
 The Adaptation of Agent Configurations using Web
Services as Components

D. Richards1,, S. van Splunter2, F.M.T. Brazier2, M. Sabou2

 1 Department of Computing 2 Department of Computer Science
 Macquarie University Vrije Universiteit Amsterdam
 Sydney, Australia Amsterdam, The Netherlands
 richards@ics.mq.edu.au < marta, sander, frances>@cs.vu.nl

Abstract: To support dynamic and reactive behaviour we
have developed an Agent Factory which (re-)structures an
agent configuration using existing components. In this
paper we present our current work which uses Web
services as the components. Our initial work has focused
on configuring Web services to create a design artifact.
This is achieved by reasoning about the requirements and
the semantic descriptions of Web services in the DAML-S
Web service description language and ontologies. We
provide an example of the design process and our findings
regarding DAML-S.

Keywords: Applications, Intelligent agents, Ontology,
Semantic Web, Web services

1. Introduction
The ability of agents to adapt according to changes in

system requirements and the environment is important to
enable dynamic and reactive behaviour. Following the use
of compositionality in the major software engineering
paradigms and based on the Factory design pattern [8], we
have developed an Agent Factory (AF) architecture [1].
The approach is based on the use of components, the
generic agent model and the DESIRE formal knowledge-
level modeling and specification framework for multi-agent
systems [3]. Our agent (re-)structuring approach [13]
allows an agent to automatically adapt by reusing existing
components. Our approach is a combination of process-
oriented and object-oriented approaches by treating
processes as the 'active' parts of our agent, which are our
agent components, and classes as the 'passive' part of our
agent, which are the data types used in the agent
components.

Adaptation requires the identification of appropriate
components. Determining what is 'appropriate' involves
understanding of the requirements, the development of a
design to meet those requirements, location of possible
components and the ability to reason about those
components. Reusable components must therefore be
described syntactically and semantically to determine if a
suitable component has been found and what changes, if
any, are needed. There are a number of possible
alternatives to using reusable components ranging from one
extreme of creating your own closed library of components
with well constrained specifications, languages, etc, or the
other extreme of finding components "out there" which will

require sophisticated matching and adaptation techniques.
We have sought a middle position on this continuum. Our
previous work has proposed an open architecture but our
implementations have been restricted to the use of building
blocks that we have developed our selves. Furthermore, the
Agent Factory has been developed on the basis of a number
of assumptions:

1. agents have a compositional structure
2. reusable parts can be identified
3. two levels of descriptions are used: conceptual and

implementation
4. properties and knowledge of properties are available
5. no commitments are made to specific languages

and/or ontologies.
Our current work is reviewing those assumptions

through the application and extension of our approach by
using Web services as components. Web services meet our
first assumption as they exhibit modular behaviour [5]. The
study described in this paper is particularly focused on
addressing the second and fourth assumptions. Many agent
approaches are based on similar assumptions and thus our
work is of benefit to them. Further we believe that our
architecture can be used to create composite Web services
and address some of the issues facing the Web services and
Semantic Web communities.

Additionally, the study reported in this paper seeks to
take some of the key research efforts and defacto standards
that are emerging for automated Web service usage and
investigate their strengths and deficiencies. In the next
section we provide some background to this project
through review of a number of other adaptive agent
approaches and current approaches to dynamic use of Web
services. In section 3, we introduce the Agent Factory
including a description of components, our architecture, the
general agent model and assumptions. The fourth section
describes the study we conducted. The final section gives
our conclusions, future work and summary.

2. Background
To provide some background to our work we present an

introduction to Web services and their semantic description
in sections 2.1 and 2.2. Section 2.3 considers agent-based
Web service research.
2.1 Web services
While a number of definitions of a Web service exist, the
definition that most fits with our intended use of WSs as

Publication and
Discovery: UDDI

WS Composition:
BPEL4WS, AgentFactory

Service Description Layer: WSDL, DAML-S

XML messaging layer: SOAP

Transport Layer: HTTP, SMTP, FTP

Applications Layer

Figure 1: WS architecture (adapted from [14])

components in the Agent Factory is given by the Stencili
group who define a WS as “loosely coupled, reusable
software components that semantically encapsulate discrete
functionality and are distributed and programmatically
accessible over standard internet protocols”. The three
definitions offered differ in their emphasis on technology,
business and software engineering but all encapsulate the
self-contained, modular, composable and distributed nature
of WS. These four characteristics of WS are well supported
by a layered-architecture where the base is a well-
established transport layer. In each layer we give an
example of a major standard. In italics we position the
work reported in this paper. The next layer up uses the
Simple Object Access Protocol (SOAP) which is an XML-
based communication protocol for exchanging data in

decentralized and distributed environments via typed
message exchange and remote calls. The service
description layer includes the XML-based Web Service
Description Language (WSDL). The next layer is split into
two main types of WS technologies: ones that support
single service advertising and discovery and ones that
support service composition. For service registration and
discovery there is the Universal Description, Discovery and
Integration (UDDI) (by IBM, Microsoft and Ariba)
standard service repository. To provide some very basic
semantics (such as identification via a product
classification code) one or more tModel descriptions may
be attached to a service. For service composition there are a
myriad of possible solutions. Figure 1 includes the
Business Process Execution Language for Web Services
(BPEL4WS)ii which has grown out of the early offerings
WS Flow Language (WSFL) (IBM)iii and XLANG
(Microsoft)iv (an extension of the W3C’s Web Services
Description Language (WSDL)).

Academic research into WSs is seeking to provide
compatibility and sufficient flexibility to support the
emerging commercial standards while addressing current
shortcomings in the 3rd and 4th layers. Since current
technology only supports syntactic and static description

and composition of WS having agents automatically find,
compose and execute services is not a current reality.

2.2. Semantic description of Web Services
WSDL, SOAP and UDDI are seen as steps in the right

direction but ones that will fail to achieve the goals of
improved automation and interoperability, because they
rely on a priori standardisation and require humans in the
loop [9]. To support automated reasoning, knowledge
representations (such as markup languages) will be needed
that express both data and rules for reasoning. Ontologies
will be used to enable definition and comprehension of
meaningful content. These are the concerns of the Semantic
Web community. Additionally, agents will be needed to
interpret the content and transform user requests into
optimized delivered solutions.

The ability to dynamically locate and compose Web
services based on their semantic description will rely on the
richness of the description and the robustness of the
matching techniques used. The most significant work that
has been done to describe Web services has been
conducted by the DAML-S coalition [16].DAML-S is built
on the AI-based action metaphor where each service is
either an atomic/primitive or composite/complex action.
Knowledge preconditions and knowledge effects are
handled via the inputs and outputs of the Web service [10].
The matching of service providers and service requesters
via semantic descriptions of the services are key goals of
this work. DAML-S uses the DAML+OIL specification
language (which extends the weak semantics of RDF(S)) to
define four upper level ontologies that can be specifically
used to describe Web services. The Service ontology is
essentially a means of linking the three other ontologies
that contain the what (ServiceProfile), the how it works
(ServiceModel) and the how to use (ServiceGrounding).
Matching is typically done at the Profile level. Execution
monitoring is supported via the ServiceModel, also known
as the Process Model. The ServiceGrounding definition
maps the DAML-S Profile and Process models to a WSDL
definition of the service. To provide further compatibility
with other WS standards, each DAML-S parameter may be
mapped to a UDDI tModel. In section 4.2 we use the
DAML-S Profile and Grounding descriptions to configure
a design artifact.

2.3. Agents and Web Services
To realize the potential of agents to manage interactions

with Web services a number of research efforts are under
way to bring semantics to Web service descriptions that
will sit at layers above what is being offered commercially.
A number of approaches (e.g. [5], Racingv). have been
offered to provide Web services with agent-like behaviour
through the use of agent wrappers. [6] use wrappers so that
web sources can be queried in a similar manner to
databases. Alternative agent-based approaches to Web
services are provided by [7] and SWORD [11] who offer

model-based approaches and deductive reasoners to derive
a composition. [17] use construction scripts and composite
logic to define how the services in a component can be
combined, synchronised and coordinated. Typical of many
approaches to composition, these approaches focus on the
latter half of the system development life cycle. In [11] and
[10] the goal is to determine if a set of services fulfils the
specification. In all three they use a reasoner to derive a
plan.

This paper seeks to fill a gap in the current work by
offering an approach that is truly automatic and spans the
whole system development lifecycle from requirements
specification to system execution. The building blocks are
Web services. The emerging DAML-S standard is used as
a description language to reason about WS. The main
question to be addressed in this paper is whether DAML-S
descriptions of web-services offer enough structure for
automated configuration by the Agent Factory.

3. Agent Factory
In this section we provide an introduction to the Generic

Design Model and the concepts of a component and
template.

3.1 Generic Design Model
The configuration process of a software agent in the

(re-)design centre is based on the Generic Design Model
(GDM) presented in [2]. In short, the assumption behind
this model is that both requirements and their
qualifications, and the description of an artefact evolve
during a design process. E.g., in practice often not all initial
requirements can be satisfied. The artefact is designed to
satisfy sets of these requirements. Design choices are
influenced by high-level strategies, chosen on process
objectives (e.g. deadlines, resources). As shown in Figure 2
this knowledge-based model of design distinguishes
reasoning about requirements and their qualifications
(Requirement Qualification Set (RQS) Manipulation),
reasoning about the design artefact (Design Object
Description (DOD) Manipulation), and reasoning about the
design process itself (Design Process Co-ordination).

Design Process
Co-ordination

RQS
Manipulation

Design

DOD
Manipulation

Figure 2. Main processes in GDM

The input and output of all four of these components is
defined, together with the level of reasoning (meta-level) to
which they pertain. Information exchange between
components and potential control structures is also
specified by the model as are the necessary control
structures and a generic design ontology.

Design in the Agent Factory is conducted at two levels: the
conceptual and implementation levels. Adaptation of an
agent can involve redesign at both levels and thus requires
the mapping between the two levels to be specified
explicitly. The operational level includes implementation
detail needed by the assembly process.

3.2 Components and Templates
A component has an interface which describes the input

and output data types. Less conventionally, our
components also contain slots to regulate the components
configuration. Components themselves may be data types
and thus may also have their own slots. Components are
connected via the slots. Slots define an interface and what
type of component or data type may be inserted. The use of
slots provides a 'static' architecture for the agent. Templates
are skeletons of components.

To support automatic agent adaptation we use two types
of annotations: ontologies and co-ordination patterns.
Ontologies are used to provide a shared understanding of
concepts and relationships between concepts. Coordination
patterns define the temporal sequence and dependencies
between processes that combine to form a task.
Annotations are associated with components and data types
and may themselves be composed.

4. An Example
This section we provide and example of how the

Agent Factory may be used for the composition of WSs in
a specific domain. Section 4.1 describes the scenario.
Section 4.2 follows a sample design trace of the
configuration process.

4.1. The scenario
The example illustrates how the AF can be used to

configure WS to create a portal containing bibliographic
data.vi.

The task of creating a portal from a given set of BibTex
files is carried out by a set of web-services. First, each
BibTex file is converted to RDF(S) using the BIB2RDF
service then saved in a web-accessible RDF(S) repository
and query engine, Sesamevii, by the service ISESAME. The
merger of all available data most often results in
redundancies as different owners of the bibliographies use
syntactically different resources to denote the same author.
To deal with this issue the sets of redundant resources are
labelled with the sameIndividualAs DAML tag. The task
of finding and labelling redundant authors is performed by
the SIA (SameIndividualAs) service. To determine the
redundancies: all data is extracted from Sesame with the
service ESESAME and sent to the SIA service. The results
and extracted data are reinserted into Sesame using
ISESAME. Finally, portal creator software creates the portals
of publications by querying Sesame.

store in
Sesamedata

ISesame
RDF-stream

conceptual

operational

Figure 3. The ISESAME component

store in
Sesame

references

ISesame
RDF

-stream

conc.

oper.

translate

Bib2RDF

references

Data-
stream

Figure 4. Configuration for translation and storage

Table 1. Requirements
ID Description
rqi1 Create input for portal creator p1

rqi2 Input I1 is generated from references in BibTex files

The initial requirement set is formulated for the design
process is depicted in Table 1 Rqi1 states that the user
wants to use portal creator p1 to create a portal on
references BibTex files. This means that: the input I1 of
portal p1 needs to be created from multiple BibTex files
(rqi2). Table 2 states the resulting additional requirements.
Portal p1 accesses the information for the portal creation
from a Sesame repository (c1), which must contain
references (c2), and p1 should be able to access this
information without worrying about authors being
referenced differently (c3).

Table 2. Requirements of portal creator p1

ID Description
c1 Input Iportal must be in a SESAME repository
c2 Input Iportal contains set of references
c3 Input Iportal has one unique identifiers for each author

Some details that arise within the trace are in sequence:

- Sesame can handle double identifiers for the same
instance if they are marked as being equal, this
functional property is also stated in ISESAME.

- The input for ISESAME specified in its Profile is
data, and references are a subtype of data. Note this
relation is expressed in the ontology provided for this
purpose.

- The input for ISESAME is specified in its
Grounding as rdf-stream, which is no subtype of data-
stream.

- A pre-condition of ISESAME is that its input needs
to be tagged with sameIndividualAs before it can handle
double identifiers.

- The output of is SIA specified in its Profile as
equal authors.

4.2 An example of design
As described in Section 3.1, the Agent Factory uses

the Generic Design Model as the basis for the design
process. In this example reasoning about the design process
(DPC), reasoning about requirements and their
qualifications (RQSM), and reasoning about the design
object description (DODM) are separated. Only the first
part of the design trace is given. The design starts after the
requirements and the constraints on portal creator p1 have
been communicated to the design process.

4.2.1. Step 1
DPC: The design process is started. The general

strategy to be followed is a top-down approach: to identify
a component that performs the required functionality.

RQSM: A relevant set of requirements must be
compiled from the total set of requirements. The
requirement rqi1 to create input for portal p1 is generalised
to the requirement rq3. And c1, and c3 are combined to
formulate requirements rq4 and rq5:

rq3 aggregate information in repository Rep1
rq4 Rep1 is a SESAME repository
rq5 Rep1 identifies same instances with single

identifier
This set of requirements is passed to DODM.
DODM: The first structural aspect considered is

components. Functionally a web-service is sought that can
store data in SESAME, and handle double identifiers for
the same instance if they are marked as being equal. This
functionality is covered by the web-service ISESAME. In the
DAML-S profile the service category states that it stores
data in a SESAME repository, and the repository can
handle the DAML:sameIndividualAs-tag for identifying
double instances.

4.2.2. Step 2:
DPC: Component for fulfilling requested functionality

is found. Integrate this component for data-exchange.
 RQSM: The relevant requirements on the data-exchange
is rqi2. This requirement is refined in rq6 and rq7.

rq6 Input are references
rq7 The input are BibTex files

The set of rq6 and rq7 are passed to DODM.
 DODM: This step focuses on the structure data types.

The input
and output
on both
levels of

abstraction
of the

component
ISESAME are given in figure 3. In this figure functionality is
shown with ovals for descriptions on the Profile-level, and
the operational service is displayed in rectangles. On the
conceptual level the data exchange poses no problems.
ISESAME expects as input parameter in the DAML-S
Profile data, which is a superclass of references.

At the operational level there is, however a conflict.
ISESAME expects an RDF-stream as input, specified in the
DAML-S Grounding. However, rq7 states that the input
should be BibTex files. BibTex is not of type RDF-stream.
Therefore, to be able be used as input for ISESAME, the
BibTex files should be translated into RDF. The web-

store in
Sesame

references

ISesameRDF-stream

conc.

oper.

filter
names

SIA

references

Data-
stream

translate
references

equal
authors

Bib2RDF

RDF-stream

Figure 5. Configuration with error on conceptual
data exchange

store in
Sesame

ISesame

conc.
oper.

filter
names

SIA

translate

Bib2RDF

store in
Sesame

extract from
Sesame

ISesame ESesame

Figure 6. Resulting configuration, without showing
details on exchanged data.

service BIB2RDF is retrieved and included in the
configuration. This web-service takes care of the
translation at the operational level. In Figure 4 the result of
this alteration is shown.

4.2.3. Step 3
DPC: Continue further integration of the components.
RQSM: Other requirements for checking the

composition are temporal aspects. The requirement rqi2
states that the input for the portal are gathered from
multiple BibTex files. This is included in requirement rq8.

rq8 Input consists of multiple files
 DODM: This step focuses on co-ordination patterns. For
the creation of the portal multiple BibTex-files need to be
aggregated. Therefore BIB2RDF and ISESAME need to be
activated in sequence multiple times. This step results in a
control construct (not depicted).

Further reasoning on behaviour, remaining
preconditions and effects are checked for conflicts. There is
one remaining conflict with respect to ISESAME, ISESAME
has an additional pre-condition: to handle double instances,
its input has to be tagged beforehand with the
DAML:sameIndividualAs-tag. There is one web-service,
which adds these tags for similar persons: SIA. This service
needs to be integrated within the composition. Based on the

operational in- and output, this service is activated between
the BIB2RDF and ISESAME webservice.
 However, this results in a conflict on data exchange at
the conceptual level. SameIndividualAs does not produce
references as output, but equal authors, as shown in Figure
5. This difference does not show when only considering the
XML-datatypes in the Grounding document. The solution
to this problem involves multiple steps, which are not
further elaborated. The resulting configuration is given,
without the information flow for simplicity, in Figure 6. In
this configuration, the references are translated and stored
in the Sesame repository, until all files are handled, then
the double author-names are filtered. The tags on equal
author-names and the references are then stored together in
a Sesame repository, this is the input for the portal as was
requested by the user.

As shown, reasoning on function, data and behaviour
is possible using DAML-S descriptions.

 5. Discussion and Conclusion
Reasoning about requirements and configuring a set of
components to satisfy those requirements is a novel
approach to the configuration of web services. Most other
work is based on workflow modeling and involves
prespecification of a order and combination of WSs by a
human making dynamic composition based on changing
requirements impossible. Research using reusable
components and patterns is not, however, unique to our
work. The work by [7], which is also called the Agent
Factory, is based on the notion of design patterns to assist
the design of multi-agent systems. They have developed
the PASSI methodology and an extended-UML CASE tool
to help human designers design an agent. In the
analysis/design phase, sequence diagrams are used to
model protocol descriptions and class diagrams and OCL
constraints are used to specify agent interactions and the
knowledge agents have. The various diagrams may be
compiled to generate an agent skeleton, database of
patterns, reports and design documents. The Agent Factory
allows the user to choose either the FIPA-OS or JADE
platform. While there is much overlap at a superficial level
between their work and ours, their approach aims to
support developers to design agent systems while our
approach is to automatically design agents. The use of the
AF for Web services is a further distinguishing feature.

We note the following issues still to be resolved:
• The handling of parallel processes. We have only

provided a solution which sequentially activates
WSs. DAML-S does not have a means to express
coordination of multiple services; DAML-S can
only express control patterns within one service.

• The definition of complex services. While
processes may be composed and described in the
process model using DAML-S, the top level
concept is a service and thus a set of services and
the relationships between them cannot be

described. Szyperski [15] identifies that, today,
services are almost completely self-contained, not
revealing any dependencies on other services.
This limits the reusability of these web-services in
different contexts.

As stated in the introduction, the goal of the work
reported in this paper was to review and evaluate the
assumptions upon which the AF is based. Through the
example, which we are currently implementing we have
shown that Agent Factory can be used to automatically
configure WS. We chose to test our assumptions using WS
as they have many attractive features. First, they fit in the
compositional view of our AF, they can easily be treated as
agent components. Second, because they employ standard
web protocols for interaction they are easy to integrate at
the operational level. Further, the use of a semantic
language for describing components at a conceptual level is
promising. Our key next steps are to complete the
implementation, making modifications to the process as
necessary, and to further test the approach on various
alternative scenarios.

Acknowledgements
The authors wish to thank the project Semantic Web at the
Vrije Universiteit (SW@VU), for the usage of their
developed web-services, N.J.E. Wijngaards for his work on
the Agent Factory. This work is supported by the NLnet
Foundation, http://www.nlnet.nl/.

References
[1] Brazier, F.M.T., Wijngaards, N.J.E. “Automated
Servicing of Agents” AISB Journal, Special Issue on Agent
Technology, 1:1 (2001) 5-20
[2] Brazier, F.M.T, Van Langen, P.H.G., Ruttkay, Zs.
and Treur, J. “On formal specification of design tasks” In
Proc. of the AAAI Workshop on Artificial Intelligence and
Manufacturing: State of the Art and Practice, AAAI Press,
1994, 30-39.
[3] Brazier F.M.T., Dunin-Keplicz B.M., Jennings
N.R., Treur J. “Formal specification of Multi-Agent
Systems: a real-world case” In: Lesser V (ed.):
Proceedings of the First International Conference on
Multi-Agent Systems, ICMAS’95. Cambridge MA: MIT
Press, 1995. p. 25-32.
[4] Brazier, F.M.T., Jonker, C.M., Treur, J.
“Principles of Component-Based Design of Intelligent
Agents”. Data and Knowledge Engineering 41 (2002) 1-
28.
[5] Bryson, J., Martin, D., McIlraith, S. and Stein,
L.A., Agent-Based Composite Services in DAML-S: The
Behavior-Oriented Design of an Intelligent Semantic Web
http://www.cs.bath.ac.uk/ jjb/ftp/springer-daml.pdf.
[6] Buhler, P. A. and Vidal, J. M. “Semantic Web
Services as Agent Behaviors” In B. Burg, J. Dale, T. Finin,
H. Nakashima, L. Padgham, C. Sierra, and S. Willmott,

eds., Agentcities: Challenges in Open Agent Env., 25-31.
Springer-Verlag, 2003
[7] Cossentino, M. Burrafato, P., Lombardo, S. and
Sabatucci, L. ‘Introducing Pattern Reuse in the Design of
Multi-Agent Systems”. AITA'02 w’shop at NODe02 - 8-9
Oct. 2002 - Erfurt, Germany.
[8] Gamma, E., R. Helm, R. Johnson, J. Vlissides
(1995). Design Patterns. Addison Wesley
[9] Lassila, O. “Serendipitous Interoperability”, In
Eero Hyvönen (ed.): The Semantic Web Kick-Off in
Finland - Vision, Technologies, Research, and
Applications, HIIT Publications 2002-001, University of
Helsinki, 2002
[10] McIlraith, S. and Son, T., Adapting Golog for
Composition of Semantic Web Services, Proceedings of the
Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse,
France, April, 2002.
[11] Ponnekanti, S.H. and Fox, A. “SWORD: A
Developer Toolkit for Web Service Composition” In Proc.
of 11th WWW Conf. (Web Eng. Track), Honolulu, Hawaii,
May 7-11, 2002.
[12] Sabou, M., Richards, D. and van Splunter, S. An
experience report on using DAML-S Workshop on E-
Services and the Semantic Web, Budapest, Hungary, May
2003.
[13] Splunter, S. van, Wijngaards, N.J.E., Brazier,
F.M.T., “Structuring Agents for Adaptation” In Alonso,
E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and
Multi-Agent Systems, LNAI 2636, Springer-Verlag Berlin.
2003
[14] Staab, S., Benjamins, R., Bussler, C., Gannon, D.,
Sheth, A. and van der Aalst, W., Web services: Been there,
Done that? IEEE Intelligent Systems, Trends &
Controversies, 18(1), Jan/Feb 2003
[15] Szyperski, C. Component Software - Beyond
Object-Oriented Programming – 2nd ed., Addison-Wesley
& and ACM Press.
[16] The DAML Services Coalition “DAML-S: Web
Service Description for the Semantic Web”, In Proc. of The
First Int. Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.
[17] Yang, J. and Papazoglou, M. “Web Component: A
Substrate for Web Service Reuse and Composition” In
Proc. of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE02), May,
Toronto, LNCS, Vol. 2348, p21-36, Springer, 2002.

i www.stencilgroup.com/ideas_scope_200106wsdefined.html
ii http://xml.coverpages.org/bpel4ws.html
iii www-4.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf, 2001
iv www.gotdotnet.com/teaml/xml_wsspecs/xlang-c/default.htm
v http://www.zsu.zp.ua/racing/
viSee the SW@VU project at http://www.cs.vu.nl/
~macklein/SW@VU/
vii http://sesame.aidministrator.nl

	P339:
	Numb:
	Numbx:
	C: 339
	L:
	R:

	P340:
	Numb:
	Numbx:
	C: 340
	L:
	R:

	P341:
	Numb:
	Numbx:
	C: 341
	L:
	R:

	P342:
	Numb:
	Numbx:
	C: 342
	L:
	R:

	P343:
	Numb:
	Numbx:
	C: 343
	L:
	R:

	P344:
	Numb:
	Numbx:
	C: 344
	L:
	R:

