

Weighted Data Normalization and Feature Selection
for Evolving Connectionist Systems Proceedings

Qun Song
Knowledge Engineering &

Discovery Research Institute
Auckland University of Technology
Private Bag 92006, Auckland 1020

 New Zealand
email qsong@aut.ac.nz

Nikola Kasabov
Knowledge Engineering &

Discovery Research Institute
Auckland University of Technology
Private Bag 92006, Auckland 1020

 New Zealand
email nkasabov@aut.ac.nz

Abstract

This paper introduces a method for weighted data
normalization (WDN) that optimizes the normalization
ranges for the input variables of an evolving connection-
ist system (ECOS). ECOS perform incremental, local
area learning based on clustering. A genetic algorithm is
used as part of the WDN method. The derived weights
have the meaning of feature importance and are used to
select a minimum set of variables (features) that optimize
the performance of the ECOS. The method is il lustrated
on two types of ECOS. The first one is for time series
prediction and the second one is an original ECOS for
classification, proposed in this paper.

1. Introduction

In some applications raw (not normalized) data is
used. This is appropriate when all the input variables are
measured in the same units. Normalization, or standardi-
zation, is reasonable when the variables are in different
units or when the variance between them is substantial.
However, a general normalization means that every vari-
able is normalized in the same range, e.g. [0,1] and there-
fore has the same importance for the output of the system.

For many practical problems, variables have different
importance and make different contribution to the output.
Therefore, it is necessary to find an optimal normaliza-
tion and assign proper importance factors to the vari-
ables. Such a method can also be used for feature selec-
tion or reducing the size of the input vectors through

keeping the most important ones. This is especially appli-
cable to a special class of neural networks, evolving con-
nectionist systems (ECOS), where nodes and connections
evolve from an input stream of data to capture clusters
and to allocate a local output function for each cluster [1,
2, 3]. Distance between existing nodes and new input
vectors are measured as Euclidean distance, so that vari-
ables with a wider range will have more influence on the
learning process and vice versa.

The paper is organized as follows. Section two pre-
sents the main principles of ECOS, while section three
introduces a new ECOS model for classification, called
Evolving Clustering Method for Classification (ECMC).
Section four introduces a method for weighted data nor-
malization (WDN) based on genetic algorithms (GA).
Section five illustrates the method on a known ECOS for
prediction, as well as on the introduced ECMC method.
Conclusions are drawn in section six.

2. Principles of evolving connectionist

(ECOS)

Evolving connectionist systems (ECOS) are multi-
modular, connectionist architectures that facilitate model-
ling of evolving processes and knowledge discovery [1, 2,
3]. An ECOS may consist of many evolving connectionist
modules.

An ECOS is a neural network that operates continu-
ously in time and adapts its structure and functionality
through a continuous interaction with the environment

and with other systems according to: (i) a set of parame-
ters that are subject to change during the system opera-
tion; (ii) an incoming continuous flow of information
with unknown distribution; (ii i) a goal (rationale) criteria
(also subject to modification) that is applied to optimise
the performance of the system over time. The evolving
connectionist systems have the following characteristics
[1]:

1) They evolve in an open space, not necessarily of
fixed dimensions.

2) They learn in on-line, incremental, fast learning -
possibly through one pass of data propagation.

3) They learn in a life-long learning mode.
4) They learn as both individual systems, and as part

of an evolutionary population of such systems.
5) They have evolving structures and use constructive

learning.
6) They learn locally and locally partition the problem

space, thus allowing for a fast adaptation and tracing
processes over time.

7) They facilitate different kind of knowledge repre-
sentation and extraction, mostly - memory based, statisti-
cal and symbolic knowledge.

ECOS are connectionist structures that evolve their
nodes (neurons) and connections through supervised in-
cremental learning from input-output data pairs. One of
the ECOS models, evolving fuzzy neural network
(EFuNN), is shown as a simple version in Figure1 [2]. It
consists of five layers: input nodes, representing input
variables; input fuzzy membership nodes, representing
the membership degrees of the input values to each of the
defined membership functions; rule nodes, representing
cluster centers of samples in the problem space and their
associated output function; output fuzzy membership
nodes, representing the membership degrees to which the
output values belong to defined membership functions;
and output nodes, representing output variables.

ECOS learn local models from data through cluster-
ing of the data and associating a local output function for
each cluster. Rule nodes evolve from the input data
stream to cluster the data, and the first layer W1 connec-
tion weights of these nodes represent the co-ordinates of
the nodes in the input space. The second layer W2 repre-
sents the local models (functions) allocated to each of the
clusters.

Clusters of data are created based on similarity be-
tween data samples either in the input space (this is the
case in some of the ECOS models, e.g. the dynamic
neuro-fuzzy inference system DENFIS [3], and the zero
instruction set computer ZISC [4]), or in both the input
space and the output space (this is the case in the EFuNN
models [2]). Samples that have a distance to an existing
cluster center (rule node) N of less than a threshold Rmax

(for the EFuNN models it is also needed that the output
vectors of these samples are different from the output
value of this cluster center in not more than an error tol-
erance E) are allocated to the same cluster Nc. Samples
that do not fit into existing clusters, form new clusters as
they arrive in time. Cluster centers are continuously ad-
justed according to new data samples, and new clusters
are created incrementally.

Figure 1: A simple version of an ECOS – EFuNN

(from [2])

The similarity between a sample S = (x, y) and an ex-
isting rule node N = (W1, W2) can be measured in differ-
ent ways, the most popular of them being the normalized
Euclidean distance:

2

1

1

21
),(�

�

�
�
�

� −= �
=

n

i

1Ni Wx
n

NSd (1)

Where n is the number of the input variables.
ECOS learn from data and automatically create a lo-

cal output function for each cluster, the function being
represented in the W2 connection weights, thus creating
local models. Each model is represented as a local rule
with an antecedent – the cluster area, and a consequent –
the output function applied to data in this cluster, e.g.:

IF (data is in cluster Nc) THEN (the output is calcu-
lated with a function Fc) (2)

In case of DENFIS [3], first order local fuzzy rule
models are derived incrementally from data, for example:

IF (the value of x1 is in the area defined by a Gaus-
sian function with a center at 0.7 and a standard devia-
tion of 0.1) AND (the value of x2 is in the area defined by
a Gaussian function with a center at 0.5 and a deviation
of 0.2) THEN (the output value y is calculated with the
use of the formula y= 3.7 + 0.5x1 - 4.2 x2) (3)

In case of EFuNNs [2], local simple fuzzy rule models
are derived, for example:

inputs
outputs

rule nodes

IF [x1 is High (0.7) and x2 is Low (0.9)] THEN y is
High (0.8) [radius of the input cluster 0.3, number of ex-
amples in the cluster 13] (4)

where: High and Low are fuzzy membership functions
defined on the range of the variables for x1, x2, and y (see
Figure1). The number and the type of the membership
functions can either be deduced from the data through
learning algorithms, or can be predefined based on hu-
man knowledge.

3. Evolving clustering method for classifica-

tion (ECMC)

The ECMC method introduced in this section classi-
fies a data set into a number of classes in the n-
dimensional input space by evolving rule nodes. Each
rule node is associated with a class through a constant. Its
receptive field covers a part of the n-dimensional space
around the rule node. Usually, such an influence field in
the n-dimensional space is a hyper-sphere and a number
of rule nodes may be associated to a same class [1, 2, 3].

There are two distinct phases of ECMC operation.
During the first, learning phase, data vectors are dealt
with one by one with their known classes. The learning
sequence is described as the following steps:

1) If all learning data vector have been entered into
the system, complete the learning phase; other-
wise, enter a new input vector from the data set.

2) Find all existing rule nodes with the same class as
the input vector’s class.

3) If there is not such a rule node, a new one is cre-
ated* and then go to step 1; otherwise:

4) For each of these rule nodes, if the input vector
dose not lie within the associated field, increase
this field if possible **.

5) If the field increment is successful*** or the input
vector lies within an associated field, go to step 1;
otherwise, a new node is created *. Go to step 1.

6) End of the learning procedure.
* Create a new rule node: the position of the new

rule node is the same as the current input vector in
the input space and the radius of its influence field
is set to the Min-radius parameter.

** Suppose that the field has a radius of R0 and the
distance between the rule node and the input vec-
tor is d; the increased radius is Rnew = (R0 + d) / 2
and the rule node moves to the new position that is
situated on the line connecting the input vector
and the rule node before it changed its position
and has the distance Rnew to the input vector.

*** If the new field does not include any input vectors
from the data set, which belong to a different
class, the increment is successful; the rule node
changes its position and the field increases; other-
wise, it is failed, both rule node and its field do not
chang.

The learning procedure takes only one iteration (ep-
och) but all input vectors are retained in the system at
their position in the input space.

The classification of new input vectors is performed in
the following way:

1) The new input vector is entered and the distance
between it and all rule nodes is calculated. If the
new input vector lies within the field of one or
more rule nodes associated with one class, the vec-
tor belongs to this class.

2) If the input vector does not lie within any field, the
vector will belong to the class associated with the
closest rule node.

To compare the performance of the ECMC method we
conducted the following experiments. We used ECMC,
ECF [13], ZISC [4], and a multiplayer perceptron MLP
on the benchmark Iris data for classification. Iris data set
has four input variables and each input vector belongs to
one of three classes [6]. 50% of the whole data set is ran-
domly selected for training data and another 50% for
testing data. The parameters of each model are set as fol-
lows and the average test results of 50 experiments are
shown in Table 1.

Parameters for ECMC: Min-radius = 0.02, one epoch.
Parameters for ECF: Max-field = 1; Min-field = 0.2; MF
= 2; MofN = 1; 5 epochs.

Parameters for ZISC: Max-field = 4096; Min-field =
1; 5 epochs.

Parameters for MLP: number of hidden layer 1; num-
ber of neurons in the hidden layer 12; learning epochs
100 with Levenberg-Marquardt learning algorithm [7].

Table 1. Comparison between ECMC and other mod-

els on the Iris classification data

Rule nodes
(or neurons)

Average number
 of test errors

ECMC 9.8 4
ECF 12.7 4
ZISC 14.4 6.1
MLP 12 4.6

The results from Table1 show that ECMC compares

favorably with other classification methods. The ECMC
method is distance-based. As it changes the influence
field in an eccentric manner, ECMC will have less rule

nodes than the ECF or the ZISC models, which change
their influence fields in a concentric manner.

4. Weighted data normalization (WND) and

feature selection based on genetic algo-
rithm

The WDN method described here makes use of evolu-
tionary computation (EC) techniques [8, 9, 10] and of
genetic algorithms (GA) in particular [8]. A GA algo-
rithm applies a multi-point, probabilistic search in the
whole search space to discover a global optimum subject
to an objective (fitness) function. Methods based on EC
techniques for optimizing parameters of MLP and other
traditional neural network models are published in [11,
12]. In [13, 14], a GA is used to optimize some of the
parameters of ECOS models.

The WDN method proposed here optimizes the nor-
malization intervals (ranges) of the input variables and
allocates weights to each of the variables from a data set.
The method consists of the following steps:

1) The training data is preprocessed first by a general
normalization method. There are several ways for
this: a) normalizing a given data set so that they
fall in a certain interval, e.g. [0, 1], [0, 255] or [-1,
1] etc [9]; b) normalizing the data set so that the
inputs and targets will have means of zero and
standard deviations of 1 [9]; c) normalizing the
data set so that the deviation of each variable from
its mean normalized by its standard deviation [10].
In the WDN, we normalize the data set in the in-
terval [0, 1].

2) The weights of the input variables x1, x2,…, xn rep-
resented respectively by w1, w2,…,wn,, with initial
values of 1,1,…1 , form a chromosome for a con-
secutive GA application. The weight wi of the
variable xi defines its new normalization interval
[0, wI].

3) A GA is run on a population of connectionist
learning modules for different chromosome values,
over several generations. As a fitness function, the
root mean square error RMSE of a trained connec-
tionist module on the training data or on a valida-
tion data is used, or alternatively – the number of
the created rule nodes can be used as a fitness
function that needs to be minimized. The GA runs
over generations of populations and standard op-
erations are applied such as binary encoding of the
genes (weights); roulette wheel selection criterion;
multi-point crossover operation for crossover.

4) The connectionist model with the least error is se-
lected as the best one, and its chromosome – the

vector of weights [w1, w2,…,wn] defines the op-
timum normalization range for the input variables.

5) Variables with small weights are removed from
the feature set and the steps from above are re-
peated again to find the optimum and the mini-
mum set of variables for a particular problem and
a particular connectionist model.

The above WDN method is illustrated in the next sec-
tion on two case study ECOS and on two typical prob-
lems, namely EFuNN for a time series prediction, and
ECMC for classification.

5. Case study examples ofpplying the WND
method to ECOS

5.1 EFuNN with WDN for Prediction

In the present paper, EFuNN is applied to the time se-
ries prediction. Improved learning with the WDN method
is demonstrated on the Mackey-Glass (MG) time series
prediction task [6]. The MG time series is generated with
a time-delay differential equation as follows:

)(

)(.)(

τ−+
τ−=

tx1

tx20

dt

tdx
10

 (5)

To obtain this time series values at integer points, the
fourth-order Runge-Kutta method was used to find the
numerical solution to the above MG equation. Here we
use the following parameter values: a time step of 0.1,
x(0) = 1.2, τ = 17 and x(t) = 0 for t < 0. From the input
vector [x(t – 18) x(t – 12) x(t – 6) x(t)], the task is to
predict the value x(t +6). In the experiments, 1000 data
points, from t = 118 to 1117, were extracted for predict-
ing the 6 steps ahead output value. The first half of the
data set was taken as a training data, and another half as
the testing data.

The following parameters are set in the experiments
for the EFuNN model: Rmax=0.15; E=0.15; 3 member-
ship functions. The following GA parameter values are
used: for each input variable, the values from 0.16 to 1
are mapped onto 4 bit string; the number of individuals in
a population is 12; mutation rate is 0.001; termination
criterion (the maximum epochs of GA operation) is 100
generations; the root-mean square error RMSE on the
training data is used as a fitness function. The resulted
weight values, the number of the rule nodes created by
EFuNN with such weights, the training RMSE and test-
ing RMSE are shown in Table 2. For a comparison,
EFuNN results with the same parameters, the same train-
ing data and testing data, but without WDN are also
shown in Table 2.

Table 2: Comparison between EFuNN without WDN

and EFuNN with WDN

Normaliza-
tion

Weights
Number on
Rule Nodes

Training
 RMSE

Testing
RMSE

EFuNN
without
WDN 1, 1, 1, 1 87 0.053 0.035

EFuNN
with

WDN
0.4, 0.8

0.28 0.28 77 0.05 0.031

With the use of the WDN method, a better prediction

results is obtained for a significantly less number of rule
nodes (clusters) evolved in the EFuNN model. This is
because of the better clustering achieved when different
variables are normalized differently and the normaliza-
tion reflects on their importance.

5.2 ECMC with WDN for Classification and Fea-

ture Extraction

In this section, the ECMC with WDN is applied on
the Iris data for both classification and feature selection.
The same as the experiments in the section 3, all experi-
ments in this section are repeated 50 times with the same
parameters and the results are averaged. 50% of the
whole data set is randomly selected as training data and
another 50% as testing data. The following parameters
are set in the experiments for the ECMC model: Min-
radius 0.02; each of the weights for the four normalized
input variables is a value from 0.1 to 1, and is mapped
into a 6-bit binary string.

The following GA parameters are used: number of in-
dividuals in a population 12; mutation rate 0.005;
termination criterion (the maximum epochs of GA
operation) 50; fitness function - the number of created
rule nodes. The resulted weight values, the number of rule nodes
created by ECMC with such weights and the number of
errors on the testing data are shown in Table 3. For com-
parison, ECMC classification results with the same pa-
rameters, the same training data and testing data but
without WDN are also shown in Table 3.

From the results, we can see that the weight of the
first variable is much smaller than the weights of the
other variables. The weights can be used as a measure of
the importance of the variables and the least important
variables can be removed from the input. Same experi-
ment is repeated without the first input variable and the
results have improved as shown in Table3. If another

variable is removed, and the total number of input vari-
ables is 2, the test error increases, so it can be assumed
that for the particular ECMC model the optimum number
of input variables is 3.

Table 3: Comparison between ECMC without WDN

and ECMC with WDN

Normalization

Weights

Number
of rule
nodes

Number of
test errors

4 Inputs
without WDN 1, 1, 1, 1 9.8 3.8

4 Inputs
with WDN

0.25, 0.44 0.73
1 7.8 3.1

3 Inputs
without WDN 1, 1, 1 8.8 3.7

3 Inputs
with WDN 0.50, 0.92, 1 8.1 2.9

2 Inputs
without WDN 1,1 7.7 3.2

2 Inputs
with WDN 1, 0.97 7.4 3.1

6. Conclusions

The proposed method for weighted data normalization

(WDN) is a generic one and can be applied to any con-
nectionist models, but it is especially efficient when ap-
plied to evolving connectionist systems (ECOS) as the
latter use local, clustering-based learning algorithms. The
WDN method is also efficient when used for feature se-
lection. Further development of the method includes us-
ing linear along with non-linear normalization, using
different types of normalization across variables and
across areas of the problem space for achieving a better
performance of the system.

The proposed evolving clustering method for classifi-
cation ECMC uses clusters of different shapes rather than
hyper-spheres, as it is the case in other ECOS methods,
and results in a less number of rule nodes and less error.
New ECOS methods are being developed at present that
will have all the parameters and the features optimised
together.

7. Ackonwledgements

The research presented in the paper is funded by the
New Zealand Foundation for Research, Science and
Technology under grant NERF/AUTX02-01.

References

[1] Kasabov, N. Evolving connectionist systems: Methods
and Applications in Bioinformatics, Brain study and in-
telligent machines, Springer Verlag, London, New York,
Heidelberg, 2002.

[2] Kasabov, N. “Evolving fuzzy neural networks for on-line
supervised/unsupervised, knowledge–based learning”,
IEEE Trans. SMC – part B, Cybernetics, vol.31, No.6,
902-918, December 2001.

[3] Kasabov, N. and Song, Q. “DENFIS: Dynamic, evolving
neural-fuzzy inference systems and its application for
time-series prediction,” IEEE Trans. on Fuzzy Systems,
vol.10, No.2, 144-154, April 2002.

[4] ZISC Manual, Silicon Recognition, www.silirec.com,
2001.

[5] Song, Q. Kasabov, N.,"ECM - A Novel On-line, Evolving
Clustering Method and Its Applications", ANNES 2001,
Dunedin, New Zealand, 22 - 24, November, 2001, 87 –
92.

[6] Blake, C. and Merz, C. (1998) Repository of machine
learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html Ir-

vine, CA: University of California, Department of Infor-
mation and Computer Science.

[7] Baeck, T. Evolutionary algorithm in theory and practice:
evolution strategies, evolutionary programming, genetic
algorithms, Oxford University Press, New York (1995)

[8] Holland, J. H. Adaptation in natural and artificial sys-
tems, The University of Michigan Press, Ann Arbor, MI
(1975)

[9] Koza, J. R. Genetic Programming, MIT Press (1992)
[10] Goldberg, D. E. Genetic Algorithms in Search, Optimiza-

tion and machine Learning, Addison-Wesley, Reading,
MA (1989).

[11] Fogel, D., Fogel, L. and Porto, V. (1990) Evolving neural
networks, Biological Cybernetics, vol.63, 487-493

[12] Yao, X. (1993) Evolutionary artificial neural networks,
Int. Journal of Neural Systems, vol.4, No.3, 203-222

[13] Kasabov, N. and Song, Q. “GA-Optimisation of evolving
connectionist systems for classification with a case study
from bioinformatics,” Proc. of ICONIP’2002, Singapore,
November, 2002, IEEE Press, 602-605.

[14] Kasabov, N., Song, Q. and Nishikawa, I, “Evolutionary
computation for parameter optimisation of on-line evolv-
ing connectionist systems for prediction of time series
with changing dynamics”,. in Int. Joint Conf. on Neural
Networks IJCNN'2003. 2003. USA.

	P285:
	Numb:
	Numbx:
	C: 285
	L:
	R:

	P286:
	Numb:
	Numbx:
	C: 286
	L:
	R:

	P287:
	Numb:
	Numbx:
	C: 287
	L:
	R:

	P288:
	Numb:
	Numbx:
	C: 288
	L:
	R:

	P289:
	Numb:
	Numbx:
	C: 289
	L:
	R:

	P290:
	Numb:
	Numbx:
	C: 290
	L:
	R:

