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Abstract 
 
This paper presents an application of an Adaptive Neural-
Fuzzy Inference System (ANFIS) to power forecasting 
problems. The need for accurate forecasts is increasing as 
power markets are becoming more competitive.  This paper 
gives a brief overview of the issues facing power system 
forecasting and proposes the use of ANFIS to perform short 
term scheduling.  Finally, it gives a comparison against 
other techniques that have been previously presented, 
highlighting ANFIS favourably. 
 
 
1. Introduction 
 
The operation of a power system is usually divided into four 
different categories: long term, medium term, short term 
and real-time [1].  Long term forecasting is primarily 
associated with maintenance scheduling and generator 
lifespan.  It considers time frames well over a year in 
advance.  Medium term scheduling is used primarily for 
fuel planning and ensuring that the system will continue 
operations between maintenance checks and upgrades.  It 
generally considers time frames from a week to a year 
ahead.  Short term scheduling is the operation of a power 
system from anywhere between five-minute load schedules 
to week-ahead planning.  It is the operation that ensures that 
loads are capable of being met and are being met in an 
efficient manner.  Lastly is real-time scheduling, based on 
the operation of the machines themselves.  Real-time 
scheduling focuses on supplying the energy to meet the 
goals that are set, while preserving operation limits on the 
machines.  
 
This paper investigates short-term forecasting for a power 
system.  However it especially centres on a sub-class 
referred to as very short term forecasting.  Very short term 
forecasting is predominantly focussed on predicting the 
value of the next period of an applicable data set.  In this 
instance, that period will be the operating cycle of the 
National Electricity Market of Australia. 
 
2. Overview of the National Electricity Market 
 
The National Electricity Market (NEM) is managed by an 
overseeing body called the National Electricity Market 
Management Company (NEMMCO).  The NEM is a 

wholesale power pool to which the generators sell the 
power they produce and the distributors buy the power they 
need to sell to their clients.  This form of power system is 
known as a “deregulated system”.  The generators make a 
bid to supply a certain amount of power at a chosen price 
and NEMMCO receives the generators’ bids, ranks them 
according to price and accepts enough bids to satisfy the 
projected demand plus a safety margin.  Usually this means 
that the last bid accepted is accepted as a partial amount.  
The highest accepted bid price is the price that each supplier 
receives for the power that they produce in that time period, 
regardless of their individual bid price.  Finally, most 
generators and distributors have a majority of their power 
resources set in contracts.  These contracts are unaffected by 
the spot price market so far as the customer is concerned.  
However, the generators can choose to buy power from the 
spot price market to fill their contracts if they either cannot 
make the contract themselves or it would be more 
economical to do so.  
 
3. General Overview of Power System Operation 
 
Short term scheduling is widely recognised as an essential 
element of power system operation [2].  It is a complex 
problem as there is no ideal solution.  Certain generators 
operate better under different operating systems and 
schemes.  Due to high production costs, small increases in 
efficiency also lead to large savings.  This means that 
utilities are always in pursuit of a more efficient means of 
short term operation. 
 
When considering short term scheduling and economic 
dispatch, accurate demand forecasts are essential [3].  The 
forecasts are used to try to reduce the difference between 
the power available and the power consumed.  The use of 
forecasting techniques for load forecasting is a topic widely 
discussed in power engineering.  Another less discussed, but 
no less useful, parameter is that of electricity prices.  
Traditionally, these “spot prices” have been difficult to 
predict and when investigated by a human, it is near 
impossible to discern any pattern in changes of spot price.  
This paper shows a way to overcome this issue. 
 
4. Power System Specifics  
 
In order to schedule a power system correctly, it is essential 
to know how that particular system operates and what 



factors are most important to optimise.  Generally, a system 
can be considered as fossil fuel-based or renewable, but 
even that distinction is somewhat blurred.  However, for the 
purposes of this paper it will be convenient to use these two 
titles as all-encompassing categories.  The fossil fuel based 
systems destroy the fuel they use, but can purchase more 
when needed.  The renewable energy systems do not 
destroy the fuel, but the access to the fuel is limited. 
 
4.1. Fossil Fuel Based Systems  
 
Fuel based systems are diverse and include many variations 
that can solve most generation issues.  Nuclear power has 
low running costs, but initial expenses are high.  Gas power 
has low initial expenses, but running costs are relatively 
high.  In the middle of these extremes is coal-fired 
generation.  The coal-based and nuclear tend to have slow 
ramp -rates (rate at which the level of operation can be 
altered).   
 
For a system that cannot be altered rapidly, once the system 
is turned on, it is committed to operation for a significant 
period of time.  This means that the cheaper to operate 
systems, are also less flexible and sometimes even have to 
incur losses at low spot price periods in order to continue 
operations.  To have a fossil fuel based power system that 
can rapidly respond to changes in demand, high-cost gas-
fired stations must be used.  The other alternative is to 
consider a renewable system. 

 
4.2. Renewable Systems  
 
Renewable systems also have diverse potential for 
generation.  Hydro generation has the advantage of quick 
response, while wind and geothermal energy have the 
advantage of providing a non-exhaustible (within practical 
limits) supply of power.  Furthermore, the energy sources 
used to produce the electricity are free.  However, these 
systems do have their own shortcomings. 
 
Renewable systems have a high installation cost and so 
have been prohibitively expensive to nations with closely 
limited resources.  Wind and geothermal energy are not able 
to be stored in their own right. Hydro power, which can be 
stored, is not always available.  If there is a drought, or even 
a period with less rain than forecast, this can cause 
problems with the operation of a hydro system.  However, 
even with these negative aspects, in developed countries, 
most locations that could be used to generate renewable 
power (especially hydro) are being investigated or utilised 
[1].  Thus, most countries rich enough to afford the initial 
outlay agree that the advantages of free energy in the long 
term outweigh the negatives of renewable power – the fact 

it is environmentally sustainable is becoming more 
important as well. 
 
5. Necessary Forecast Parameters 
 
To efficiently operate a power system, it is important to 
have good predictions for the characteristics that determine 
the system’s operation.  For instance, unless the wind speed 
it accurately forecast, it becomes difficult to properly 
schedule any wind resources.  This paper is based on very 
short term forecasting of demand (or load) and spot price 
data. 
 
A typical load profile is relatively smooth and responds well 
to forecasting techniques.  However, even the best 
predictions still tend to have significant errors associated 
with them. 
 
Load forecasting has been approached in several ways, 
including weather dependent, weather independent and a 
combination of the two [3].  While, these have met with 
comparable levels of success, the weather independent 
models’ main advantage is that there is no need to include 
another predicted variable (weather).  This comes at the 
slight expense of accuracy.  However, some power stations 
are very dependent upon the weather predictions for other 
operating parameters and thus the accuracy is more 
important as the weather predictions are already an integral 
part of the system. 
 
Load forecasting is extremely important and has been 
researched quite extensively using traditional methods and 
in recent years, artificial intelligence techniques have also 
been applied to this field. 
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Figure 1: 20 February 2002.  Typical summer day for 
Victoria, Australia.  Data derived from NEMMCO site. 
 
Spot price forecasting is a new area of research.  
Deregulation of power markets is still relatively new 
(beginning around 10 years ago) and the accurate 
forecasting of spot price data has had very little written 



about it.  The most likely reason for this is the difficultly in 
obtaining good results and the limited application of mo st 
techniques so far investigated. 
 

 
Figure 2: Typical summer day for large American spot price 
power pools.  Tabors Caramanis and Associates developed 
this figure for a report [4]. 
 
Often an application is so site specific that there is no way 
that it can be used to forecast for another region.  
Furthermore, the very essence of the spot price data can 
vary greatly from region to region.  Figure 1 shows a typical 
summer day’s data from the Victorian (Australia) spot price 
energy pool and Figure 2 shows a typical summer day’s 
data from New Jersey and Massachusetts (USA).  
 
The two figures show that the smaller market (Victoria) is 
far more difficult to predict.  A smaller market means load 
fluctuation has a more pronounced effect.   This research 
applied new techniques to forecast this data. 
 
6. Forecasting Technique 
 
This paper proposes an application of a new forecasting 
technique that looks very promising.  This technique was to 
use an Adaptive Neural-Fuzzy Inference System (ANFIS). 
 
Traditionally, power systems operators have been focussed 
on load forecasting and used conventional mathematical 
procedures to try to predict future load values.  There were 
several separate techniques applied from the mathematical 
domain [5].  Multiple linear regression (MLR) is used to 
derive the forecast value from other values that affect it.  
Stochastic time series (STS) forecasting works by creating a 
model, which essentially acts as a filter to a white noise 
input.  There are numerous techniques that can be used as 
part of this encompassing heading.  General exponential 
smoothing (GES) works by developing a fitting function to 
create a smooth transition from point-to-point (a likely 
behaviour of load).  State space (SS) and Kalman filter is a 
general forecasting approach that utilises state space 

mathematics to combine several models to create a better 
overall system.  
 
Then knowledge-based systems (KBS) started being 
investigated and were found to work well although were 
difficult, or even impossible (if there was no available 
expert), to implement.  The next generation of forecasting 
measures was based on artificial neural networks (ANN).  
ANNs worked very well, but had the problem of over-fitting 
or “memorisation”.  As forecasting can include a very wide 
range of data with sharp spikes, a large amount of training 
data is necessary to be able to handle unusual events.  
Although, if too much information is used to train an ANN, 
the ANN will adjust to predict the training data very well, 
but not be able to handle new data. 
 
6.1. The ANFIS model 
 
ANFIS is a hybrid system that combines the low-level 
computation power of neural networks with the high-level 
reasoning capability of a fuzzy inference system [6, 7].  
This research has been implemented using a version of 
ANFIS in the “Matlab Fuzzy Toolbox”. 
 
The easiest way to understand how the ANFIS model 
operates is to consider it in two steps.  Once trained, the 
system opera tes as a fuzzy expert system would.  
Information is input, fuzzy rules are fired and a 
corresponding output is achieved.  However, the training is 
more like that of a neural network (although not identical). 
 
As with a supervised-learning neural network, the fuzzy 
system is trained with a set of data called a training set.  
This set is represented by several subsets of inputs and one 
desired output for each subset.  Where it differs is in the 
selection of model parameters. 
 
To use the ANFIS model, the user defines the number of 
inputs; the number of membership functions (MFs) and 
their type, and the number of epochs of training.  One of the 
more unusual aspects of the ANFIS model is that changing 
even one of these parameters be the difference between a 
system that appears to be not working at all and a system 
that produces almost perfect results.  This is exemplified in 
the Results section of this paper. 
 
The number of inputs for this work was varied between 4 
and 6 and it was found that the more inputs that were used, 
the better the result became.  However, this also came at the 
cost of speed of training.  When four inputs were used, it 
was possible to operate with three MFs, however, with six 
inputs, the number of MFs was limited to two (within 
reasonable training times).  It was also noticed that in some 
cases, a system with four inputs and only two MFs 
outperformed a system with four inputs and three MFs.  



This was due to a form of over-memorisation.  The rules 
became too specific and could not handle a wide variety of 
test cases.  Thus, for this example, it was found that six 
inputs and two MFs were the best combination. 
 
The number of epochs is another factor that is very different 
from a standard ANN training regime.  Generally an ANN 
will be trained for anywhere up to 1000 epochs (and is some 
cases even more).  However, the ANFIS model trains in 
such a way that the number of epochs is of far less 
importance.  Each epoch of an ANFIS model can take 
several minutes (or more) by itself and generally makes 
very little change after the first epoch, provided the training 
parameters are well chosen.  Thus, the number of epochs for 
this work has been set to one. 
 
The last of the parameters to be chosen was the type of MF.  
The type of MF is generally a “bell function”, such as the 
Gaussian distribution function.  This is a very good function 
for precise work and will function better if the system is 
relatively smooth and trained to cover all likely events.  
However, it does lack the robustness of some of the simpler 
membership functions. 
 
6.2. Measures to Ensure Robustness  
 
In the beginning sections of this work, the ANFIS was 
being trained with the bell function for its MF and was 
using a linear set of training data.  When tested on 
intermediate sections between the tes t data, such as system 
gave almost perfect results.  However, the results were less 
impressive for later test data and unusable for unusual and 
spikey test data.  This showed the need for some added 
robustness to the ANFIS predictor.   
 
The first step taken was to randomise the training data.  For 
this project, the training set was initially chosen as every 
day in January 2002.  To randomise the data, the training set 
was still selected in day-sized sections from the January 
data, however, now the sections began from different times 
of day and also occurred in a random order.   
 
The next step to ensure robustness was to search the 
previous year (2001) for unusual events and randomly 
include these in the training data.  This meant that the 
training set was “s eeded” with large spikes so the model 
could accurately predict such events. 
 
Another step that was taken was to change the input 
configuration.  The inputs used were derived from previous 
data points, however, rather than simply taking the six 
points previous to the forecast point, it was found that 
taking a wider set of inputs improved the results.  The final 
outcome was using the last, second last, third last, fifth last, 
seventh last and ninth last points gave the best results. 

Even with these additions, it was found that the results were 
yet to reach an acceptable level on a consistent basis.  
Investigation showed that the ANFIS model was having 
difficulty in predicting the next point due to the coarse 
nature of the data.  Figure 1 shows an example of spot price 
data and note the drop from 07:00 to 07:30. 
 
With such rapid changes between data points, a successful 
forecast was almost impossible.  Thus some attempt had to 
be made at bridging the gap between points.  The first 
inclination is to use spline interpolation.  However, 
interpolation is not possible between a known point and an 
unknown point (the point to be forecast).  Thus, 
interpolation was used where possible in order to obtain 
input data, but another technique had to be used to obtain 
other the intermediary points leading to the desired forecast 
point.  This was essentially a forecast to predict each 
intermediary point, which was in turn was used to predict 
the next point and so on, until the wanted prediction was 
reached.  At that stage, the latest point was known again and 
interpolation was used to replace all the predicted 
intermediary points with real interpolated data.  The actual 
time step that was used created 10 sub steps between each 
data point. 
 
The last measure to ensure robustness was to try changing 
the MF type.  Until this stage, large events still caused 
massive overshoot and undershoot as even with the seeded 
training set, the fuzzy rules were incapable of being trained 
to account for very rapid rises.  This repetition of error lead 
to experimentation with other MFs.  It was found that the 
more basic the MF was, the more robust the system was.  
However, the robustness did come at a slight cost of 
accuracy during the rest of the test data (see Table 4). 
 
6.3. Predicting Difference to Impr ove Short Term 

Accuracy 
 
One of the key features of the technique and results 
presented in this paper is using ANFIS to predict difference 
between points instead of raw data points themselves.  The 
prediction of difference instead of the data points 
themselves presented some interesting problems.  
Difference data tends to be even more unpredictable than 
the data it is derived from.  Thus, it is difficult to tune an 
ANFIS to predict the difference data correctly.  However, 
when the difference data is properly predicted, the end 
results are improved and so is the robustness.  During this 
work, difference data prediction was used and compared to 
similar systems that did not use difference prediction and 
those using the difference method were found to perform 
better.  The reason for this is that while the difference data 
itself is more difficult to predict accurately, the prediction 
will be of smaller numbers, resulting in smaller total errors 



in the true prediction data.  Unfortunately, this technique is 
limited to very short term (or possibly short term) 
forecasting as the errors have a greater tendency to 
compound than with the more traditional techniques. 
 
7. Results 
 
Forecasts often have different time spans and can be 
performed on very different data, making good comparisons 
difficult to obtain.  However, while it is difficult to 
objectively compare forecasting results, it is clear that the 
results obtained in this research were exemplary. 
 
For the purposes of this paper, three papers were chosen as 
comparison cases.  All three papers focussed on very short 
term forecasting.  This means that the forecast values are 
likely to have similar errors.  Reference [5] was chosen as it 
presented a good selection of techniques against which this 
paper can be compared.  It was published in 1989 and is 
verging on being out of date, however, in order to compare 
artificial intelligence results with conventional techniques, it 
is necessary to go back that far.  The other two references, 
[8, 9], were both published in 1999, both using ANNs.  
However Drezga and Rahman [8] looked at load forecasting 
and Szkuta, Sanabria and Dillon [9] looked at price 
forecasting.  The price forecasting paper also used 
Australian market data, which limits another variable. 
 
Moghram and Rahman [5] used conventional techniques 
and a knowledge-bas ed technique to look at very short-term 
load forecasting (one hour ahead).  They split the test values 
into summer and winter and achieved the results shown in 
Table 1. 
 
Table 1: Absolute mean percentage errors from [5] 
 

Algorithm  MLR STS1  STS2  GES SS KBS 
Summer %  2.78 0.54 0.51 2.12 1.57 1.22 
Winter %  3.76 2.17 2.70 1.79 1.71 1.29 
Total % 3.27 1.36 1.61 1.94 1.64 1.26 

 
Drezga and Rahman [8] looked at several lead times and 
their results showed only a small difference in the errors, 
however, for the purposes of this paper, it is more 
appropriate to only look at the one hour ahead forecast. The 
results they obtained are shown in Table 2. 
 
Table 2: Absolute mean percentage errors from [8] 
 

Utility  Utility A Utility B 
Month  Jan Apr Jul Oct  Jan Apr Jul Oct 
Error  1.15 1.01 .8 1.04 1.59 1.23 .88 .99 
Total 1.00 1.17 

 
Szkuta, Sanabria and Dillon [9] also were trying to predict 
the next data point (half hour values in this case) and 
reported their findings as a week worth of predictions and 

associated errors.  The results are presented in Table 3.  It 
also pays to note that the days used to test the ANN in this 
paper did not including the large spikes that can occur in the 
spot price market such as those included in Table 5. 
 
Table 3: Absolute mean percentage errors from [9]  
 

Date 14/5  15/5 16/5  17/5  18/5 19/5  20/5  
Error  4.16 11.09  2.18 10.61 4.88 3.27 4.17 
Total  5.77 

 
The results shown in Tables 1-3 demonstrate that ANNs 
represent a superior forecasting technique to the 
conventional techniques and that spot price data is much 
more difficult to forecast than load data. 
 
The ANFIS model was trained on seeded January 2002 data 
and tested on February 2002 (summer) spot price data, June 
2002 (winter) spot price data and retrained and tested for 
March 2002 demand data.  Each of the test data sets was 
trained and tested for many combinations of parameters to 
ensure that near best results were being achieved and for 
this paper a comparison of results have been reported. 
 
The data for February was the main thrust of this paper and 
received the most attention in ensuring good results.  It was 
also much easier to get good results for the summer data 
than for the winter data as it did not have any large spikes.  
The results are shown in Table 4. 
 
Table 4: Absolute mean percentage errors for spot price 
data during February 2002 
 

MF Bell Function MF  Triangular MF 
Data Partial Full Partial Full 

Error % 0.43 2.30 0.75 0.73 
 
The results show that the bell MF is superior to the 
triangular MF when given selected data from the seeded 
training set.  If given the full seeded data set, it does not 
respond so well since it places too much emphasis on the 
spikes added to allow for unusual results.  The bell function 
with the partial data set will work well for most months of 
the year, but will return large errors if used to try to predict 
the winter spikes.  This is shown in Table 5.  The triangular 
membership function did not respond quite so well, but was 
far more reliable at handling unusual events.  This makes 
the triangular membership functions a safer option. 
 
Table 5: Absolute mean percentage errors for spot price 
data during June 2002 
 

MF Bell Function MF  Triangular MF 
Data Partial Full Partial Full 

Error % 1.72E09 1.27E07 35.23 10.73 
 



The results shown in Table 5 seem alarmingly high, 
especially for the bell function.  However, upon 
investigation it was clear that most points were very well 
predicted and the true data line was followed closely.  
However, when the data spiked upwards suddenly, the 
prediction completely overshot the result as it went to the 
full extent of the MF curve.  For a bell function this is a 
very large number and so the errors were correspondingly 
large.  To give an insight to the suddenness of a spike, in 
one period between predictions, the price rose from 235.79 
to 3839.60.  This kind of change is very difficult to properly 
predict. 
 

The demand data test set was mainly done in order to 
compare the ANFIS system against a wider range of 
competition.  Due to the vast differences in demand 
depending upon we ather, season and day of the week, the 
training data was only used for weekdays.  With more time 
spent on finetuning, the demand data could return even 
better results by using different inputs (such as using one 
input for weather values and one for day of the week).  
Even so, the results obtained clearly showed that ANFIS 
techniques are the best available.  The results are presented 
in Table 6. 
 
Table 6: Absolute mean percentage errors for demand data 
during Mar 2002 
 

 MF Bell Function MF  Trapezoidal MF 
Error % 925.52 0.084 

 
As the training data set was not carefully selected, 
randomised and seeded, the bell function gave large errors 
at some stages as the ANFIS was not well trained to handle 
those particular values.  However, by using the more robust 
trapezoidal MF an excellent result was obtained. 
 
8. Further Research 
 
One of the great advantages of a neuro-fuzzy system is that 
the operations of the system can be directly affected.  This 
means that the rules can be altered manually to improve the 
results.  The standing problem with this system is still 
founded in the spot price forecasting of large data spikes.  
Even with all the measures to improve robustness, the 
spikes still tend to be overshot by significant amounts.  This 
could be corrected by adjusting the rules to create a cut-off.  
When the predicted difference might be clearly beyond 
reasonable expectations, the rules would limit the difference 
to some upper bound.  This would need to be fine-tuned, but 
would stop the large overshoot and undershoot errors that 
are presently causing difficulties on the most severe days. 
 

More work could also be done to improve the training set 
used for the demand data and with the better training set, 
longer forecasts are a strong possibility for this technique.  

Both load forecasting and price forecasting could be 
extended out to a six-hour forecast and maybe beyond. 
 
9. Conclusion 
 

The research shows that ANFIS is an excellent technique 
for power forecasting and is likely to work very well for 
other forecasting applications as well.  In both instances 
(spot price and demand) the results obtained using ANFIS 
are approximately ten times better than the other research 
that was available.  Especially impressive is the 10.73% 
error achieved for the spot price data of June.  This data is 
almost impossible to predict and an error of around 10% is 
incredibly accurate. 
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