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Abstract

Subspace methods have been widely used for face recog-
nition possibly because of their robustness and simplicity.
Due to high dimensionality of image space, these methods
are likely to encounter computational problem when hav-
ing to deal with very large number of face training sam-
ples. In this paper, a new subspace approach called the
spectral-face analysis is developed to overcome this. It han-
dles pixel information in matrix form rather than as vectors,
and in so doing, keeps the basis computation invariant to the
size of the training samples. Two types of statistics are im-
plemented for the spectral-face analysis: the “covariance
face” and the “error face”. As they employ smaller vector
space, the recognition rates are, as expected, not as good
as conventional subspace methods such as PCA and LDA.
To improve the performance, we extend the spectral-face
methodology by some “stacking” technique, the sole pur-
pose being to increase the vector space dimension. Exten-
sive tests have been carried out on the ORL face database
with good and interesting results. Application of LDA to the
spectral-face analysis also showed marked improvements.

1. Introduction

The challenge to face recognition resides in the large ap-
pearance variation of human faces [3]. It may either come
from intrinsic face changes in expression, makeup and ag-
ing effect, or result from extrinsic sources such as ambient
lights and viewpoints. Appearance invariant face recogni-
tion can be tackled in two ways: 1) use of multiple 2D fa-
cial images and to derive class relevant features [13, 7]; and
2) using 3D face data, or 3D face synthesis, such that the
information on face shape and texture can be extracted and
applied for classification [4, 15].

Subspace methods, being major approaches in the first
category, are popular because of their simplicity and good
ability of feature generalization; successful examples of
which include Principal Component Analysis (PCA) [12]

and its class specific version of Linear Discriminant Anal-
ysis (LDA) [1, 16]. These methods deal with high dimen-
sional image space, since they concatenate image pixel val-
ues into vector form to ensure fine statistical measure of
pixel distribution. As a result, basis computation can be pro-
hibitive when handling large training datasets. This is con-
tradictory to the fact that the subspace system is appearance-
based, and would need more face samples, covering wider
appearance variations, to achieve robust recognition. A pos-
sible solution is to design a computationally effective sub-
space representation, as what we suggested in the Spectral-
Face Analysis.

Instead of vectorizing image pixels, the Spectral-Face
Analysis treats facial images as matrices, and use Singular
Value Decomposition (SVD) to derive subspace basis. In
this way, the basis computation can be based on a statistical
measurement that is reduced fromRmn×mn to Rm×n, as-
suming the image size ism×n, and the number of training
samples,N > mn. The spectral-face analysis simplifies
the subspace construction by adopting a coarser statistics
of pixel distribution, whose small size is invariant to the
number of images that are used for training. The method
suggests the feasibility of subspace methods to handle large
capacity of face datasets, yet it may not preserve as much
class/appearance relevant information as conventional sub-
space methods. In this paper, two different statistics are im-
plemented for the proposed approach: the “covariance face”
and the “error face”. A newly developed LDA algorithm is
also applied to the subspace on covariance face to improve
its recognition performance. To evaluate the effect of re-
duced vector space dimension, some “stacking” technique
is employed to enhance the vector space dimension. Exper-
iments are carried out on the ORL database, which consists
of 40 subjects and 10 pictures for each of them.

2. Subspace methods for face recognition

This section provides a brief background of the subspace
methods, and introduces a direct LDA algorithm proposed
by Yang et al. recently [14], which will later be used to



explore the spectral-face space.
Subspace methods find their application in pattern recog-

nition since the early days of computer vision, wherein pat-
tern classes are not primarily defined as bounded regions
or zones in the features space, but rather given in terms of
linear subspaces that are obtained from statistical analysis
[10]. To make a system able to identify query faces, a sub-
space (as specified by a specific set of basis vectors) that
carries class-relevant information must be derived from a
given set of face samples. Identification is done by project-
ing new face images onto those basis vectors, and compar-
ing the projections with the existing prototype(s) for each
person. Successful subspace methods include the PCA and
the LDA. Recent development with Independent Compo-
nent Analysis (ICA) [9] shows promise; however, in this
paper, we will not deal with ICA.

The Eigenface Method of Turk and Pentland [12], which
is based on PCA, maximizes the subspace scattering of all
projected samples to facilitate classification; while LDA
projects images onto a subspace that purposely minimizes
within-class differences, and at the same time, maximizes
between-class differences [1, 16]. Many LDA approaches
first use the PCA to discard the null space of within-class
scattering, and then perform the LDA to maximize the dis-
criminatory power. Recently, Yanget al. argued that this
separate PCA step may lose discriminative information, and
proposed a unified LDA/PCA algorithm for face recogni-
tion.

2.1. A direct LDA algorithm

For LDA, the between-class and within-class scattering
of sample face images,SB andSW , are defined as:

SB = E[(µk − µ)(µk − µ)T ], (1)

SW = E[(fk,i − µk)(fk,i − µk)T ], (2)

whereµ is the average face of all vectorized training faces,
µk is the mean face of a classXk, andfk,i is theith image
sample of classXk. The class separability is measured by
Fisher’s Criterion:

J (W ) = arg max
W

|W T SBW |
|W T SW W | , (3)

whereW is the optimal projection matrix.
According to Yanget al., the null space ofSW may con-

tain useful information if the projection ofSB is not zero
in that direction, but the null space ofSB can be safely dis-
carded. They hence proposed a LDA algorithm that diago-
nalizesSB andSW in the way that

W T SW W = DW , W T SBW = I, (4)

where DW is a diagonal matrix with diagonal elements
sorted in a decreasing order. This is done by eigen-
decomposingSB first as

SB = V DBV T , i.e. (D−1/2
B V T )SB(V D

−1/2
B ) = I. (5)

Let Z = V D
−1/2
B , we haveZT SBZ = I. Now,

eigen-decomposeZT SW Z in a similar approach, so that
ZT SW Z = UDW UT . It can be checked that

UT ZT SW ZU = DW , andUT ZT SBZU = I. (6)

Thus, the LDA transformation,W , and the projection of
a facefi on the LDA subspace,ai, are found by

W = (ZU), andai = D
−1/2
W W T fi, (7)

with the projected values sphered. Since the objective is to
maximizeJ (H), those eigenvectors corresponding to the
smallest eigenvalues ofDW are the most discriminative di-
mensions. Yang’s direct LDA approach unifies the PCA
and LDA processes, while retaining equivalently good class
separability.

3. The Spectral-Face Analysis

As mentioned in Section 1, the spectral-face analysis
treats images as matrices, and use Singular Value Decom-
position (SVD) to derive the subspace basis. It serves as an
extension or rather a complement of PCA, yet chances are
that the reduced subspace features are still representative
across face objects and are still suitable for classification.
The idea of subspace face recognition without image vec-
torization also appeared in early 1990’s [6, 2]. However,
they simply derive subspace features from SVD of the av-
erage face, which is proved to be lacking in discriminatory
power according to our experiments. In this section, we per-
form spectral-face analysis based on the “covariance face”
and the “error face”. A “stacking” technique is also devel-
oped, to give freedom in feature space dimension.

3.1. Spectral-face analysis on the Covariance Face

ConsiderN face samples, with each face,Mi, of size
m× n. First to be computed is the covariance matrix:

C = E[(Mi −Mave)(Mi −Mave)
T ]

≈ 1

N

XN

i=1
(Mi −Mave)(Mi −Mave)

T , (8)

whereMave = E[Mi] is the average face. Note that the
m × m covarianceC remains at a similar size as that of
the images, irrespective of how many pictures are used for
training. The idea now is to find the SVD ofC to construct
the subspace basis. AsC is symmetrical, its singular values,
sk, and column eigenvectors,uk, can be expressed as

C = USUT =
Xm

k=1
skukuT

k , (9)

which is the spectral decomposition ofC, with S =
diag(s1, s2, · · · , sm), andU = [u1, u2, · · · , um]. The sin-
gular values are sorted in descending order, and the same or-
der applies to their corresponding eigenvectors. We then se-
lectSK = diag(s1, s2, · · · , sK) andU = [u1, u2, · · · , uK ]
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for recognition, with integerK < m being the chosen di-
mension of the new subspace, also known as feature size.
Hence, a covariance face can be linearly decomposed onto
the face subspace as

(Mi −Mave)(Mi −Mave)
T = UKAiSKUT

K

=
XK

k=1
aikskukuT

k , (10)

whereAi = diag(ai1, ai2, · · · , aiK) is a diagonal matrix
with the spectral-face projection values at diagonal, and
ukuT

k is the spectral-face basis. Applying orthogonality of
UK , the projection can be computed as

Ai = UT
K(Mi −Mave)(Mi −Mave)

T UKS−1
K . (11)

In this approach, the face decomposition is based on
the components of covariance matrix,(Mi −Mave)(Mi −
Mave)T , instead of on the face image itself. This kind of
subspace is said to describe the “covariance face”. Fig. 1
and 2 demonstrate the first 18 basis and the face reconstruc-
tion with the subspace features based on Eq. 10. It can be
seen that the first few spectral vectors carry global informa-
tion, while the rest contain more picture detail.
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Figure 1. First 18 Spectral-Face Basis of Co-
variance Face.

(a) (b) (c) (d) (e)

Figure 2. Face Reconstruction with Spectral-
Face Basis on Covariance Face (a) Original image,
Mi. (b) Covariance Face,(Mi−Mave)(Mi−Mave)T . (c)(d)(e)
Reconstructed covariance face using the first 5, 30, 64 features re-
spectively.

3.2. Spectral-face analysis on the Error Face

Besides the covariance face method, an accidental
spectral-face method is to be introduced here. It uses a

pseudo random matrixC for basis derivation, and possesses
good class separation. Consider

C = E[Mi −Mave] = E[Mi]−Mave. (12)

The matrix should be mathematically zero, but it results in
some small, trivial values, due to the round-up error by the
digital computer. As shown in Fig. 3, the value of the pixels
ranges from−7× 10−14 for black and5× 10−14 for white.

The matrix obtained is in fact of small random numbers,
and the subspace representation and projection can be com-
puted using regular SVD approach:

C = USV T =
XK

k=1
skukvT

k , (13)

Mi −Mave = UAiV
T =

XK

k=1
aikukvT

k , and (14)

Ai = UT (Mi −Mave)V. (15)

The basis derived from the Error Face,ukvT
k , is shown in

Fig. 4. They bias on face pattern divergences, which should
play a very important role for good feature separation. The
phenomenon suggests that the semantics of the basis con-
struction is not crucial to subspace separation, as long as
the subspace resides in the face space that records face im-
age variations.

Figure 3. Error Face, C = E[Mi −Mave], from
computer.
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Figure 4. First 18 Spectral-Face Basis of Error
Face.

3.3. Feature space expansion with Image Stacking

The basis obtained from the methods above is compact,
yet suffers from low vector space dimension, which would
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be hard to preserve optimal class separation based on the
premise of Cover’s theorem [5]. In the spectral-face analy-
sis, the dimension of the feature space solely depends on the
row size of face images. A stacking technique, called “cir-
culant stacking”, is hence introduced to expand the space
dimension.

For circulant stacking, a face image is cut and numbered
into L × L smaller parts, and then piled up with the part
numbers arranged in a circulant matrix. Fig. 5 describes a
case whereL = 2. In general, this stacking method enables
the face images to be reshaped fromm × n to Lm × Ln
matrices. Thus, a feature space dimension is expanded by L
times, at the expense of increased computational load.
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Figure 5. Circulant Stacking of a face image
(a) original image,m × n. (b) stacking by circulant expansion,
2m× 2n. (c) schematic description of (b).

4. Experiments

4.1. Experimental setup

The proposed spectral-face methods are evaluated with
the ORL Database from AT&T laboratories [11], which
consists of 40 distinct subjects, each having ten different
images. For all the accuracy tests below, 5 images for each
of the 40 persons are randomly selected to train the system,
with the rest projected onto the subspace obtained to see if
they can find the correct match. Unless otherwise speci-
fied, the simple euclidian distance matching method, Near-
est Neighbor (NN), is used for classification. A new linear
classifier called the Nearest Feature Line method (NFL) [8]
is also employed to evaluate the importance of more train-
ing samples for the spectral-face methods.

4.2. Recognition performance of various methods

Table 1 lists the average recognition performance of the
spectral-face methods as compared with the PCA and the
algebraic method of Hong and Cheng [6, 2]. The results

are averaged over 100 times random tests, for64 × 64 im-
ages using NN classifier and 64 features. The table shows
that the PCA still has the highest accuracy. However, the
covariance face and the error face methods also give rea-
sonable performance, considering that they are in lower di-
mensional spaces. The algebraic method that is based on
the average face does not work well, which suggests that a
subspace basis without knowledge of face differences is not
suitable for classification.

Table 1. Average accuracy of various methods
on ORL face database.

Method Accuracy
Turk and Pentland’s PCA 94%

Hong and Cheng’s Algebraic Method 68.5%
The Covariance Face Method 84.44%

The Error Face Method 90%

Fig. 6 summaries the recognition performance of the
PCA, the covariance face method and the error face method
with respect to varying feature length, where all the fea-
tures are ranked with the corresponding eigen or singular
values in descending order. The plots trace the performance
of the three methods for 20 randomly selected datasets by
NN classification. The full feature size is 199 for PCA, and
64 for the spectral-face methods, as there are 20064 × 64
facial images in each of the datasets. For covariance face
method, it can be seen that the features with smaller singu-
lar values are less significant for classification, but including
them in the process would ensure a relatively higher accu-
racy. For error face method, however, the performance sat-
urates much slower or never, which suggests that the most
discriminatory features of this method are randomly dis-
tributed among the basis. It shall be noticed that the er-
ror face method can achieve very high accuracy with proper
feature selection, which is, in some cases, even compara-
ble to the PCA. However, the new method is less stable as
demonstrated by the larger performance deviation among
different datasets. Thus, it shows a lower accuracy in Table
1, on average.

For the spectral-face methods, larger images proved to
have better class separation, as they enhance the vector
space dimension. The average accuracy from 100 random
tests reveals1 ∼ 2% improvement for112×92 images over
64 × 64 ones, which is much more significant than that of
the PCA. It is also observed that the performance perturba-
tion for both the spectral-face methods are quite large. This
confirms that the lower resolution measurements of pixel
distribution make the system more fluctuated. A feature op-
timization scheme needs to be embedded for better recogni-
tion performance.

Experiments also show that the spectral-face methods
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Figure 6. Recognition performance of (a) the PCA, (b) the Covariance Face Method and (c) the Error
Face Method under varying feature length.

prefer classifiers with good sample generalization ability.
Comparison tests of NFL over NN show improvement of
2 ∼ 4% on average. The use of NFL is somehow equivalent
to adding more samples to the training datasets. the results
suggest that more knowledge on possible appearance varia-
tion tends to enhance class separation, especially for meth-
ods like spectral-face that operates in lower dimensions.

4.3. LDA enhancement of the covariance face
method

The direct LDA algorithm introduced in Section 2.1 is
adapted into the covariance face method by substituting face
matrices into the scattering formulae, and finding transfor-
mation matrices that simultaneously diagonalizeSB and
SW using SVD instead of eigen-decomposition. The LDA
method is not suitable for the error face method, as the scat-
tering matrices it used would again be random with very
small, trivial values, which is hard to retain discriminatory
power across face classes. Table 2 demonstrates the ef-
fects of LDA on the PCA and the covariance face features.
64 × 64 images were used for testing, and recognition uti-
lizes the full span of features.

The most significant enhancement is found in the covari-
ance face method, which proves that its features, though
only based on the left-eigenvectors, can actually preserve
class relevant information. Nevertheless, the performances
of the spectral-face methods are still worse than the PCA,
even with the LDA enhancement. This is mainly caused by
the lower space dimension, therefore, we later tried to scale
it up using circulant stacking.

4.4. Effect of image stacking

In this section,64 × 64 images were reshaped by the
stacking technique mentioned in Section 3.3 to expand the

Table 2. Recognition performance with LDA
enhancement.

Method PCA Covariance Face
Without LDA 94% 84.4%

With LDA 95.69% 90.5%

feature space dimension for the covariance face method.
Fig. 7 examines the effect of different feature length using
4m × 4n circulant expansion with NFL classifier. The re-
sult confirms that the most discriminant features are related
with larger singular values, and the best feature size is about
120, while including more features only introduce noises
that eventually confuses decision.

In general, using higher dimensional vector space will
enhance the class separation of the spectral-face analysis.
However, careful feature selection shall be incorporated for
optimization. Moreover, only the moderate level of stacking
has practical meaning. Expanding with a factor greater than
4 would involve too much computation, which may defeat
the original purpose that the spectral-face was designed for.
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Figure 7. Performance of the covariance face
method with 4m× 4n circulant stacking.
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5. Conclusions

In this paper, a new subspace method called the spectral-
face analysis is developed, to facilitate face recognition in
large image datasets. They use compact measurement of
pixel distribution, and are efficient at subspace computation
for this reason. Two types of implementations were devel-
oped based on the spectral-face scenario, i.e. the covariance
method and the error face method. Feature space expansion
and LDA algorithm are applied to the covariance method, in
order to explore its subspace properties for class separation.

Intensive experiments carried on the ORL database show
that the new methods are less stable as compared to the
PCA method, because of the small vector space they used
for feature derivation. However, with careful feature selec-
tion, some of the spectral-face method can achieve equiva-
lent performance as the PCA method. In the future, the re-
search will focus on the subspace property of the new meth-
ods as compared to the face space and the scattering matri-
ces. With more knowledge on the actual subspace distribu-
tion, it may facilitate feature selection and hence, enhance
the system performance. To generalize the experiment re-
sults, face database other than the ORL faces shall be tested
on the new methods. Furthermore, it is worthwhile to study
on the random basis as in the error face method, in order
to see how generally it can be applied to face recognition
problems.
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