.
The mean trajectoryPi of primitive i is calculated by averag-
ing all instances of the primitivei after normalizing them in
length (Si).

The objective function (1) we will minimize reflects the
MDL of the motion data.

E = ��N
i=1li + �M + �

M
i=1�

lbi
j=1(S

0

i[j]� Pbi[j])
2 (1)

The first term is the description length of the mean trajec-
tories, the second term is the description length of the tem-
poral scaling factors and labels, and the third term is a likeli-
hood term which is the description length for the residues as-
suming they are independent Gaussians [15].� and� are two
constants which are assigned as 1 in our implementation. The
objective function can be described as favoring the following
characteristics:
� A smaller number of primitives.
� The homogeneity of segments of the same label after

normalization in time.
� A smaller number of segments.
� Similarity of the segment and the primitive it belongs to.

Items 1 and 2 reflect the entropy of the model and item 4
reflects the cross-entropy of data and the model, which is sim-
ilar to the entropy representation in [2]. Compared with the
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DL of text, the likelihood term is new since it does not exist
in the discrete domain.

It should be noted that the objective function is a general
one with respect to segmentation point number, segmenta-
tion point positions and the segment labels. But minimizing
it from a random initial condition is very difficult due to the
large number of parameters and the complexity of the solution
space. In our approach, we have a very good initial solution
from the search result, and only optimize on the positions of
the segmentation points.

The segmental K-means algorithm, which is similar to EM
algorithm, consists of two-step loops. In the first step, we find
better segmentation point positions by searching in a small
region around the original positions in a dynamic program-
ming fashion. And in the second step, we updateP 0

1
; :::P 0

N

according to the new segments. Since the initial value is al-
ready close to the minimum, the algorithm converges after a
few iterations. As an example, the result segmentation of the
motion sequence corresponding to the first sentence in Fig.2
is shown in Fig.4.

3 Monocular 3D Human Figure Tracking
3D human figure tracking is generally formulated as to re-

cover the value of the joint angles (f�1; :::�ng) of a kinematic
model from the image sequence (fI1; :::; Ing). Recently, the
CONDENSATION framework [8] became popular in visual
tracking and has also been used in 3D human tracking in a
number of works (e.g., [4] [17]). It is a sample-represented
Bayesian approach that calculates the posterior distribution
rather than a single most likely value. Thus it is more robust
than Kalman filter in case of singularities and discontinuities
[5], which are not rare cases in human motion. Therefore, we
use the CONDENSATION framework in our tracking task.

The main idea of CONDENSATION is as follows. Using
Bayesian theory, the posterior for framen is decomposed into
a dynamic model (or the prior) of the object being tracked
(P (�nj�n�1)) and likelihood of the configuration (joint an-
gles)�n measured in the image featuresIobs (P (Iobsn j�n)) [8]:

P (�nj�n�1; I
obs
n ) = �P (�nj�n�1)P (Iobsn j�n)

where�n = f�1:::�ng is all the configurations up to frame
n, and� is a normalizing factor. The posterior distribution of
each frame is evaluated by propagating a set of samples of the
state over time. The details of the algorithm can be found in
[8]. CONDENSATION only provides a framework in which
both the dynamic model and the likelihood measure need to
be designed.

3.1 Mixture dynamic model
Our structured motion representation naturally leads to a

mixture dynamic model in which each primitive has its own
dynamic model and the primitives transit according to a tran-
sitionmatrix. Since each primitivehas relativelyhomogenous

dynamic property, a simple dynamic model will suffice. We
use a1st order dynamic model [8]:

�n = A1 � �n�1 +D + B0wt

wherewt is a vector of independent zero-mean one-standard
deviation Gaussian random variables.

Each primitive has several instances in the training data.
After normalizing these segments in length, the(�n; �n�1)

pairs are used to compute the unknowns inA1,D0 using LMS
fitting. And B0 is then estimated using both�, A1 andD0.
The transition matrix can be easily computed by counting.

Considering different execution speeds we introduced
a speed factorsn, which follows a Normal distribution
N (sn�1; �s). This speed factor not only handles different ex-
ecution speeds, but also provides support for DTW (dynamic
time warping).

3.2 Computing likelihood

We treat each limb as a truncated cylinder and project it
with a scaled orthographic camera model with the same ap-
proximation as in [17]. The appearance model we are using
is an integration of boundary and texture. Multiple cue inte-
gration provides more robust result than single cue in realis-
tic images. The two are integrated by simple multiplication
assuming they are statistically independent.

(a) (b) (c)
Figure 5:Computing likelihood. (a) Texture windows overlaid on
original image (see text); (b) Straight lines fitted; (c) schematic view
of matching line segments.

3.2.1 Measuring boundary match

The boundary in the image is computed first by the Canny
edge detector, then approximated with a straight line segments
using LMS fitting with a certain error limit (see Fig.5.b).

The straight line segments are matched with the projected
limb boundary lines with a virtual spring method (see Fig.5c).
We put a spring on each of end of the line segment, and the
other end of the spring can move on the projected model line.
This results in a force from the spring. The sum of the forces
of both endsF = F1 + F2 reflects how far the image line
segment is from the projected model line. The larger the force
is, the less similarity they have. An exponential decay factor
is applied to make line segments far away from model limb
boundaries have little effect.
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3.2.2 Measuring texture match
Template matching has been used to match appearances (e.g.,
[17]), but it provides little generalization in spatial relation-
ships, thus sensitive to non-rigid motion and projection ap-
proximation distortion. A feature histogram of a region is of-
ten used in blob-based tracking systems, but it provides no
constraint on spatial distributions. Here use a tradeoff of the
two extremes. We divide the objects into a number of small
blocks (see Fig.5a), and each block is represented with a his-
togram. The color distribution is learnt from the first frame.
The learnt distributionP and the observed distributionP 0 are
compared with Kullback-Leibler divergence. Distributionsof
the different blocks are assumed to be independent.

3.3 Handling appearance distortion
Generally, appearance models have some distortion from

real figures due to the approximation. We observe that this
distortion is not uniform in different pose-viewpoint combi-
nations due to camera projection. Taking the arm for exam-
ple, in most appearance models, the most severe distortionoc-
curs when the arm is pointing straight at the camera, i.e. the
measured valueP (Iobsj�) has the greatest error from its real
value, thus should not be heavily relied upon.

We introduce a distortion factorv 2 [0; 1] to represent how
much distortion is expected. In our appearance model we set
v = 1 � (projected length)=(max length). We add the dis-
tortion factor into CONDENSATION by adjusting the likeli-
hood measurement towards the average measurement (P ) as
the following:

w = (1� v) � P (Iobsj�i) + v � P (Iobsj�)

Its interpretation is that since we know we have a distorted
measure, we should not have the sample to flourish or go ex-
tinct because of this measure; rather, we move its expected
survival rate towards 1 to keep it for later observation.

4 Results and Discussion
4.1 Tracking result

We tested our tracking algorithm on real video sequences
captured from different viewpoints. We fit the human model
to the image in the first frame manually and then the program
tracks it automatically.

We show two of the sequences here (Fig.7). The most dif-
ficult part of the data, which makes it distinctive from most
previous works, is that the sequences include the configura-
tion in which the arms almost point at the camera (around
1
st, Fig.7.(a) frame074), causing the most severe distortion,

and the dancer stays in such configuration for a period of
time. Other challenges include: sequences that contain sin-
gular configurations (prep, 2nd and3rd poses), motion dis-
continuities (at the boundary of two primitives); the arm and

2The AVI movies of the tracking and synthesis result are available at
http://iris.usc.edu/˜taozhao/ballet/result.html

left arm

right arm
Figure 6:Likelihood weighted sample number (for a frontal view
sequenceof both arms) belonging to different primitives and the seg-
mentation basedon it. Darker meanshigher likelihood. The horizon-
tal axis is the time, and the vertical axis represents the 12 primitives
(8 moves and 4 standard poses).

the torso have the same color; and the arms and the torso have
inter-occlusion especially in the side view sequence.

Despite all the difficulties, our tracker can track both the
frontal view and45o side view sequence (388-frame, 282-
frame respectively) fairly accurately with 512 samples. Fig.7
shows some of the key frames as well as rendered images with
recovered model inother complementary viewpoints.

To compare the performance, we also tracked the se-
quence using a generic constant velocity model as the dy-
namic model. In all trials with the same number of samples,
tracking began to drift right after the1st pose. With more
samples, the drift happened slightly later, but it still failed to
track the entire sequences.

We found that the introduction of the distortion factor
played an important role in passing the difficult configura-
tions. Without it, it is very likely that the tracker is attracted
by some features that do not belong to the limb.

At the same time, we obtained the segmentation of the
video sequence into the primitives according to the likelihood
weighted sample number of each frame. (See Fig.6) The seg-
mentation is fairly accurate. Obviously, this technique can
also be used for recognition if the primitives have syntactic
meaning.

4.2 Synthesis of new video sequence
With the structured representation, and the video segmen-

tation (clips) corresponding to the motion primitives (exam-
ple in Fig.6), we can generate new video sequence. [16] pre-
sented a way to generate a new video sequences of relatively
random motion, and we have achieved the same goal for struc-
tured motion. First a primitive sequence is generated by ran-
dom walk in the transition matrix, and then the primitives are
replaced by the video clip of it. Due to limited data, we only
generate the motion where two arms have the same motion.

5 Conclusion
We have presented our work on unsupervised learning of a

structured motion model of human motion and its application
to 3D human motion tracking and synthesis. Our main con-
tribution is the fully automatic recovery of the intrinsic struc-
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ture (i.e., motion primitives and their transitions) and precise
segmentation of the motion primitives from structured human
motion. The recovery is done under the MDL paradigm with
a two-step approach which makes the optimization process
more explicit and efficient. The structured representation re-
vealed the data generating mechanism of the motion, thus is
natural for various applications.

In the later part of our work, we decomposed the dynam-
ics of the underlying complex motion (ballet arm motion) into
a mixture of simple dynamics. With this decomposition, we
performed tracking on challenging video sequences that are
otherwise difficult to track. At the same time, the video se-
quences are segmented into video primitives corresponding
to the motion primitives to synthesize new video sequences,
achieving video-based animation.
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frame218 frame290 frame351
(b)

frame067 frame094 frame129

frame161 frame222 frame259
(c)

Figure 7: Key frames of the tracking result (the overhead view
of the stick-figure is shown at the top of each image). (a) frontal
view sequence; (b) configurations of (a) rendered with a graphical
tool viewed from complementary viewpoints; (c)45o side view se-
quence.
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