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Abstract 

This paper presents a Novel Fuzzy Cerebellar Model 
Articulation Controller (CMAC) implementation using 
Field Programmable Gates Array (FPGA) available in a 
flexible software/hardware co-design platform. The novel 
fuzzy quantization technique used for reducing CMAC 
memory requirement is similar to Discrete Incremental 
Clustering (DIC), with modifications to meet the hardware 
constraint. 

The objective of the project is therefore twofold: to 
propose a hardware-friendly fuzzy clustering technique 
based on DIC, to implement the Fuzzy CMAC in hardware 
cost-saving manner and exploit realization of its inherent 
parallelism in FPGA architecture. 

Test result for classification of 2-spiral problem is 
presented, which demonstrates the validity and 
generalization capability of proposed architecture and its 
advantage of reduced memory requirement. 
 

I. Introduction 
 
Inspired by how brain works: artificial neural 

networks (NN) have attracted the growing interest of 
researchers, scientists, engineers and students in many 
different scientific and engineering areas. Many NN 
architectures were proposed over the years, among which 
we will look at the Cerebellar Model Articulation 
Controller (CMAC) [1, 2], first developed by Albus in an 
attempt to develop an efficient computational algorithm 
for use in manipulator control. Functionally, CMAC is a 
generalized Look-Up Table which able to perform 
multivariable approximation. Structurally, it is a 
three-layer feed-forward associative memory neural 
network. These features enable the CMAC very unique 
characteristics such as fast speed training and local 
generalization, which makes it particularly suitable for 
control applications, signal processing and pattern 
recognition. 

The performance of CMAC is largely dependent on 
quantization of each input dimension, fine resolution is 
desired to ensure satisfactory performance, but results in 
large size of memory to be used and naturally, higher cost 

incurred. In many cases, CMAC are made impracticable 
due to its high memory requirement, such as for 
small-embedded systems, in which both space and/or cost 
of memory are of major concern.  

Motivation to make CMAC used in embedded system 
such as commercialized electronics has come into sight of 
many researchers. Producing an affordable yet storage 
efficient FPGA based Novel CMAC hardware is the main 
objective of this project. 

In order to exploit the parallel processing capability of 
the CMAC net, the CMAC can be implemented by means 
of FPGA chips, together with banks of RAM chips. In 
previous works, emphasis had been made on efficient 
migration of CMAC from software simulation to hardware 
realization [3, 4] without the fundamental changes to 
CMAC structure itself. It was concluded that more 
memory to be used to increase the input resolution, then 
better performance could be achieved. The CMAC input 
quantization and memory size dilemma still exist and yet 
to be solved. For small-embedded system, addition of 
RAM chips means both increase in cost and space, which 
may again yield CMAC-based application impracticable. 
Instead of reducing input resolution to avoid high memory 
requirement, we could be solved the problem in a different 
approach: non-linear quantization of input, which is used 
to make better memory utilization without lost to dynamic 
resolution. 

Many clustering techniques can be used for non-linear 
quantization. A novel fuzzified quantization technique 
based on Discrete Incremental Clustering (DIC)[5] was 
chosen for its simplicity and effectiveness demonstrated in 
CVT control application [6]. However, DIC itself is a 
complicated algorithm with full real numbered arithmetic 
and requires large hardware for implementation. Hence, 
this project is specially addressed the problem and 
proposed the modified algorithm named Sim-DIC which is 
more suitable for hardware implementation. Finally, 
Sim-DIC clustering and CMAC are integrated to a Fuzzy 
Novel CMAC, which is highly hardware realizable and 
allows on-chip learning and flexible configuration. The 
proposed architecture is also implemented on low-end 
FPGA chip and benchmarked by classification problem. 

Section II briefly presents the neural network model 
-CMAC, which maybe implemented in a hash mapping 
method or conventional Look-Up Table (LUT). Both 

 



methods are briefly introduced and compared. Section III 
explains how fuzzy quantization is achieved through 
discrete incremental clustering (DIC) and why it cannot 
directly prototyped to FPGA. Implementation is presented 
in section IV with special addressing to multiplier-free 
implementation for fast processing as well as testing Result 
for 2-spiral classification problem. The paper is concluded 
in Last Section. 

II. The neural network model 
 

The CMAC architecture can be considered as 
consisting of a single layer of memory locations, a memory 
addressing unit, weights adjusting unit and an 
output-summer. Simply speaking, the content of addressed 
memory locations (i.e. weights) are summed to provide 
network response to the input. Some applications might 
require input signals to be transformed to CMAC Input 
Space. CMAC is then defined by a series of mappings, 
   yWMX ⇒⇒⇒
Where  X is transformed input vector from external 
CMAC environment, M is the set of addressed memory 
locations, W is the set of contents (weights) of M, y is an 
one dimensional output. A function of    
  y = h (X) 
is a well representation of overall mapping  yX⇒ . In the 
case CMAC nets consisting set of N CMACs operating on 
the same input to produce a vector mapping 
   YX⇒
This, similarly, has all properties of the vector function 
  Y = H (X). 
Hash Mapping 

For Albus proposed CMAC, hash mapping scheme is 
used for indexing multiplayer CMAC, i.e  mapping. 
To explain the concept of Hash Mapping, the case of a 
single input and single output (SISO) is considered. The 
variable of the transformed input space is denoted by x.  

MX ⇒

In the first layer, the input space is parted into five 
divisions, which division is the so-called Cell. Now, five 
weights from W11 to W15 are allocated to each Cell. Then, 
the second layer can be added by shifting the first layer to 
S21. The Slk means the amount of shift in the direction of 
the kth degree of freedom (DOF) on the lth layer. 
Therefore, S11 necessarily becomes zero because the first 
layer is the basis. Subsequent layer can be added in a 
similar manner. The result to input x would be summation 
of weights of all indexed cells, one from each layer.   

The more layers are used, the better the output 
resolution can be achieved; but the required size of 
memory increases according to the number of layers. One 
should be careful when adds in more layers so that none of 
the shifted layers coincide with one another.  

Multiple Layers of weight matrix also enables 
generalization property and hence speed up learning 
process. This is easy to see as one weight in a specified 
layer can be indexed by a number of different inputs close 
to each other, or neighborhoods.  

Conventional Look-Up Table 
Since the basic idea of CMAC is to store information 

in a Look-Up Table (LUT) manner, one can simply use 
conventional LUT scheme, which simply has one cell for 
each and every possible input index in every dimension. 
To compare the memory requirement of both approaches, 
we have the ratio of the two memory structures, 

 
11

)(

)( )/( −− === NN

hash

TLU KCR
N
Nδ

 
with the assumption that the N input dimensions are of the 
same resolution, each can produce R different outputs, the 
number of layers is K, assume that the number of cells in 
each layer is the same: 

kCCCC ==== Λ21  
One can easily know from this ratio that the hash mapping 
becomes more effective as the dimensionality of the input 
space increases.  It is also worth to point out that memory 
requirement for hash mapping is further reduced when 
more layers are used (increasing K), but this also increases 
the complexity of the addressing algorithm, which makes it 
hardware expensive. In addition, such an algorithm is 
usually topologically non-adaptable to hardware 
implementation, when number of layers changes, the 
whole addressing scheme need to be changed. 

Thus LUT scheme was chosen for its simplicity and 
flexibility in hardware realization. And the indices could 
be calculated as follows[10]: 
Given a two-dimensional input , the winning 
neurons’ locations can be calculated in 
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Where  are the calculated index for the i and j 
axis for layer k, 
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maxix  and maxjx are the maximum value of 
the inputs in respective dimension, k = { 1, 2 … K} is the 
Layer number, and maxi maxj are the maximum 
addressable memory locations in respective axis, K is the 
number of Layers used, ⎡ ⎤  is the ceiling function, 
denotes least integer that is greater than or equal to  

x

x
It is important to point out that the expressions ( )Ki −max  
and ( )Kj −max  ensure when the input (  is at 
maximum, the addressing scheme will not allow any 
memory overflow. The overflow problem can also be 
solved from hardware prospective, by adding the memory 
locations in each axis to  

)ji xx ,
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Then the calculation for determining winner neurons is 
further simplified to 
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The number of layers and localization topology can simply 
be adapted by varying the value of K and how it is selected. 
Therefore In this project, the LUT addressing scheme with 
multiple winning neurons is used for its simplicity in 
hardware implementation.  

 



III. Fuzzy quantization 
 

The uniform quantization problem remains in the 
conventional CMAC presented in previous section. It can 
be described such that the CMAC input space is quantized 
into equal-size regions while inputs at problem space are 
not necessarily uniform. When problem inputs appear with 
uneven degree of variation, or clustering effect, then 
uniform quantization of such inputs could be associated 
with large quantization error and not efficient for storage.  

Moody [7] uses multiple CMACs with different 
resolution to resolve the quantization error problem. His 
idea is to start learning with Low Resolution CMAC, and 
CMAC with higher resolution is then used in same input 
space if the result is unsatisfied. This expansion process 
stops only when error rate is reduced to an acceptable level, 
and output of this structure is the summation of all 
CMACs’ outputs. This approach solved minimum 
acceptable resolution problem but fundamentally the 
uniform quantization characteristic remains unchanged, 
further more, memory requirement increases and becomes 
unpredictable at first instance when problem is given.  

Kim and Lin [8] proposed an adaptive quantization 
technique for input space by using mapping function. In 
this approach, training of CMAC stills starts with uniform 
quantization, and subsequently input intervals with large 
variation are compressed and those with small variation are 
extended. Hence learning accuracy is improved and 
storage requirement is reduced. However, the mapping 
function used to convert inputs is globally adjusted and it 
requires prior knowledge of the problem inputs in order to 
determine which are the intervals to be compressed or 
extended.  

A fuzzified MCMAC (Modified CMAC) proposed by 
Shu [6] employs Fuzzy Quantization to replace uniform 
quantization. This is achieved by the use of a novel 
clustering technique named Discrete Incremental 
Clustering (DIC) [5], which dynamically forms the fuzzy 
clusters by using only input information from same 
neighborhood (or intervals).  The theory is stated as: 

“The input space is divided into several regions, and 
quantization ratio in that region is proportional to the 
number of fuzzy sets that covers the region.” 
It can be illustrated using figure 1.   

Uniform
Memory
Space

Fuzzified
Memory
Space

 
Figure 1. Memory Space Structures 

Note the trapezoidal-shaped fuzzy sets for both input 
dimension are created as indexing rule base by DIC. The 
DIC is a novel clustering techniques that requires only raw 
numerical values of training inputs without any 
pre-processing. In most DIC implementations, 
trapezoidal-shaped fuzzy sets are used and each fuzzy set 
belonging to the same input dimension has little or no 
overlapping in kernels with its immediate neighbors. The 
DIC performs clustering on a local basis, that is, the 
number of fuzzy sets created is dimensional specific. This 
concept is similar to ART clustering techniques but in DIC 
will not “recreate” any existing fuzzy set for a particular 
dimension. Hence, DIC ensures that fuzzy set can uniquely 
identify fuzzy labels which formulate a consistent rule base 
for Fuzzy CMAC. 

DIC technique overcomes several limitations 
encountered in many other partition-based clustering 
techniques. It does not require prior knowledge about 
number of clusters to be created for a given set of data. DIC 
performs clustering on a local basis and can significantly 
increase the memory efficiency yielding reduced the 
memory requirement. Moreover, DIC provides a platform 
for Fuzzy CMAC to formulate consistent fuzzy rule base.  

However, DIC itself is NOT a hardware friendly 
algorithm, for it has large computational overhead and 
difficult-to-implement non-linear functions. With limited 
precision, limited computational resources and restricted 
arithmetic that can be performed on FPGA, it is really 
challenging to have DIC, or rather, DIC-like algorithm to 
be implemented from a hardware prospective. 

There are many costly computations (other than 
addition, subtraction and bit-wise operations) involved in 
DIC algorithm, to name a few, non-linear sinusoidal 
function, division, multiplication.  One of the major 
problems of FPGA implementing Neural Networks, 
affecting both performance and number of gates used, is 
the presence of multiplier. Thus the preliminary feature of 
proposed Sim-DIC is that it must be multiplier free.  

 
• Some multiplication can be replaced by bit-wise 

operation, such as bit shift which equivalent to 
multiply (or divide) a Power of 2 Number.         

• The nonlinear functions are implemented using 
Look-Up Tables (LUT) with proper discretization of 
entries.         

• The Membership Function is also implemented in 
LUT with consideration for data precision. 

 
Three major effects of these simplifications and 
modifications are founded in the testing result. They are: 
 
• Reduced Accuracy and precision 
• Reduced flexibility in fine tuning of parameters 
• Increased Learning Speed on very small circuit 
 
We shall address these effects again in next section.   
 
  

 



IV.  Implementation & Result 
 

The Fuzzy CMAC with Sim-DIC was implemented on 
Student RC100 Development Board (Celoxica) featured 
with one Spratarn II 20K gates FPGA chip from Xilink[9]. 
The project was conducted in software/hardware co-design 
manner, as in, the proposed novel architecture was first 
implemented using C language, tested and tuned for 
performance; then the C code was migrated to Celoxica 
Handle-C language, which is a C-like High Level 
Language can subsequently be compiled and translated 
into HDL; then the Bitmap is generated from HDL file by 
Xilink Design Manager for running in specific FPGA. 

Note that this project is to demo the novelty and 
feasibility of implementing a Fuzzy CMAC on FPGA, so 
the data transfer from PC to RC100 Board was not of main 
concern. Thus we prepared the input data in raw file and 
pre-load to onboard Flash RAM for use. And for the result, 
which is also in raw format, is loaded to PC and converted 
to Text file for easy viewing and analysis.  

The Sim-DIC clustering Phase and CMAC Learning 
Phase of Fuzzy CMAC is performed by FPGA, however, 
due to large hardware created for both Sim-DIC and 
CMAC, two phases are time-partitioned in the design. So 
FPGA is first configured for creating clusters and store 
them back into RC100 onboard Flash RAM, and the 
re-configured to a CMAC enabled Fuzzy Quantization 
which is realized by indexing through clusters. This way 
we enhanced the functional density of FPGA, which is 
effective for further cost saving 

Note that this project is to demo the novelty and 
feasibility of implementing a Fuzzy CMAC on FPGA, so 
the data processing was not of main concern. Thus we 
prepared the input data in raw file and pre-load to onboard  

 
 

 
Flash RAM for use. And the result, also in raw format, is 
loaded to PC and converted to Text file for easy viewing 
and analysis. Figure below illustrates the overall 
implementation strategy in block diagram (Figure 2). 
Our implementation of Sim-DIC uses 73% of slices (logic 
elements) of the Spartan II (FG456) with a highest 
frequency at 21.44MHz. The Fuzzy CMAC (learning 
phase) with indexing through clusters is made up 41% of 
slices and runs at 31.74MHz. In contrast, conventional 
CMAC with uniform quantization can be implemented 
using only 36% slices but runs at close frequency of 
33.05MHz. Table 1 below shows a summary of important 
implementation statistics running on a P4-2.4 512M PC 
 

Table 1. Statistic of Current Implementation 
 

 Sim-DIC Fuzzy 
CMAC 

CMAC 
(pure) 

Size (# of Gates) 74,132 34,946 29,037 

Device utilization 
(%slices) 73% 41% 36% 

Max clock 21.439 
MHz 

31.736 
MHz 33.050 MHz 

Period 46.643 ns 31.510 ns 30.257ns 

Build Time  47.1 sec 23.6 sec 20.5 sec 

Netlist->.BIT time 1 min 28.4 
sec 42.5 sec 40.2 sec 
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Figure 2. FCMAC Implementation Diagram
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The classification of two intertwined spirals problem, 

first developed by Alex Wieland, is a complex task for 
neural networks. We adopted this problem as a validation 
benchmark for feasibility of using FPGA implemented 
Fuzzy CMAC for practical applications with defined error 
rate. The standard training set contains 194 points (set A) 
with 97 points for each spiral and testing set consists of 770 
points (set B) with 385 each. The recall capability of 
proposed novel FCMAC is investigated. We conducted 
Supervised Training for CMAC or Fuzzy CMAC with 
desired value to be either 0 (for class 0) or 1 (for class 1). 

We first benchmark the problem using an FCMAC 
simulated on P4-2.0G Personal PC, with precision set to 
Double. In this case, both set can be classified correctly, 
but both running time and memory consumption are 
relatively large. Then we tested the FPGA implemented 
CMAC and found out that using 16bit integer 
representation, the problem can be solved using 64x64 
CMAC. Since the purpose is to further reduce the memory 
requirement on FPGA, and such a reduction will become 
more significant as input dimensions increases. We then 
reduced the CMAC size, by having 40, 30, and 20 cells in 
each dimension, and as predicted, the classification rate 
drops. And if the problem requires a classification rate 
above 95%, the minimum CMAC size required is 30x30. 
       With aid of Sim-DIC, the proposed Novel Fuzzy 
CMAC is able to classify the data correctly when cells 
drop to maximum 30 per input dimension, and still sustain 
a classification rate above 98% when cells were further 
reduced to max 20 per input dimension.  We can see that 
Fuzzy CMAC still functions when cells go as low as 11x13, 
given classification rate about 90%. In same case for 
12x12 CMAC, only about 80% data can be classified due 
to poor resolution (Table 2). 

More experiments are now in progress. To further 
demonstrate the viability of proposed Fuzzy CMAC and its 
advantage over conventional CMAC in clustering effect, 
hardware cost saving and reduced memory requirement. 
Test for higher dimensional problems will also be 
conducted.  

 

 

 
 
 
 
 
 
 
 
 

V. Conclusion 
 

In this paper, we proposed a hardware-friendly fuzzy 
clustering technique based on DIC, namely Sim-DIC. We 
also implemented a novel Fuzzy CMAC in FPGA using 
simple prototyping platforms. Handle-C is used for fast 
migration of C-simulation on PC to hardware. The 
architecture and implementation is tested using two-spiral 
problem and proved to be of better performance over 
conventional CMAC of same size. The FPGA 
implementation of Fuzzy CMAC proved that the 
integration of Fuzzy Techniques and Neural Network can 
be realized in simple hardware form (Student RC100 
Development Board). And such hardware FNN can 
subsequently be used in real-time, embedded systems 
and/or for the sole purpose of fast processing through 
FPGA’s internal true parallelism. 
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