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Abstract 
There are two main approaches for face recognition 
with variations in lighting conditions.  One is to repre-
sent images with features that are insensitive to illumi-
nation in the first place. The other main approach is to 
construct a linear subspace for every class under the 
different lighting conditions.  Both of these techniques 
are successfully applied to some extent in face recogni-
tion, but it is hard to extend them for recognition with 
variant facial expressions. It is observed that features 
insensitive to illumination are highly sensitive to expres-
sion variations, which result in face recognition with 
changes in both lighting conditions and expressions a 
difficult task. We propose a new method called Affine 
Principle Components Analysis in an attempt to solve 
both of these problems. This method extract features to 
construct a subspace for face representation and warps 
this space to achieve better class separation. The pro-
posed technique is evaluated using face databases with 
both variable lighting and facial expressions. We 
achieve more than 90% accuracy for face recognition by 
using only one sample image per class.  

 

 

1. Introduction 
 

One of the difficulties in face recognition (FR) is the 
numerous variations between images of the same face 
due to changes in lighting conditions, view points or fa-
cial expressions.  A good face recognition system should 
recognize faces and be immune to these variations as 
mush as possible.  Yet, it is been reported in [19] that 
differences between images of the same face due to these 
variations are normally greater than those between dif-
ferent faces.  Therefore, most of the systems designed to 
date can only deal with face images taken under con-
strained conditions.  So these major problems must be 

overcome in the quest to produce robust face recognition 
systems. 

In the past few years, different approaches have been 
proposed for face recognition to reduce the impact of 
these nuisance factors.  Two main approaches are used 
for illumination invariant recognition.  One is to repre-
sent images with features that are less sensitive to illumi-
nation changes such as the edge maps of the image.  But 
edges generated from shadows are related to illumination 
changes and may have an impact on recognition.  Ex-
periments in [19] show that even with the best image 
representations using illumination insensitive features 
and distance measurement, the misclassification rate is 
more then 20%.  The second approach presented in [21] 
and [22], is to prove that images of convex Lambertian 
objects under different lighting conditions can be ap-
proximated by a low dimensional linear subspaces.  
Kreigman, Belhumeur and Georghiades proposed an 
appearance-based method in [7] for recognizing faces 
under variations in lighting and view point based on this 
concept.  Nevertheless, these methods all suppose the 
surface reflectance of human faces is Lambertian reflec-
tance and it is hard for these systems to deal with cast 
shadows.  Furthermore, these systems need several im-
ages of the same face taken under different lighting 
source directions to construct a model of a given face. 
However, sometimes it is hard to obtain different images 
of a given face under specific conditions.  

As for expression invariant recognition, it is still un-
solved for machine recognition and is even a difficult 
task for humans. In [23] and [24], images are morphed to 
be the same shape as the one used for training. But it is 
not guaranteed that all images can be morphed correctly, 
for example an image with closed eyes cannot be 
morphed to a neutral image because of the lack of texture 
inside the eyes.  It is also hard to learn the local motions 
within the feature space to determine the expression 
changes of each face, since the way one person express a 
certain emotion is normally somewhat different from 
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others. Martinez proposed a method to deal with varia-
tions in facial expressions in [20].  An image is divided 
into several local areas and those that are less sensitive to 
expressional changes are chosen and weighed independ-
ently.  But features that are insensitive to expression 
changes may be sensitive to illumination variation.  This 
is discussed in [19] which says that “when a given repre-
sentation is sufficient to overcome a single image varia-
tion, it may still be affected by other processing stages 
that control other imaging parameters”. 

It is known that performance of face recognition sys-
tems is acutely dependent on the choice of features [3], 
which is thus the key step in the recognition methodol-
ogy.  Principal Component Analysis (PCA) and Fisher 
Linear Discriminant (FLD) [1] are two well-known sta-
tistical feature extraction techniques for face recognition.  
PCA, a standard decorrelation technique, derives an or-
thogonal projection basis, which allows representation of 
faces in a vastly reduced feature space — this dimen-
sionality reduction increases generalisation ability.  PCA 
finds a set of orthogonal features, which provide a 
maximally compact representation of the majority of the 
variation of the facial data. But PCA might extract some 
noise features that degenerate performance of the system.  
For this reason, Swets and Weng [8] argue in favor of 
methods such as FLD which seek to determine the most 
discriminatory features by taking into account both 
within-class and between-class variation to derive the 
Most Discriminating Features (MDF). However, com-
pared to PCA, it has been shown that FLD overfits to the 
training data resulting in a lack of generalization ability 
[2].  

We propose a new method Affine Principle Compo-
nent Analysis (APCA) that can deal with variations both 
in illumination and facial expression. This paper 
discusses APCA and presents results, which show that 
the recognition performance of APCA greatly exceeds 
that of both PCA and FLD when recognizing known 
faces with unknown changes in illumination and expres-
sion. 
 

2. Review of PCA & FLD 
 

PCA and FLD are two popular techniques for face 
recognition. They abstract features from training face 
images to generate orthogonal sets of feature vectors, 
which span a subspace of the face images.  Recognition 
is then performed within this space based on some dis-
tance metric (possibly Euclidean). 
 

2.1. PCA (Principal Component Analysis) 
 

PCA is a second-order method for finding the linear 
representation of faces using only the covariance of data 
and determines the set of orthogonal components (feature 
vectors) which minimise the reconstruction error for a 
given number of feature vectors. Consider the face image 
set I = [ 1I , 2I ,… nI ], where 

iI  is a p×q image, ]..1[ ni ∈ , 
+∈ Znqp ,, , the average face Ψ of the image set is de-

fined by: 
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Normalizing each image by subtracting the average face, 
we have the normalized difference image: 
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~

.                                      (2) 

Unpacking 
iD

~  row-wise, we form the N ( qpN ×= ) 

dimensional column vector id . We define the covari-

ance matrix C  of the normalized image set 
],...,[ 21 ndddD =  by: 
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An eigendecomposition of  C  yields eigenvalues 
iλ  and 

eigenvectors iu  which satisfy: 

                  
iii uCu λ= ,                                          (4)                                 

                 �
=

==
N

i

T
iii

T uuCDD
1

λ ,                        (5) 

where ]..1[ Ni ∈ . Since those eigenvectors obtained 

looks like human faces physically, they are also called 
eigenfaces. Generally, we select a small subset of nm <  
eigenvectors, to define a reduced dimensionality 
facespace that yields higher recognition performance on 
unseen examples of faces. Choosing 10=m or there-
abouts seems to yield good performance in practice. Al-
though PCA defines a face subspace that contains the 
greatest covariance, it is not necessarily the best choice 
for classification since it may retain principle compo-
nents with large noise and nuisance factors [2]. 
 

2.2 FLD (Fisher Linear Discriminant) 
 

FLD finds the optimum projection for classification of 
the training data by simultaneously diagonalizing the 
within-class and between-class scatter matrices [2]. The 
FLD procedure consists of two operations: whitening and 
diagonalization [2]. Given M classes ,jS ]...1[ Mj ∈ , we 

denote the exemplars of each class by 
],,,[ ,2,1,, jKjjjkj ssss �=  where 

jK  is the number of ex-

emplars in class j .  Let jµ  denote the mean of class j  



andµ  denote the grand mean for all the exemplars, then 

the between class scatter matrix is defined by: 
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and the within class scatter matrix is defined by: 
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In other words, FLD extracts features that are strong 
between classes but weak within class. While FLD often 
yields higher recognition performance than PCA, it tends 
to overfit to the training data, since it relies heavily on 
how the within-class scatter captures reliable variations 
for a specific class [2]. In addition, it is optimised for 
specific classes, so it needs several samples in every 
class and thus can determine only a maximum of M-1 
features. 
 

3. PROPOSED METHOD 
 

An Affine PCA method is introduced in this section in 
an attempt to overcome some of the limitations of both 
PCA and FLD.  First of all, we apply PCA for dimen-
sionality reduction and to obtain the eigenfaces U . 
Every face image can be projected into this subspace to 

form an m-dimensional feature vector kjs , , where 

,nm <  denotes the number of principal eigenfaces cho-

sen for the projection, and 
jKk ,...2,1= , denotes the kth 

sample of the class 
jS , where Mj ,...2,1= . We often 

use the nearest neighbor method for classification, where 
the distance between two face vectors represents the en-
ergy difference between them. In the case of variable 
illumination, lighting changes dominate over the charac-
teristic differences between faces. It has also been 
proved in [19] that the distance between face vectors 
with facial expression variations are generally greater 
than that with face identity. This is the main reason why 
PCA does not work well under variable lighting and ex-
pression.  In fact, not all the features have the same im-
portance in recognition. Features that are strong between 
classes and weak within class are much more useful for 
the recognition task. Therefore, we propose an affine 
model (Affine PCA) to resolve this problem. The affine 
procedure involves three steps: eigenspace rotation, 
whitening transformation and eigenface filtering. 
 

3.1. Eigenspace Rotation 
 

The eigenfaces extracted from PCA are Most Expres-
sive Features (MEF) and these are not necessarily opti-
mal for face recognition performance as stated in [8]. 
Applying FLD we can obtain the Most Discriminating 
Features but overfits to only training data lacking of gen-
eralization capacity. Therefore, in order not to lose gen-
eralization ability while still keep the discrimination, we 
prefer to rotate the space and find the most variant fea-
tures that can represent changes due to lighting or ex-
pression variation.  That is to extract the within class 
covariance and apply PCA to find the best eigen features 
that maximally represent within class variations. The 
within class difference is defined as: 
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and the within class covariance become: 
                         T

WithinWithinWithin DDCov = ,                    (10) 

which is a m by m matrix. Applying singular value 
decomposition (SVD) to within class covariance matrix, 
we have,  
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Then the rotation matrix M is the set of eigen vectors of 

covariance matrix, ].,...,[ 21 mvvvM =  Then all the 

vectors represented in the original subspace are trans-
formed into new space by multiply by M.  
 

3.2. Whitening Transformation 
 

The purpose for whitening is to normalize the scatter 
matrix for uniform gain control. Since as stated in [3] 
“mean square error underlying PCA preferentially 
weights low frequencies”, we would need to compensate 
for that. The whitening parameter Γ is related to the ei-
genvalues 

iλ . Conventionally, we would use the stan-

dard deviation for whitening, that is: 

ii λ=Γ , ]...1[ mi = . But this value appears to compress 

the eigenspace so much that class separability is dimin-
ished. We therefore use p

ii λ=Γ , where the exponent p is 

determined empirically. 
 

3.3. Filtering the Eigenfaces 
 

The aim of filtering is to diminish the contribution of 
eigenfaces that are strongly affected by variations. We 
want to be able to enhance features that capture the main 
differences between classes (faces) while diminishing the 
contribution of those that are largely due to lighting or 



expression variation (within class differences). We thus 
define a filtering parameter Λ  which is related to iden-
tity-to-variation (ITV) ratio. The ITV is a ratio measur-
ing the correlation with a change in person versus a 
change in variations for each of the eigenfaces. For an M 
class problem, assume that for each of the M classes 
(persons) we have examples under K standardized differ-
ent variations in illumination or expression. In case of 
illumination changes, the lighting source is positioned in 
front, above, below, left and right as illustrated in Figure 
2. The facial expression changes are normal, surprised 
and unpleasant as shown in Figure 3. Let us denote the ith 

eigenface of the kth sample for class (person) jS by 

kjis ,, . Then 
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Here 
ki ,ϖ  represents the ith element of the mean face 

vector for variation k for all persons and 
ji ,µ represents 

the ith element of the mean face vector for person j under 

all different variations. We then define the scaling pa-
rameter Λ  by: 

        q
ii ITV=Λ                                                   (12) 

where q is an exponential scaling factor determined em-

pirically as before.  Instead of this exponential scaling 
factor, other non-linear functions such as thresholding 
suggest themselves. These possibilities have been ex-
plored, but so far the exponential scaling perform best.  
After the affine transformation, the distance d between 
two face vectors 

kjs ,
 and 

',' kjs  is: 
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The weights iω  scale the corresponding eigenfaces. To 

determine the two exponents p and q for Γ and Λ , we 
introduce a cost function and optimise them empirically. 
It is defined by: 
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where 
0,kjjd  is the distance between the sample 

kjs ,
and 

0,js which is the standard image reference for class 

jS (typically the normally illuminated image). Note that 

the condition 
0,0, kjjkjm dd <  is only true when there is a 

misclassification error.  Thus OPT is a combination of 
error rate and the ratio of between-class distance to 
within-class distance.  By minimizing OPT, we can de-
termine the best choices for p and q.  Figure 1, shows the 
relationship between OPT and p, q.  For one of our train-
ing database, a minimum was obtained 
at 4.0,2.0 −=−= qp .  

From the above, our final set of transformed eigenfaces 
would be: 

     MDvMuu ii
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where ]1[ mi �= .  After transformation, we can apply 

PCA again on the compressed subspace to further reduce 
dimensionality (two-stage PCA). 
 

4. EXPERIMENTAL RESULTS 
 

The method is tested on an Asian Face Image Data-
base PF01 [6] for both changes in lighting source posi-
tions and facial expressions. The size of each image is 
171×171 pixels with 256 grey levels per pixel.  Figure 2 
and 3 show some examples from the database. To evalu-
ate the performance of our methods, we performed a 3-
fold cross validation on the database as follows. We 
choose one-third of the 107 subjects to construct our 
APCA model, one-third for training. Then we just add 
the normally faces (pictures in the first column in Figure 
1 and 2) of the remaining one-thirds of the data into our 
recognition database. We then attempt to recognize these 
faces under all the other conditions. This process is re-
peated three-fold using different partitions and the per-
formance is averaged. All the results listed in this paper 
are obtained from experiments only on testing data. Ta-
ble 1 is the comparison of recognition rate between 
APCA and PCA. It is clear from the results that Affine 
PCA performs much better than PCA in face recognition 
under variable lighting conditions. The proposed APCA 
outperforms PCA remarkably in recognition rate with 
99.3% for training data and 95.6% for testing data with 
negligible reduction in performance for normally lit 
faces. Figure 3 displays the recognition rates against 
numbers of eigenfaces used (m ). It can be seen that 
selecting the principal 40 to 50 eigenfaces is sufficient 
for invariant luminance face recognition. This number is 



somewhat higher than is required for standard PCA, 
where selecting m in the range 10 to 20 is sufficient — 
this is possibly a necessary consequence of the greater 
complexity of the APCA face subspace compared to 
standard PCA. 

 
 

 

 

 

 
As for variations in facial expression, APCA achieves 

higher recognition rate than PCA with an increase of 
10%. For changes in both lighting condition and expres-
sion, APCA always performs better than PCA despite of 
the change in number of eigenfaces. The gain is almost 
stable with high dimension of subspace. It can also be 
seen from Figure 3, that recognition rate of expression 
changes does not decrease dramatically with the reduce 
of number of eigen features compared to illumination 
variations.  Therefore, only as low as 20 features is 
enough to recognition faces with facial expression varia-
tions.  

We also test the performance of APCA on variations 
on illumination and expression simultaneously.  The rec-
ognition rate of APCA is less than 5% lower than that of 
illumination changes and expression changes, but it is 
obviously higher than the recognition rate of PCA. Thus 

it shows that performance of APCA is stable in spite of 
the complexity of variations. However, PCA is not as 
robust as APCA with different variations. For illumina-
tion changes, PCA only achieve less than 60% accuracy 
while the accuracy increase to more than 80% for ex-
pression variations.  It drops back to 60% with changes 
combining illumination and expression. This phenome-
non has also been reported in [19] as any given represen-
tation is not sufficient to overcome variations in both  
illumination and expression. 
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Figure 3. Recognition Rate 

                  Vs. Number of features. 
 

 

Table 1.  Comparison of recognition  

           rate between APCA and PCA. 

 

Conclusion 
 

We have described an easy to calculate and efficient 
face recognition algorithm by warping the face subspace 
constructed from PCA. The affine procedure contains 
three steps: rotating the eigen space, whitening Trans-
formation, and then filtering the eigenfaces.  After affine 
transformation, features are assigned with different 
weights for recognition which in fact enlarge the between 

Figure 1. Examples of illumination 
changes in Asian Face Database PF01. 

Figure 2.  Examples of expression 
changes in Asian Face Database PF01. 

Recognition rate  

Method Illumination 
Variation 

Expression 
Variation 

 

Illumination and 
Expression 
Variations 

PCA 57.3% 84.6% 70.6% 

Affine PCA 95.6% 92.2% 86.8% 

  

 

 

 

 



class covariance while minimizing within class covari-
ance. There only have as few as two variable parameters 
during the optimization compared to other methods for 
high dimensionality problems. This method can not only 
deal with variations in illumination and expression sepa-
rately but also perform well for the combination of both 
changes with only one sample image per class. Experi-
ments show that APCA is more robust to change in illu-
mination and expression and have better generalization 
capacity compared to the FLD method.   

A shortcoming of the algorithm is that we can not 
guarantee that the weights achieved are the best for rec-
ognition since we only rotate the eigen space to the 
direction that best represent the within class covariance.  
Future work will be to search the eigen space and find 
the best eigen features suitable for face recognition.  
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