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Abstract  
 

This paper introduces a method for weighted data 
normalization (WDN) that optimizes the normalization 
ranges for the input variables of an evolving connection-
ist system (ECOS). ECOS perform incremental, local 
area learning based on clustering. A genetic algorithm is 
used as part of the WDN method. The derived weights 
have the meaning of feature importance and are used to 
select a minimum set of variables (features) that optimize 
the performance of the ECOS. The method is il lustrated 
on two types of ECOS. The first one is for time series 
prediction and the second one is an original ECOS for 
classification, proposed in this paper. 

 
1. Introduction 

 

In some applications raw (not normalized) data is 
used. This is appropriate when all the input variables are 
measured in the same units. Normalization, or standardi-
zation, is reasonable when the variables are in different 
units or when the variance between them is substantial. 
However, a general normalization means that every vari-
able is normalized in the same range, e.g. [0,1] and there-
fore has the same importance for the output of the system. 

For many practical problems, variables have different 
importance and make different contribution to the output. 
Therefore, it is necessary to find an optimal normaliza-
tion and assign proper importance factors to the vari-
ables. Such a method can also be used for feature selec-
tion or reducing the size of the input vectors through 

keeping the most important ones. This is especially appli-
cable to a special class of neural networks, evolving con-
nectionist systems (ECOS), where nodes and connections 
evolve from an input stream of data to capture clusters 
and to allocate a local output function for each cluster [1, 
2, 3]. Distance between existing nodes and new input 
vectors are measured as Euclidean distance, so that vari-
ables with a wider range will have more influence on the 
learning process and vice versa. 

The paper is organized as follows. Section two pre-
sents the main principles of ECOS, while section three 
introduces a new ECOS model for classification, called 
Evolving Clustering Method for Classification (ECMC). 
Section four introduces a method for weighted data nor-
malization (WDN) based on genetic algorithms (GA). 
Section five illustrates the method on a known ECOS for 
prediction, as well as on the introduced ECMC method. 
Conclusions are drawn in section six. 

 
2. Principles of evolving connectionist 

(ECOS) 
 

Evolving connectionist systems (ECOS) are multi-
modular, connectionist architectures that facilitate model-
ling of evolving processes and knowledge discovery [1, 2, 
3]. An ECOS may consist of many evolving connectionist 
modules. 

An ECOS is a neural network that operates continu-
ously in time and adapts its structure and functionality 
through a continuous interaction with the environment 



and with other systems according to: (i) a set of parame-
ters that are subject to change during the system opera-
tion; (ii) an incoming continuous flow of information 
with unknown distribution;  (ii i) a goal (rationale) criteria 
(also subject to modification) that is applied to optimise 
the performance of the system over time. The evolving 
connectionist systems have the following characteristics 
[1]:  

1) They evolve in an open space, not necessarily of 
fixed dimensions.  

2) They learn in on-line, incremental, fast learning - 
possibly through one pass of data propagation. 

3) They learn in a life-long learning mode. 
4) They learn as both individual systems, and as part 

of an evolutionary population of such systems.  
5) They have evolving structures and use constructive 

learning. 
6) They learn locally and locally partition the problem 

space, thus allowing for a fast adaptation and tracing 
processes over time. 

7) They facilitate different kind of knowledge repre-
sentation and extraction, mostly - memory based, statisti-
cal and symbolic knowledge. 

ECOS are connectionist structures that evolve their 
nodes (neurons) and connections through supervised in-
cremental learning from input-output data pairs. One of 
the ECOS models, evolving fuzzy neural network 
(EFuNN), is shown as a simple version in Figure1 [2]. It 
consists of five layers: input nodes, representing input 
variables; input fuzzy membership nodes, representing 
the membership degrees of the input values to each of the 
defined membership functions; rule nodes, representing 
cluster centers of samples in the problem space and their 
associated output function; output fuzzy membership 
nodes, representing the membership degrees to which the 
output values belong to defined membership functions; 
and output nodes, representing output variables.   

ECOS learn local models from data through cluster-
ing of the data and associating a local output function for 
each cluster. Rule nodes evolve from the input data 
stream to cluster the data, and the first layer W1 connec-
tion weights of these nodes represent the co-ordinates of 
the nodes in the input space. The second layer W2 repre-
sents the local models (functions) allocated to each of the 
clusters.  

Clusters of data are created based on similarity be-
tween data samples either in the input space (this is the 
case in some of the ECOS models, e.g. the dynamic 
neuro-fuzzy inference system DENFIS [3], and the zero 
instruction set computer ZISC [4]), or in both the input 
space and the output space (this is the case in the EFuNN 
models [2]). Samples that have a distance to an existing 
cluster center (rule node) N of less than a threshold Rmax 

(for the EFuNN models it is also needed that the output 
vectors of these samples are different from the output 
value of this cluster center in not more than an error tol-
erance E) are allocated to the same cluster Nc. Samples 
that do not fit into existing clusters, form new clusters as 
they arrive in time. Cluster centers are continuously ad-
justed according to new data samples, and new clusters 
are created incrementally.  

 
Figure 1: A simple version of an ECOS – EFuNN  

(from [2]) 
 

The similarity between a sample S = (x, y) and an ex-
isting rule node N = (W1, W2) can be measured in differ-
ent ways, the most popular of them being the normalized 
Euclidean distance:  
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Where n is the number of the input variables.   
ECOS learn from data and automatically create a lo-

cal output function for each cluster, the function being 
represented in the W2 connection weights, thus creating 
local models. Each model is represented as a local rule 
with an antecedent – the cluster area, and a consequent – 
the output function applied to data in this cluster, e.g.: 

IF (data is in cluster Nc) THEN (the output is calcu-
lated with a function Fc)                   (2)                

In case of DENFIS [3], first order local fuzzy rule 
models are derived incrementally from data, for example: 

IF  (the value of x1 is in the area defined by a Gaus-
sian function with a center at 0.7 and a standard devia-
tion of 0.1) AND (the value of x2 is in the area defined by 
a Gaussian function with a center at 0.5 and a deviation 
of 0.2) THEN (the output value y is calculated with the 
use of the formula y= 3.7 + 0.5x1 - 4.2 x2)   (3) 

In case of EFuNNs [2], local simple fuzzy rule models 
are derived, for example:     

inputs 
outputs 

rule nodes 



IF [x1 is High (0.7) and x2 is Low (0.9)] THEN y is 
High (0.8) [radius of the input cluster 0.3, number of ex-
amples in the cluster 13]      (4) 

where: High and Low are fuzzy membership functions 
defined on the range of the variables for x1, x2, and y (see 
Figure1). The number and the type of the membership 
functions can either be deduced from the data through 
learning algorithms, or can be predefined based on hu-
man knowledge.  

 
3. Evolving clustering method for classifica-

tion (ECMC) 
 

The ECMC method introduced in this section classi-
fies a data set into a number of classes in the n-
dimensional input space by evolving rule nodes. Each 
rule node is associated with a class through a constant. Its 
receptive field covers a part of the n-dimensional space 
around the rule node. Usually, such an influence field in 
the n-dimensional space is a hyper-sphere and a number 
of rule nodes may be associated to a same class [1, 2, 3]. 

There are two distinct phases of ECMC operation. 
During the first, learning phase, data vectors are dealt 
with one by one with their known classes. The learning 
sequence is described as the following steps: 

1) If all learning data vector have been entered into 
the system, complete the learning phase; other-
wise, enter a new input vector from the data set. 

2) Find all existing rule nodes with the same class as 
the input vector’s class.  

3) If there is not such a rule node, a new one is cre-
ated*  and then go to step 1; otherwise: 

4) For each of these rule nodes, if the input vector 
dose not lie within the associated field, increase 
this field if possible **. 

5) If the field increment is successful*** or the input 
vector lies within an associated field, go to step 1; 
otherwise, a new node is created *. Go to step 1. 

6) End of the learning procedure.  
*     Create a new rule node: the position of the new 

rule node is the same as the current input vector in 
the input space and the radius of its influence field 
is set to the Min-radius parameter. 

**    Suppose that the field has a radius of R0 and the 
distance between the rule node and the input vec-
tor is d; the increased radius is Rnew =  (R0 + d ) / 2 
and the rule node moves to the new position that is 
situated on the line connecting the input vector 
and the rule node before it changed its position 
and has the distance Rnew to the input vector. 

***  If the new field does not include any input vectors 
from the data set, which belong to a different 
class, the increment is successful; the rule node 
changes its position and the field increases; other-
wise, it is failed, both rule node and its field do not 
chang. 

The learning procedure takes only one iteration (ep-
och) but all input vectors are retained in the system at 
their position in the input space. 

The classification of new input vectors is performed in 
the following way: 

1) The new input vector is entered and the distance 
between it and all rule nodes is calculated. If the 
new input vector lies within the field of one or 
more rule nodes associated with one class, the vec-
tor belongs to this class. 

2) If the input vector does not lie within any field, the 
vector will belong to the class associated with the 
closest rule node. 

To compare the performance of the ECMC method we 
conducted the following experiments. We used ECMC, 
ECF [13], ZISC [4], and a multiplayer perceptron MLP 
on the benchmark Iris data for classification. Iris data set 
has four input variables and each input vector belongs to 
one of three classes [6]. 50% of the whole data set is ran-
domly selected for training data and another 50% for 
testing data. The parameters of each model are set as fol-
lows and the average test results of 50 experiments are 
shown in Table 1. 

Parameters for ECMC: Min-radius = 0.02, one epoch. 
Parameters for ECF: Max-field = 1; Min-field = 0.2; MF 
= 2; MofN = 1;  5 epochs. 

Parameters for ZISC: Max-field = 4096; Min-field = 
1; 5 epochs. 

Parameters for MLP: number of hidden layer 1; num-
ber of neurons in the hidden layer 12; learning epochs 
100 with Levenberg-Marquardt learning algorithm [7]. 

 
Table 1. Comparison between ECMC and other mod-

els on the Iris classification data 
 

 
Rule nodes  
(or neurons) 

Average number 
 of test errors 

ECMC 9.8 4 
ECF 12.7 4 
ZISC 14.4 6.1 
MLP 12 4.6 

 
The results from Table1 show that ECMC compares 

favorably with other classification methods. The ECMC 
method is distance-based. As it changes the influence 
field in an eccentric manner, ECMC will have less rule 



nodes than the ECF or the ZISC models, which change 
their influence fields in a concentric manner.  

 
4. Weighted data normalization (WND) and 

feature selection based on genetic algo-
rithm  

 

The WDN method described here makes use of evolu-
tionary computation (EC) techniques [8, 9, 10] and of 
genetic algorithms (GA) in particular [8]. A GA algo-
rithm applies a multi-point, probabilistic search in the 
whole search space to discover a global optimum subject 
to an objective (fitness) function. Methods based on EC 
techniques for optimizing parameters of MLP and other 
traditional neural network models are published in [11, 
12]. In [13, 14], a GA is used to optimize some of the 
parameters of ECOS models. 

The WDN method proposed here optimizes the nor-
malization intervals (ranges) of the input variables and 
allocates weights to each of the variables from a data set. 
The method consists of the following steps: 

1) The training data is preprocessed first by a general 
normalization method. There are several ways for 
this: a) normalizing a given data set so that they 
fall in a certain interval, e.g. [0, 1], [0, 255] or [-1, 
1] etc [9]; b) normalizing the data set so that the 
inputs and targets will have means of zero and 
standard deviations of 1 [9]; c) normalizing the 
data set so that the deviation of each variable from 
its mean normalized by its standard deviation [10]. 
In the WDN, we normalize the data set in the in-
terval [0, 1]. 

2) The weights of the input variables x1, x2,…, xn rep-
resented respectively by  w1, w2,…,wn,, with initial 
values of 1,1,…1 , form a chromosome for a con-
secutive GA application. The weight wi of the 
variable xi defines its new normalization interval 
[0, wI]. 

3) A GA is run on a population of connectionist 
learning modules for different chromosome values, 
over several generations. As a fitness function, the 
root mean square error RMSE of a trained connec-
tionist module on the training data or on a valida-
tion data is used, or alternatively – the number of 
the created rule nodes can be used as a fitness 
function that needs to be minimized. The GA runs 
over generations of populations and standard op-
erations are applied such as binary encoding of the 
genes (weights); roulette wheel selection criterion; 
multi-point crossover operation for crossover. 

4) The connectionist model with the least error is se-
lected as the best one, and its chromosome – the 

vector    of weights [w1, w2,…,wn] defines the op-
timum normalization range for the input variables. 

5) Variables with small weights are removed from 
the feature set and the steps from above are re-
peated again to find the optimum and the mini-
mum set of variables for a particular problem and 
a particular connectionist model. 

The above WDN method is illustrated in the next sec-
tion on two case study ECOS and on two typical prob-
lems, namely EFuNN for a time series prediction, and 
ECMC for classification. 

 

5. Case study examples ofpplying the WND 
method to ECOS  

 
5.1 EFuNN with WDN for Prediction 
 

In the present paper, EFuNN is applied to the time se-
ries prediction. Improved learning with the WDN method 
is demonstrated on the Mackey-Glass (MG) time series 
prediction task [6]. The MG time series is generated with 
a time-delay differential equation as follows: 
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To obtain this time series values at integer points, the 
fourth-order Runge-Kutta method was used to find the 
numerical solution to the above MG equation. Here we 
use the following parameter values: a time step of 0.1, 
x(0) = 1.2, τ = 17 and x(t) = 0 for t < 0. From the input 
vector [x(t – 18)  x(t – 12)  x(t – 6)  x(t)], the task is to 
predict the value x(t +6). In the experiments, 1000 data 
points, from t = 118 to 1117, were extracted for predict-
ing the 6 steps ahead output value. The first half of the 
data set was taken as a training data, and another half as 
the testing data. 

The following parameters are set in the experiments 
for the EFuNN model: Rmax=0.15; E=0.15; 3 member-
ship functions. The following GA parameter values are 
used: for each input variable, the values from 0.16 to 1 
are mapped onto 4 bit string; the number of individuals in 
a population is 12; mutation rate is 0.001; termination 
criterion (the maximum epochs of GA operation) is 100 
generations; the root-mean square error RMSE on the 
training data is used as a fitness function. The resulted 
weight values, the number of the rule nodes created by 
EFuNN with such weights, the training RMSE and test-
ing RMSE are shown in Table 2. For a comparison, 
EFuNN results with the same parameters, the same train-
ing data and testing data, but without WDN are also 
shown in Table 2. 



 
Table 2: Comparison between EFuNN without WDN 

and EFuNN with WDN 
 

  

Normaliza-
tion  

Weights 
Number on 
Rule Nodes 

Training 
 RMSE 

Testing 
RMSE 

EFuNN 
without 
WDN  1, 1, 1, 1 87 0.053 0.035 

EFuNN 
with 

WDN 
0.4, 0.8 

0.28 0.28 77 0.05 0.031 
 
With the use of the WDN method, a better prediction 

results is obtained for a significantly less number of rule 
nodes (clusters) evolved in the EFuNN model. This is 
because of the better clustering achieved when different 
variables are normalized differently and the normaliza-
tion reflects on their importance. 

 
5.2 ECMC with WDN for Classification and Fea-

ture Extraction 
 

In this section, the ECMC with WDN is applied on 
the Iris data for both classification and feature selection.  
The same as the experiments in the section 3, all experi-
ments in this section are repeated 50 times with the same 
parameters and the results are averaged. 50% of the 
whole data set is randomly selected as training data and 
another 50% as testing data. The following parameters 
are set in the experiments for the ECMC model: Min-
radius 0.02; each of the weights for the four normalized 
input variables is a value from 0.1 to 1, and is mapped 
into a 6-bit binary string. 

The following GA parameters are used: number of in-
dividuals in a population 12; mutation rate 0.005; 
termination criterion (the maximum epochs of GA 
operation) 50; fitness function - the number of created 
rule nodes. The resulted weight values, the number of rule nodes 
created by ECMC with such weights and the number of 
errors on the testing data are shown in Table 3. For com-
parison, ECMC classification results with the same pa-
rameters, the same training data and testing data but 
without WDN are also shown in Table 3. 

From the results, we can see that the weight of the 
first variable is much smaller than the weights of the 
other variables. The weights can be used as a measure of 
the importance of the variables and the least important 
variables can be removed from the input. Same experi-
ment is repeated without the first input variable and the 
results have improved as shown in Table3. If another 

variable is removed, and the total number of input vari-
ables is 2, the test error increases, so it can be assumed 
that for the particular ECMC model the optimum number 
of input variables is 3. 

 
Table 3: Comparison between ECMC without WDN 

and ECMC with WDN 
 

  
Normalization 

Weights 

Number 
of rule 
nodes 

Number of 
test errors 

4 Inputs  
without WDN 1, 1, 1, 1 9.8 3.8 

4 Inputs  
with WDN 

0.25, 0.44 0.73 
1 7.8 3.1 

3 Inputs  
without WDN 1, 1, 1 8.8 3.7 

3 Inputs  
with WDN 0.50, 0.92, 1 8.1 2.9 

2 Inputs  
without WDN 1,1 7.7 3.2 

2 Inputs  
with WDN 1, 0.97 7.4 3.1 
 
 

6. Conclusions 
 
The proposed method for weighted data normalization 

(WDN) is a generic one and can be applied to any con-
nectionist models, but it is especially efficient when ap-
plied to evolving connectionist systems (ECOS) as the 
latter use local, clustering-based learning algorithms. The 
WDN method is also efficient when used for feature se-
lection. Further development of the method includes us-
ing linear along with non-linear normalization, using 
different types of normalization across variables and 
across areas of the problem space for achieving a better 
performance of the system. 

The proposed evolving clustering method for classifi-
cation ECMC uses clusters of different shapes rather than 
hyper-spheres, as it is the case in other ECOS methods, 
and results in a less number of rule nodes and less error. 
New ECOS methods are being developed at present that 
will have all the parameters and the features optimised 
together. 
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