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Abstract

There are two main approaches for face recognition
with variations in lighting conditions. One is to repre-
sent images with features that are insensitive to illumi-
nation in the first place. The other main approach is to
congtruct a linear subspace for every class under the
different lighting conditions. Both of these techniques
are successfully applied to some extent in face recogni-
tion, but it is hard to extend them for recognition with
variant facial expressions. It is observed that features
insengitive to illumination are highly sensitive to expres-
sion variations, which result in face recognition with
changes in both lighting conditions and expressions a
difficult task. We propose a new method called Affine
Principle Components Analysis in an attempt to solve
both of these problems. This method extract features to
construct a subspace for face representation and warps
this space to achieve better class separation. The pro-
posed technique is evaluated using face databases with
both variable lighting and facial expressions. We
achieve more than 90% accuracy for face recognition by
using only one sample image per class.

1. Introduction

One of the difficulties in face recognition (FR)tie
numerous variations between images of the same
due to changes in lighting conditions, view poiotsa-
cial expressions. A good face recognition systboukl

Brian C. Lovell
Intelligent Real-Time Imaging and
Sensing (IRIS) Group
The University of Queensland
Brisbane, Queensland, Australia

lovell@itee.uq.edu.au

overcome in the quest to produce robust face retiogn
systems.

In the past few years, different approaches haes be
proposed for face recognition to reduce the impdct
these nuisance factors. Two main approaches & us
for illumination invariant recognition. One is tepre-
sent images with features that are less sensdiutuini-
nation changes such as the edge maps of the iniage.
edges generated from shadows are related to ilatrom
changes and may have an impact on recognition. Ex-
periments in [19] show that even with the best ieag
representations using illumination insensitive tdeas$
and distance measurement, the misclassificatian igat
more then 20%. The second approach presented.jn [2
and [22], is to prove that images of convex Lamhbert
objects under different lighting conditions can dg-
proximated by a low dimensional linear subspaces.
Kreigman, Belhumeur and Georghiades proposed an
appearance-based method in [7] for recognizingsface
under variations in lighting and view point basedtbis
concept. Nevertheless, these methods all suppase t
surface reflectance of human faces is Lambertiflacre
tance and it is hard for these systems to deal gast
shadows. Furthermore, these systems need seweral i
ages of the same face taken under different lightin
source directions to construct a model of a givacef
However, sometimes it is hard to obtain differenages
of a given face under specific conditions.

As for expression invariant recognition, it is Istih-

fac&plved for machine recognition and is even a diffic

task for humans. In [23] and [24], images are megpto
be the same shape as the one used for trainingt But

recognize faces and be immune to these variatisns a . guaranteed that all images can be morphedathyre

mush as possible. Yet, it is been reported in fh@}
differences between images of the same face diese
variations are normally greater than those betwdiEn
ferent faces. Therefore, most of the systems dedigo
date can only deal with face images taken under con
strained conditions. So these major problems rhast

for example an image with closed eyes cannot be
morphed to a neutral image because of the lackxbiite
inside the eyes. It is also hard to learn thellowations
within the feature space to determine the exprassio
changes of each face, since the way one persoessxpr
certain emotion is normally somewhat different from
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others. Martinez proposed a method to deal witliavar
tions in facial expressions in [20]. An image isided
into several local areas and those that are lesitise to

PCA is a second-order method for finding the linear
representation of faces using only the covariadaata
and determines the set of orthogonal componerdsuffe

expressional changes are chosen and weighed irdlepen vectors) which minimise the reconstruction error

ently. But features that are insensitive to exgioes
changes may be sensitive to illumination variatidrnis
is discussed in [19] which says that “when a gikepre-
sentation is sufficient to overcome a single imagea-
tion, it may still be affected by other processsigges
that control other imaging parameters”.

It is known that performance of face recognitios-sy
tems is acutely dependent on the choice of feafdjes
which is thus the key step in the recognition metio
ogy. Principal Component Analysis (PCA) and Fisher
Linear Discriminant (FLD) [1] are two well-knownast
tistical feature extraction techniques for faceometion.
PCA, a standard decorrelation technique, derivesran
thogonal projection basis, which allows represéranf
faces in a vastly reduced feature space — this m@ime
sionality reduction increases generalisation ahillPCA

finds a set of orthogonal features, which provide a

maximally compact representation of the majoritythef
variation of the facial data. But PCA might extraome
noise features that degenerate performance of/tters.
For this reason, Swets and Weng [8] argue in fafor

methods such as FLD which seek to determine thé mos

discriminatory features by taking into account both
within-class and between-class variation to detive
Most Discriminating Features (MDF). However, com-
pared to PCA, it has been shown that FLD overditshe
training data resulting in a lack of generalizatadility
[2].

We propose a new method Affine Principle Compo-
nent Analysis (APCA) that can deal with variatidreth
in illumination and facial expression. This paper

given number of feature vectors. Consider the faege
setl =[1,,1,,...1,], where|, is a p<q image,i O[L.n],
p,q,n0Z*, the average face of the image set is de-
fined by:

l n

n; '
Normalizing each image by subtracting the average,f
we have the normalized difference image:

D=1 -%¥. )

Unpacking |:~)i row-wise, we form theN (N = pxq)
dimensional column vectod, . We define the covari-

ance matrix C the image set
D =[d,,d,,..d,] by:

of normalized

®3)

An eigendecomposition ofC yields eigenvaluesl and

C =Zn:didf = DD’
i=1

eigenvectordl, which satisfy:

Cu = Ay, 4)

N
DD"=C=) Auu' ®)
i=1

where iJ[L.N]. Since those eigenvectors obtained

looks like human faces physically, they are alslbeda
eigenfaces. Generally, we select a small subset ofn
eigenvectors, to define a reduced dimensionality
facespace that yields higher recognition perforraamc
unseen examples of faces. Choosing=100r there-

discusses APCA and presents results, which shot thaabouts seems to yield good performance in practite.
the recognition performance of APCA greatly exceeds though PCA defines a face subspace that contams th

that of both PCA and FLD when recognizing known
faces with unknown changes in illumination and espr
sion.

2. Review of PCA & FLD

PCA and FLD are two popular techniques for face
recognition. They abstract features from trainiagef
images to generate orthogonal sets of feature rgcto
which span a subspace of the face images. Reagnit
is then performed within this space based on soisie d
tance metric (possibly Euclidean).

2.1. PCA (Principal Component Analysis)

greatest covariance, it is not necessarily the tlesice
for classification since it may retain principle ngo-
nents with large noise and nuisance factors [2].

2.2 FLD (Fisher Linear Discriminant)

FLD finds the optimum projection for classificatioh
the training data by simultaneously diagonaliziig t
within-class and between-class scatter matricesTRé
FLD procedure consists of two operations: whiterang
diagonalization [2]. GiveM classess,, j[1..M], we

denote the exemplars of each class
Six :[511’51,2""151,&] where K ; is the number of ex-

by

emplars in clasg . Let //; denote the mean of clags
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and/{ denote the grand mean for all the exemplars, then3.1. Eigenspace Rotation
the between class scatter matrix is defined by:
M _ _ The eigenfaces extracted from PCA are Most Expres-
— _ _ T 6
B _Z;Ki (- —H) ©) sive Features (MEF) and these are not necessantily o
: mal for face recognition performance as stated8in [
Applying FLD we can obtain the Most Discriminating

and the within class scatter matrix is defined by: Features but overfits to only training data lackifigyen-

W= 3 i(sj 1S 1) (7) eralization capacity. Therefore, in order not teelgen-
= ' eralization ability while still keep the discrimitan, we
‘ AT BA{ prefer to rotate the space and find the most vafea
W, , =argmax (8) tures that can represent changes due to lightingxer
A ‘ATW& pression variation. That is to extract the witldlass

In other words, FLD extracts features that arengtro ~ covariance and apply PCA to find the best eigetufea
between classes but weak within class. While FLigrof  that maximally represent within class variationsieT
yields higher recognition performance than PCAeiitds ~ Within class difference is dff'”ed as:
to overfit to the training data, since it reliesatidy on D = izs —u 9)
how the within-class scatter captures reliable atams Within Lk

. - T o j=1 k=1
for a _specmc class [2_]. In addition, it is opteed _for and the within class covariance become:
specific classes, so it needs several samples eny ev Cove.. =D.. DT. (10)
class and thus can determine only a maximunMei o Within = Zwithin ZWithin *
features. which is am by m matrix. Applying singular value
decomposition (SVD) to within class covariance ixatr

we have,

3. PROPOSED METHOD . T
CoVyyn =USVT =D gV, -
i=1

An Affine PCA method is introduced in this section Then the rotation matrix M is the set of eigen vexbf
an attempt to overcome some of the limitations @hb  ¢oyariance matrixM = [V,,V,,..V]. Then all the
PCA and FLD. First of all, we apply PCA for dimen-
sionality reduction and to obtain the eigenfadds.
Every face image can be projected into this sulespac
form an m-dimensional feature vectors;,, where

vectors represented in the original subspace ans-r
formed into new space by multiply ibg.

o : 3.2. Whitening Transformation
M < N, denotes the number of principal eigenfaces cho- 9

; ; _ t
sen for the projection, ang = 12,..K;, denotes the 'k The purpose for whitening is to normalize the sratt

sample of the classj, where j =12,.M . We often matrix for uniform gain control. Since as stated[3j)
“mean square error underlying PCA preferentially

the distance between two face vectors represeeterth ~ WeIghts low frequencies”, we would need to compensa
ergy difference between them. In the case of végiab for that. The whnenmg_ parametéris related to the ei-

illumination, lighting changes dominate over thamc- ~ 9envaluesj,. Conventionally, we would use the stan-
teristic differences between faces. It has alsonbee dard deviation for whitening, that is:

proved in [19] that the distance between face wecto [ = \/)T. ,i =[1..m]. But this value appears to compress
with facial expression variations are generallyatge
than that with face identity. This is the main @asvhy
PCA does not work well under variable lighting and
pression. In fact, not all the features have #maesim-  determined empirically.
portance in recognition. Features that are stretgden

classes and weak within class are much more uisful
the recognition task. Therefore, we propose amaffi
model (Affine PCA) to resolve this problem. Theiradf . o o o
procedure involves three steps: eigenspace rofation The aim of filtering is to diminish the contributiaf

whitening transformation and eigenface filtering. eigenfaces that are strongly affected by variatiohis
want to be able to enhance features that capterm#in

differences between classes (faces) while dimingsttie
contribution of those that are largely due to liggtor

use the nearest neighbor method for classificatidwere

the eigenspace so much that class separabilitymis-d
ished. We therefore use= AP, where the exponeptis

3.3. Filtering the Eigenfaces
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expression variation (within class differences). Wes
define a filtering parametef\ which is related to iden-
tity-to-variation (ITV) ratio. The ITV is a ratio easur-
ing the correlation with a change in person veraus
change in variations for each of the eigenfaces.aiR®/
class problem, assume that for each of the M ddasse
(persons) we have examples unlestandardized differ-
ent variations in illumination or expression. Inseaof
illumination changes, the lighting source is pasigd in
front, above, below, left and right as illustratad~igure
2. The facial expression changes are normal, S@gbri
and unpleasant as shown in Figure 3. Let us dehetd

eigenface of the "k sample for class (person§5j by

S,jk- Then

BetweerClassScatter
Within ClassScatter

—Zl Z\sjk @,
>

=1

TV, =

(11)

K

1

1$? S~ |
M <K 4 ol

1 M
=M;S,j,k’

1 K
:?;S@,k!

represents thé"ielement of the mean face

and i =[L--ml.

Here @,

vector for variationk for all persons angy, , represents

the {" element of the mean face vector for pergamder
all different variations. We then define the soglipa-
rameterA by:

A =I1TVS 12
where (is an exponential scaling factor determined em-
pirically as before. Instead of this exponentiedlig
factor, other non-linear functions such as thredingl

suggest themselves. These possibilities have bren e
plored, but so far the exponential scaling perfdrest.

After the affine transformation, the distanckbetween
two face vectors. p and S is:

JJ k' —\/Z[C() (SI ik ,j‘,k')]2 !

@ =LA AT -

(13)

The weights@ scale the corresponding eigenfaces. To

determine the two exponengsandq for I and A, we
introduce a cost function and optimise them emaiiyc
It is defined by:
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M K
opT:ZZZ(du Ko ) DdeJmko d”'ko (14)
j=L k=1 m

]
where d is the distance between the sampjlgand

jmk0

jj,kO
sjowh|ch is the standard image reference for class

S, (typically the normally illuminated image). Noteath

the conditiond is only true when there is a

jmko < djj,kO
misclassification error. Thu®PT is a combination of
error rate and the ratio of between-class distatoce
within-class distance. By minimizinQPT, we can de-
termine the best choices fprandq. Figure 1, shows the
relationship betwee®PT andp, g. For one of our train-
ing database, a minimum  was  obtained
atp=-02,q9=-04.

From the above, our final set of transformed eigee$
would be:

(15)

where | =[1.--m]. After transformation, we can apply

PCA again on the compressed subspace to furtheceed
dimensionality (two-stage PCA).

4. EXPERIMENTAL RESULTS

The method is tested on an Asian Face Image Data-
base PF016] for both changes in lighting source posi-
tions and facial expressions. The size of each émag
171%x171 pixels with 256 grey levels per pixel. Figare
and 3 show some examples from the database. To-eval
ate the performance of our methods, we perform8d a
fold cross validation on the database as followe W
choose one-third of the 107 subjects to construct o
APCA model, one-third for training. Then we justdad
the normally faces (pictures in the first columrFigure
1 and 2) of the remaining one-thirds of the data our
recognition database. We then attempt to recoghezse
faces under all the other conditions. This prodes®-
peated three-fold using different partitions and frer-
formance is averaged. All the results listed irs thaper
are obtained from experiments only on testing dasa.
ble 1 is the comparison of recognition rate between
APCA and PCA. It is clear from the results thatiidf
PCA performs much better than PCA in face recogmiti
under variable lighting conditions. The proposedCAP
outperforms PCA remarkably in recognition rate with
99.3% for training data and 95.6% for testing dait
negligible reduction in performance for normally i
faces. Figure 3 displays the recognition rates regai
numbers of eigenfaces usetn(. It can be seen that
selecting the principal 40 to 50 eigenfaces isigefiit
for invariant luminance face recognition. This nemis



somewhat higher than is required for standard PCA, it shows that performance of APCA is stable inespit
where selectingmin the range 10 to 20 is sufficient — the complexity of variations. However, PCA is na a
this is possibly a necessary consequence of thategre robust as APCA with different variations. For illima-
complexity of the APCA face subspace compared to tion changes, PCA only achieve less than 60% acgura
standard PCA. while the accuracy increase to more than 80% far ex
pression variations. It drops back to 60% withrgjes
combining illumination and expression. This pheneme
non has also been reported in [19] as any giveresep-
tation is not sufficient to overcome variationioth
illumination and expression.

—@— APCA for lllumination changes

—l— APCA for expression changes

—X¥— APCA for lllumination and expression changes
PCA for lllumination changes
PCA for Expression Changes

—@— PCA for lllumination and Expression Changes

Figure 1. Examples of illumination
changes in Asian Face Database PFO1.
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Number of features

Figure 3. Recognition Rate
Vs. Number of features.

Recognition rate
) ) Method lllumination | Expression | lllumination and
Figure 2. Examples of expression Variation Variation Expression
changes in Asian Face Database PFO1. Variations
L. . . . . PCA 57.3% 84.6% 70.6%
As for variations in facial expression, APCA aclisv i 5 5 5
higher recognition rate than PCA with an increage q Affine PCA 95.6% 92.2% 86.8%

10%. For changes in both lighting condition andregp
sion, APCA always performs better than PCA despiite
the change in number of eigenfaces. The gain i®stim
stable with high dimension of subspace. It can &eo rate between APCA and PCA.
seen from Figure 3, that recognition rate of exgices

changes does not decrease dramatically with theceed

of number of eigen features compared to illumimatio Conclusion

variations. Therefore, only as low as 20 featuees

enough to recognition faces with facial expressiana- We have described an easy to calculate and efficien
tions. .. face recognition algorithm by warping the face gatre
We also test the performance of APCA on variations constrycted from PCA. The affine procedure contains
on illumination and expression simultaneously. Tée three steps: rotating the eigen space, whitenirandr
ognition rate of APCA is less than 5% lower thaattf  formation, and then filtering the eigenfaces. Afiffine
illumination changes and expression changes, bigt it transformation, features are assigned with differen
obviously higher than the recognition rate of PGAUS  \yeights for recognition which in fact enlarge thevoeen

Table 1. Comparison of recognition
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