
Using a Neural Network and Genetic Algorithm
to Extract Decision Rules

Karen Blackmore
School of IT,

Charles Sturt University
Bathurst, NSW, Australia
kblackmore@csu.edu.au

Terry Bossomaier
School of IT,

Charles Sturt University
Bathurst, NSW, Australia
tbossomaier@csu.edu.au

Abstract
Rule extraction from neural networks often focusses on
exact equivalence and is often tested on relatively small
canonical examples. We apply genetic algorithms to the
extract approximate rules from neural networks. The
method is robust and works with large networks. We com-
pare the results with rules obtained using state of the art
decision tree methods and achieve superior performance
to straight forward application of the WEKA implementa-
tion of the C5 algorithm, J48.PART.

Keywords
Neural networks, rule extraction, genetic algorithms, rule
based classifiers.

INTRODUCTION

It seems somewhat strange to extract rules from artificial
neural networks (ANN), when neural solutions were
thought to be distinctive. The huge growth of activity in
neural networks from the mid-80s occurred because they
seemed to be able to solve problems intractable by conven-
tional logic-based artificial intelligence. In fact a series of
seminal papers [1], Abu Mostafa asserted that neural net-
works were particularly effective on problems of high algo-
rithmic complexity [12], common in many pattern recogni-
tion. Such problems intrinsically require very many complex
rules for their solution.

However, the success of ANNs in many areas led to a
deeper understanding of how they work and detailed com-
parisons with statistical and other methods, such as the
classic book by Ripley [16]. But the ease of use, resilience
to lack of understanding of search space, and the ready
availability of good software ensures the continuing use of
ANN methods.

But in some situations where an ANN solution is to be dis-
tributed to a large client base, with little background in
ANNs, for extended use in safety critical applications, some
intuitive support is highly desirable. In such situations a set
of rules is very valuable because of its greater ease of com-
prehension and its link to common sense and experience.

In earlier work [5] we showed that neural networks outper-
form state of the art decision tree methods on a human clas-
sification problem. In the present paper we apply genetic

algorithms to extract rules from the network which them-
selves are superior to those we obtained from decision tree
analysis.

BACKGROUND TO RULE EXTRACTION

A wide variety of methods are now available, recently re-
viewed by Andrews et al. [2]. Tickle et al [20] revisits the
Andrews classification of rule extraction methods and em-
phasise distinction between decompositional and peda-
gogical approaches. Rule extraction methods usually start
by finding a minimal network, in terms of number of hidden
units and overall connectivity. Setiono [18] for example
adds penalty terms to the error function to bias back-
propagation like training towards such sparse networks.
The next simplification, the key feature of the method, is to
quantize or cluster the hidden unit activations. It is then
possible, link by link, to extract combinations of inputs
which will activate each hidden unit, singly or together and
thus output generate rules. This unit by unit analysis char-
acterises the decompositional approach. Although it can
yield exact representations, the computational time may
grow exp onential with number of inputs (attributes) as
noted by Tickle et al. [2] for decompositional algorithms
such as Subset and KT.

Taha and Ghosh [19] suggest for binary inputs such as our
data generating a truth table from the inputs and simplying
the resultant Boolean function. But this simplification is
itself combinatorially nasty and thus the method works only
for small networks. They also refine the Liu and Setiono [13]
methods using linear programming. The test networks have
just a few inputs.

The growth of computational t ime with number of attributes
makes minimising the size of the neural network essential
and some methods evolve minimal topologies. Santos et al
[17] use genetic algorithms in combination with the Setiono
rule extraction to optimise network topology using quality
indices on the rules extracted as a fitness function to guide
network evolution.

The pedagogical approaches treat the neural network as a
black box [20] and use the neural network only to generate
test data for the rule generation algorithm. Keedwell et
al.[11] use genetic algorithms to evolve rules directly. They
use a wild-card like representation where each input to the

neural network is represented explicitly in the chromosome
by one or more bits with zeros for don't care inputs. Our
method is broadly similar, but since the number of inputs we
have is very high, we use a different encoding scheme as
discussed below. The Keedwell approach requires a specific
term in the fitness function to make the rules as small as
possible, since each chromosome admits every possible
attribute. In our approach, we enforce maximum size predi-
cates and number of rules thus reducing the size of the
search space.

METHODOLOGY

The following methodology was employed:
1. Format dataset for training.
2. Generate random splits of the dataset for cross-

validation.
3. Perform classification using rule based classifier.
4. Train the neural network
5. Extract rules from neural network using a genetic algo-

rithm
6. Assess and compare the predictive accuracy of the rules

from the neural network with those obtained using the
rule based classifier.

Formatting of the Dataset

The data for analysis was provided by Foy as part of a lar-
ger study [8]. The data set contained 24 mulit-value cate-
gorical input and 3 output variables for 357 human profiling
cases (see [4,5] for a detailed discussion and description).
For classification using J48.PART, the data was converted
to ARFF format [21], which provides the attribute defini-
tions and the data instances without specifying the attrib-
ute for prediction. Selection of the prediction attribute and
filtering of any unwanted attributes is carried out within the
Weka scheme.

For neural network training, the dataset was converted to
numeric binary values. This resulted in 96 inputs and 3 out-
puts due to the conversion of the multi-value categorical
inputs.

Random Splits for Cross-Validation

Evaluation of an algorithm’s predictive ability is best carried
out by testing on data not used to derive rules [21], thus all
training was carried out using tenfold cross-validation.
Cross-validation is a standard method for obtaining an error
rate of the learning scheme on the data [21]. Tenfold cross-
validation splits the data into a number of blocks equal to
the chosen number of folds (in this case 10). Each block
contains approximately the same number of cases and the
same distribution of classes. Each case in the data is used
just once as a test case and the error rate of the classifier
produced from all the cases is estimated as the ratio of the
total number of errors on the holdout cases to the total

number of cases. Overall error of the classification is then
reported as an average of the error obtained during the test
phase of each fold.
Variations in results for each iteration in a cross-validation
occur depending on the cases used in the training and hold-
out folds, which can lead differences in overall results.
Thus, rather than use the cross-validation function, which
is part of the rule based classifier, the cases in the dataset
were randomized and split into ten separate train and test
sets. Using this method, both the rule based classifier and
the neural network were trained using the exact same fold
splits.

Rule Based Classifier

Algorithms that derive rule sets from decision trees first
generate the tree, then transform it into a simplified set of
rules [9]. Based on results from previous research [3], the
WEKA J48.PART [21] algorithm was selected to derive and
evaluate rules sets from the training data.

Neural Network Training

The ANN was feed-forward, and one hidden layer was
found to be sufficient [5], with 6 hidden units. Training was
carried out using the neural network toolbox from Matlab
[14], with the Levenberg-Marquardt algorithm and log-
sigmoid transfer function [16].

Genetic Algorithm

Genetic algorithms [15], [10] are now a mature optimisation
technique, achieving good results on NP hard problems in
practical times. We employed a simple genetic algorithm
with a single population, no self-adaptation of parameters,
and a variety of conventional cross-over mechanisms.

The genetic code is of fixed length and encodes a maximum
number of rules and conditions per rule. Binary represented
integers are used to describe each condition in the rule with
a further bit setting this condition to true or false. The net-
works have 90 inputs, so 7 bit integers are used for each
predicate. 38 values are thus unused, but they serve an im-
portant function. If input values appear in this high range,
they do not generate a condition. Thus, the genetic code
can describe rules with fewer conditions in the predicate
than the maximum allowable.

After the predicate comes the rule outcome. Together this
chunk of predicate and outcome is repeated to the maximum
number of rules allowed. Since the data has three outcomes,
a fourth outcome (from 2 bits) is available. This could be
used to indicate a null rule, but in the work presented
herein, has a different function. The neural networks seem
to generalise well and were tested with extensive cross-
validation [5]. However, if we now generate random inputs
and observe the neural network output, we can sometimes
get inconsistent outputs. Thus there are regions of the
search space, which would not occur in practice, in which

the neural network is less secure. This fourth bit encodes
the ``don't know'' case.

As an illustration, suppose we have two rules each with
three conditions. The chromosome will have 136 bits as
shown in Figure 1. Square brackets denote the number of
bits in each gene.

The fitness function is simply the aggregate performance of
the rule set measured against the neural network outputs.
No majority voting on rules is imposed, so rules giving er-
roneous classification feed through to the fitness function.
The approach is holistic. No one rule, regardless of number
of cases it classifies, is given explicit preference over any
other. This holistic approach avoids the brittleness of other
methods, since the rules are optimised as a set rather than
determined in sequence according to some criterion.

The genetic algorithm methods were implemented using the
Genetic Algorithm Toolbox [6]for Matlab [14].

RESULTS

The predictive accuracy of the rule based classifier and the
ANN, using both random and fixed initial weights and bi-
ases, were compared. As can be seen in both Table 1 and
Figure 2, the ANN, regardless of starting conditions,
achieved superior accuracy over the rule based classifier
(WEKA). These results are consistent with previous re-
search [5].

The rule based classifier achieved 70% predictive accuracy,
whereas the ANN was able to, on average, correctly predict out-
comes 99% of the time. Additionally, as each fold contained ex-
actly the same train and test cases for all methods, it can be seen
that classification errors vary randomly, with high error rates not
linked to specific folds For example, the Weka method had the
highest error on the sixth fold, whereas the ANN with random
starting conditions had the highest error on the fourth fold. From
the results of this ten-fold cross validation, the ANN with fixed
starting conditions would appear to be most stable.

Table 1. Error Comparison

Fold Weka NN_Random NN_Fixed

1 31.4 0.00 0.84

2 31.4 1.40 1.40

3 14.3 0.00 0.56

4 30.5 5.04 2.24

5 36.1 1.68 1.40

6 41.7 2.24 2.24

7 19.4 0.56 1.12

8 22.2 0.56 0.56

9 38.9 0.84 1.40

10 33.3 1.68 2.52

Avg Err 29.9 1.40 1.43

Figure 2. Graph Comparing Errors

Genetic Algorithm Parameters

The genetic algorithm initialized with the following parameters:

i. Number of individuals in the population: 40

ii. Maximum number of generations: 1000

iii. Generation gap: 1

iv. Selection function: 'sus' (stochastic universal sampling)

v. Maximum number of conditions: 3

vi. Number of rules: 18

Variations in the values of the initialization parameters were used,
however, best results were achieved with the values above. The
genetic algorithm converged quickly within the first 100 genera-
tions, with minimal improvement in fit in the following 900 gen-
erations (Figure 3).

Figure 1. Example chromosome for a two rule,
three condition set.

[7] [1] [7] [1] [7] [1] [2] [7] [1] [7] [1] [7] [1] [2]

Rule 1 Rule 2

Attribute number Value (on/off) Rule outcome

[7] [1] [7] [1] [7] [1] [2] [7] [1] [7] [1] [7] [1] [2]

Rule 1 Rule 2

Attribute number Value (on/off) Rule outcome

Error Comparison

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Fold Number

%
 E

rr
or

Weka NN_Random NN_Fixed

Figure 3. Convergence over 1000 generations

Rule set from the Genetic Code

The following ruleset was derived from the neural network using
the genetic algorithm.

1. IF behavioural = Condition3, on, AND region = Condition 1,
off, AND Age = Condition3, on, THEN =outcome1

2. IF mn_problems = Condition3, off, AND reporter = Condi-
tion1, on, AND Marital_status = Condition2, on, THEN
=outcome1

3. IF longterm_stressors = Condition2, on, THEN =outcome2

4. IF time = Condition2, on, AND risk = Condition8, on,
THEN =outcome2

5. IF Age = Condition3, on, THEN =outcome2

6. IF reporter = Condition2, off, AND dependen = Condition2,
off, AND time = Condition4, off, THEN =outcome4

7. IF occupation = Condition2, off, THEN =outcome1

8. IF time = Condition4, off, AND last_seen = Condition2, off,
AND day = Condition4, off, THEN =outcome1

9. IF day = Condition1, off, THEN =outcome2

10. IF mn_problems = Condition6, on, AND longterm_stressors
= Condition4, off, AND day = Condition3, on, THEN
=outcome2

11. IF risk = Condition4, off, AND character = Condition1, off,
THEN =outcome1

12. IF Age = Condition2, on, THEN =outcome2

13. IF season = Condition3, off, AND day = Condition1, on,
THEN =outcome2

14. IF occupation = Condition6, on, AND longterm_stressors =
Condition2, off, AND reporter = Condition1, off, THEN
=outcome3

15. IF mn_problems = Condition2, on, AND longterm_stressors
= Condition1, off, THEN =outcome3

16. IF occupation = Condition2, off, AND occupation = Condi-
tion7, on, THEN =outcome2

17. IF urban = Condition2, off, AND history = Condition2, on,
AND season = Condition1, off, THEN =outcome2

18. IF appearance = Condition1, off, AND ph_outcome2 =
Condition2, on, AND reporter = Condition4, on, THEN
=outcome3

Although the maximum number of conditions per rule is set
at three, as mentioned previously, the genetic code can de-
scribe rules with fewer conditions in the predicate than the
maximum allowable. The ruleset generated by the genetic
algorithm produced 8 rules with the maximum three clauses,
5 rules with two clauses and 5 rules with one clause (Figure
4). The rules were valid for 306 or 86% of cases in the data-
set. This represents a significant improvement over the 70%
accuracy achieved by the rule based classifier. Importantly,
this improvement in accuracy was achieved using fewer
rules (18 as apposed to 22 for the rule based classifier) with
fewer clauses (see Figure 4), thus abiding by the minimum
description length principle [7].

0

2

4

6

8

10

1 2 3 4 5

Number of Conditions

N
u

m
b

er
 o

f
R

u
le

s

GA

WEKA

Figure 4. Comparison of Number of Rules and Conditions

DISCUSSION

Keedwell et al. [11] also find on manufactured test data with
varying amounts of noise. They found a slight advantage
for their GANN method when noise levels are high. Their
technique uses additional heuristics after a set of rules has
been generated by the genetic algorithm. The rules obtained
may be contradictory and a voting system is used for
choosing the classification in the event of conflict. Our fit-
ness function explicitly penalises rules which generate in-
correct outputs in some cases, thus the rule sets we evolve
do not need further refinement or heuristics. Pedagogical
methods of this kind may behave quite well with increasing
size of neural network and number of attributes. The comp u-
tation time for the neural network generation of test classifi-
cations grows approximately linearly with the number of
connections, which is favourable. The complexity of the
genetic algorithm depends on the size of the rule set, each
iteration depending linearly on the number of rules and de-
pends only weakly on the number of conditions in the cur-
rent implementation. But, most significantly, it is most effec-
tive, when regardless of the size of neural network, a small
number of rules capture the important characteristics of the

data, i.e. where the data is essentially of low algorithmic
complexity [12]. It is in such cases that the rule extraction
process will be of most value to the end user.

CONCLUSION

The genetic algorithm approach described here determines
rules better than those found from various decision tree
based methods. It is simple to implement, but requires con-
siderable computing resources for the large neural networks
of the present paper. As such its greatest value is for de-
termining heuristic rules for medium term use by practitio-
ners who welcome the intuitive description that rules pro-
vide.

REFERENCES

[1] Abu-Mostafa, Y. Complexity of random problems. In:
Complexity in Information Theory, Anonymous Springer-
Verlag, 1986.

[2] Andrews, R., Diederich, J., and Tickle, A. B., A survey and
critique of techniques for extracting rules from trained artifi-
cial neural networks Knowledge Based Systems, vol. 8, pp.
373-389, 1995.

[3] Blackmore, K. and Bossomaier, T. R. J., "Comparison of
See5 and J48.PART Algorithms for Missing Persons Profil-
ing," ICITA2002, Bathurst, 2002.

[4] Blackmore, K. L., Bossomaier, T. J. R., Foy, S., and Thom-
son, D., "Data mining of missing persons data," 1st Interna-
tional Conference on Fuzzy Systems and Knowledge Discov-
ery, Orchid Country Club, Singapore, 2002.

[5] Blackmore, K. L. and Bossomaier, T. R. J., "Soft Computing
Methodologies for Mining Missing Person Data," submitted
to 2002 IEEE International Conference on Data Mining,
Maebashi TERRSA, Maebashi City, Japan, 2002c.

[6] Chipperfield, A. J., Fleming, P. J., Pohlheim, H., and
Fonseca, C. M., "A genetic algorithm toolbox for
MATLAB," Proceedings of the International Conference on
Systems Engineering, Coventry, UK.

[7] Domingos, P. , The role of Occam's razor in knowledge
discovery Data Mining and Knowledge Discovery, vol. 3,
pp. 409-425, 1999.

[8] Foy, S. PhD Thesis, forthcoming., (UnPub)

[9] Frank, E. and Witten, I. H., "Generating accurate rule sets
without global optimization," Machine Learning: Proceed-
ings of the Fifteenth International Conference, Madison,
Wisconsin, pp. 144-151, 1998.

[10] Holland, J. H., Genetic algorithms Scientific American, vol.
pp. pp. 45-50, Jul, 1992.

[11] Keedwell, E., Narayanan, A., and Savic, D., Creating rules
from trained neural networks using genetic algorithms Inter-
national Journal of Computers, Systems and Signals
(IJCSS), vol. 1, 2000.

[12] Li, M. and Vitanyi, P. An Intorduction to Kolmogorov
Complexity and its Applications, 1997: Springer-Verlag,

[13] Liu, H. and Setiono, R., Incremental feature selection Jour-
nal of Applied Intelligence, vol. 9 , pp. 217-230, 1998.

[14] Mathworks Inc., Matlab Student Version , ver. 6.1 Release
12.1, rel. 2001. Mathworks Inc.

[15] Mitchell, M. An Introduction to Genetic Algorithms (Com-
plex Adaptive Systems), MIT Press, 1996.

[16] Ripley, B. D. Pattern Recognition and Neural Networks,
UK: Cambridge University Press, 2001.

[17] Santos, R., Nievola, J. C., and Freitas, A. A., "Extracting
comprehensible rules from neural networks via genetic algo-
rithms," Proceedings of the 2000 IEEE Symposium on Com-
binations of Evolutionary Computation and Neural Networks
(ECNN-2000), San Antonio, TX, USA.

[18] Setiono, R., A penalty-function approach for pruning feed-
forward neural networks Neural Computation, vol. 9, pp.
pp. 185-204, Jan, 1997.

[19] Taha, I. and Ghosh, J., Three techniques for extracting rules
from feedforward networks Intelligent Engineering Systems
Through Artificial Neural Networks, vol. 6, 1996.

[20] Tickle, A., Andrews, R., Golea, M., and Diederich, J., The
truth is in there: directions and challenges in extracting rules
from trained artificial neural networks IEEE Transactions
on Neural Networks, vol. 9, pp. 1057-1068, 1998.

[21] Witten, I. and Frank, E. Data mining: practical ma-
chine learning tools and techniques with Java im-
plementations, San Francisco: Morgan Kaufmann,
2000.

	P187:
	Numb:
	Numbx:
	C: 187
	L:
	R:

	P188:
	Numb:
	Numbx:
	C: 188
	L:
	R:

	P189:
	Numb:
	Numbx:
	C: 189
	L:
	R:

	P190:
	Numb:
	Numbx:
	C: 190
	L:
	R:

	P191:
	Numb:
	Numbx:
	C: 191
	L:
	R:

