
Computer Aided Diagnostics (CAD) in the form of neural networks (utilized for pattern recognition and classi-

fication) offer significant potential to provide an accurate and early automated diagnostic technology. This paper
considers neural network training to detect breast cancer by analyzing the fine needle aspirates (FNA) of a breast

mass. For enhanced learning, three gradient-based multi layer perceptron (MLP) training methods originated
from  optimization  theory,  namely,  steepest-descent  gradient  search,  conjugate-gradient  and  Levenberg

Marquardt are considered. In addition, two newly proposed methods, the Dynamic Momentum Factor and Dy-
namic Learning Rate are discussed. The results presented show that significant improvements in convergence

performance can be obtained through the integration of these acceleration methods whilst preserving the general-
ization capability of the networks.

INTRODUCTION

Breast Cancer is second only to lung cancer as a tu-
mor-related  cause  of  death  in  women.  More  that
180,000  new cases  are  reported  annually  in  the  US
alone. Furthermore, the American Cancer Society es-
timates that at least 25% of these deaths could be pre-
vented if all women in the appropriate age groups were
regularly screened. 

Although there exists reasonable agreement on the cri-
teria for benign/malignant diagnoses using fine needle
aspirate (FNA) and mammogram data, the application
of these criteria  are often quite subjective.  Addition-
ally,  proper  evaluation  of  FNA  and  mammogram
sensor data is a time consuming task for the physician.
Intra-and-inter-observer disagreement and/or inconsist-
encies in the FNA and mammogram interpretation fur-
ther exacerbate the problem.

Consequently, Computer Aided Diagnostics (CAD) in
the form of neural networks (utilized for pattern recog-
nition and classification) offer significant potential to
provide  an  accurate  and  early  automated  diagnostic
technology.  This  automated  technology may well  be
useful in further assisting with other problems resulting
from physical fatigue, poor mammogram image qual-
ity, inconsistent FNA discriminator numerical assign-
ments, as well as other possible sensor interpretation
problems.

Some practical results of CAD of breast cancer sensor
data using neural networks are expected to be:

• Operational  software  which  will  aid  the
physician  in  making  the  diagnosis,  quite
possibly in real time, and once formulated and
tested, they are always consistent,  not prone
to human fatigue or bias. 

• Providing diagnostic assistance for the intra-
and-inter-observability  problems  by
ultimately  minimizing  the  subjective
component of the diagnostic process 

• Providing  an  initial  detection  and/or
classification  process  in  the  absence  of  a
qualified physician 

• Providing  possible  (and  probably  currently
unknown)  relationships  between  sensor
environment  discriminators  and  a  correct
diagnosis. 

The  efficient  supervised  training  of  neural  networks
(NNs)  is  a  subject  of  considerable  ongoing research
and numerous algorithms have been proposed to this
end. The backpropagation algorithm (BPA) [1] is one
of the most common supervised training methods.  It
uses the gradient or steepest descent method to reduce
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the error function where the weights are adjusted by
the algorithm so as to make the error decreases along a
descent  direction.  In  doing  so,  the  two  parameters,
learning rate (LR) and momentum factor (MF) are used
to  control  the  size  of  weight  adjustment  along  the
descent direction and for dampening oscillations of the
iterations.  In  the  conventional  backpropagation
algorithm (BPA), these two parameters are empirically
chosen. In general, the MF should be less than unity to
stabilize the BPA. When error oscillations happen, an
MF  close  to  unity  is  needed  to  smooth  the  error
oscillations. As for the selection of the LR, it is more
arbitrary due to the fact that the error surface usually
consists  of  many flat  and steep regions and behaves
quite  differently  from  application  to  application.  A
large LR is helpful to acceleration of the learning when
the weight search crosses a  plateau.  Nevertheless,  in
the  meanwhile,  it  increases  the  possibility  that  the
weight search jumps over steep regions and moves into
undesirable regions. When this happens, failure of the
backpropagation  learning  may be  caused.  Therefore,
an  efficient  BPA  should  be  capable  of  dynamically
varying its LR and MF in accordance with the regions
the  weight  adjustment  lies  in.  Research  into  the
dynamic  change  of  the  LR and  MF  parameters  has
been  carried  out  extensively  by  numerous  authors
including Becker & leCun [2], Battiti [3] and Yu et al.
[4].

In this contribution, the performance of the Dynamic
Momentum Factor (DMF) [5] and Dynamic Learning
Rate  (DLR)  [6,  7]  algorithms  are  evaluated  and
compared against the conventional BP and three other
gradient  based  optimization  methods  -  the  steepest
descent, conjugate gradient and Levenberg Marquardt
methods  [8]  on  the  breast  cancer  detection  problem
using  continuous-valued  training  data.  This  is
accomplished by training a 30-6-4-2 MLP consisting
of 30 input nodes, 6 first hidden layer nodes, 4 second
hidden  layer  nodes  and 2  output  nodes.  After  being
trained,  the  networks  are  tested  on  generalization
capabilities  on  a  testing  set  consisting  of  images
outside  the  training  set.  The  capabilities  of  the
networks should at least be similar to the conventional
BP  trained  network  although  lesser  function
evaluations are necessary to converge.

DESCRIPTION OF THE DATA SET

The data set used was obtained from the University of
Wisconsin Breast Cancer problem [9].  Features were
computed  from  a  digitized  image  of  a  fine  needle
aspirate  (FNA)  of  a  breast  mass.  They  describe
characteristics of the cell nuclei present in the image.
Ten real-valued features were computed for each cell
nucleus: (a) radius (b) texture (c) perimeter (d) area (e)

smoothness (f) compactness (g) concavity (h) concave
points (i) symmetry (j) fractal dimension. 

The mean, standard error, and “worst” or largest (mean
of  the  three  largest  values)  of  these  features  were
computed  for  each  image,  resulting  in  30  features,
from which one attribute, malignant or benign, must be
detected.

TRAINING METHODS

In Evans [10], the reasons for the slow convergence of
the  backpropagation  have  been  discussed.  To  date,
many techniques have been proposed to deal with the
inherent  problems  of  backpropagation.  These
techniques  can  be  divided  roughly  into  two  main
categories; those referred to as global techniques that
use global knowledge of the state of the entire network,
such  as  the  direction  of  the  overall  weight  update
vector. Most of these techniques have their roots in the
well-explained  domain  of  optimization  theory.  The
simplest is a first-order method that uses the steepest-
descent  (SD)  direction  [1].  An  alternative  is  the
conjugate gradient (CG) method, which modifies the
SD direction by conjugating it with the previously used
direction  [11].  Finally,  the  Levenberg  –  Marquardt
(LM)  method  is  a  second  –  order  method  that
approximates  the  second  derivative  using  the  first-
order gradient [12].

In  contrast,  local  adaptation  strategies  are  based  on
weight specific information only, such as the temporal
behavior of the partial derivative of the current weight.
Two local adaptive learning rules are presented here,
namely,  the  Dynamic  Momentum Factor  (DMF)  [5]
and Dynamic Learning Rate (DLR) [6].

Steepest Descent Method

The  first  method  proposed  by  Rumelhart  and
McClelland  [1]  for  training NNs is  the  SD method.
The  value  of  the  weight  update  is  calculated  as
follows:
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where  n is  the  iteration  count,  η  is  the  step  width
(learrning rate),  µ  is the momentum factor, and  p(n)
is the step direction taken in the nth iteration step.

Conjugate Gradient Method



In optimization theory, the CG method has been known
since Fletcher and Reeves [13].  Leonard and Kramer
[11]  introduced  the  original  Fletcher  –  Reeves
algorithm in the field of NN research. The method is,
in  some  way,  an  extension  to  SD,  introducing  a
formula for  determining the  momentum factor  α  in
Eq. (2):
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Levenberg Marquardt Method

The third commonly used minimization method is LM.
It is directly applicable only when the error measure is
a sum of squared errors:
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where I is the identity matrix of dimension v and µ is a
small scalar; this increment makes the matrix  H to be
invertible. The calculation of the weight update is then
based on Eq. (1) and Eq. (2), using a square matrix R,
instead  of  the  scalar  η to  premultiply  the  search  –
direction vector p with:

1−= HR (6)
and setting the momentum α in Eq. (2) to zero.

Dynamic Momentum

A  momentum  factor  update  rule,  the  basis  of  the
Dynamic Momentum Factor (DMF) algorithm, which
dynamically adapts the momentum factor with respect
to  the  iteration  number  is  given  below.  A complete
analysis regarding momentum factor and a derivation
of this rule has been presented in Evans and Zainuddin
[5].

Momentum Constant Update Rule 
Let ∆αji(n,0) denote the positive adjustment applied at
iteration n to the momentum constant at iteration 0, αji

(0,0). We define ∆αji(n,0) as
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The constraint  )0,0(10 ji
b
a αγ −≤≤  is imposed to

ensure that  0<αji(n)≤1 as  the momentum constant  α
has to be in the range 0≤|α|≤1 to ensure convergence of
the learning algorithm. The initial value of α,  αji(0,0)

can be  chosen to  be  any small  value  in  the interval
[0,1].  Note that without loss of generality, we define
∆αji(n,0)  as  a  positive  adjustment.  If  α is  negative,
then we will consider a negative adjustment but it  is
unlikely that a negative α would be used in practice.

The iteration number domain is partitioned into n
intervals  and  a  suitable  value  for  the  momentum
constant is assigned for each respective interval. As n
gets  large,  the  momentum  constant  is  incremented
gradually making sure that αji(n) is less that or equals
to 1. This method only requires n comparisons, where
n is  the  number  of  iterations  and  no  storage
requirement is demanded at all. 

Dynamic Adaptation of the Learning Rate

In Evans et al [10], we see that the convergence rate is
crucially  dependent  on  the  optimal  choice  of  the
learning  rate  parameter.  It  is  necessary  to  find  a
method that allows the parameters to be adjusted in the
course of the learning procedure.
Presently,  there  exists  many acceleration  methods to
overcome the  slow convergence  problem.  There  are
methods that exploit the information contained in the
second derivative of the cost function while others do
not use higher-order derivatives [14, 15].

Below we   present   the  learning   rate  update  rule,
which  forms  the basis  of the  Dynamic Learning Rate
(DLR)  method  which   dynamically   adapts  the
learning  rate   parameter   with   respect   to   the
magnitude of the partial derivative of the error surface
with respect to the current weight, wji(n), ∂1(n)/∂wji(n).
A derivation of the rule can be found in Zainuddin and
Evans [6].

Learning Rate Update Rule 
Let ∆ηji(n) denote the adjustment applied at iteration n
to the learning rate parameter at iteration 0, ηji(0). We
define ∆ηji(n) as 
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In  this  learning  rate  adaptation  method,  the  partial
derivative domain is partitioned into  n intervals (not
necessarily of equal size) and a suitable value for the
learning rate parameter is assigned for each respective
interval.
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learning  rate  for  each  interval  are  assigned  at  the
beginning of the learning procedure and they are kept
fixed for the whole training process. The learning rate
for each connection weight is adapted by determining
which interval the gradient belongs to. 

SIMULATIONS  ON  THE  BREAST  CANCER
DETECTION PROBLEM

All the data set inputs have been scaled to the range –1
to  1  for  the  experiment.  A  30-6-4-2  multi  layer
perceptron  was  used  where  the  output  nodes
correspond to the 2 classification classes. The training
set  consists of  100  vector  pairs while the testing set
consists of 50 vector pairs. We have chosen the batch
mode  weight  updating  because  results  by  other
researchers  [16],  [17]  suggest  that  in  tasks  where
generalization is important, the pattern mode should be
avoided,  despite  their  faster  training  times.  The
weights and threshold values were initialized to values
drawn at random with a uniform distribution between –
1 and 1. The learning process was terminated when the
sum of the square of the error reached 1*10-3. 

The  value  of  the  learning  rate  was  η =  2  and  the
momentum factor was chosen to be α = 0.9 in the first
simulation  (BP  batch)  while  the  DMF  method  was
used  for  the  second simulation.  The  partition of  the
iteration  number  domain  and  the  α values  for  each
interval is shown is Table 1. For the DLR method, the
partition of the gradient domain and their respective η
values chosen for each interval are shown in Table 2.
Subsequently,  the  DLR,  CG,  LM  and  SD  methods
were  employed.  Table  3  shows  the  results  of  the
simulations discussed above, which are the average of
10 trials. It can be observed that the DMF and DLR
methods  improved  the  convergence  profoundly.  A
speedup of 97.08 % was obtained for the DMF method
while a speedup of up to 97.27 % was obtained for the
DLR method. The SD method gave 6 instances of no
convergence.  Although  the  CG  method  is  able  to
provide  a  good  convergence  rate  (99.19  %),  it
nevetheless,  requires  much  more  complexity  and
computation

TABLE 1. The chosen values of the momentum
factor α (n) for the breast cancer detection problem

using the Momentum Factor Update Rule.

Iteration number (n) Value of α (n)
1≤n<100 0.5
100≤n<200 0.6
200≤n<300 0.7
300≤n<400 0.8
400≤n<500 0.9
500≤n 0.95

TABLE 2. The chosen values of η for the
breast cancer detection problem 

using the Learning Rate Update Rule. 

Gradient |∂ξ/∂w| η
10-2≤δ 5
5x10-3≤δ<10-2 10
10-3≤δ<5x10-3 15
5x10-4≤δ<10-3 20
10-4≤δ<5x10-4 30
10-5≤δ<10-4 40
10-6≤δ<10-5 80
δ<10-6 160

TABLE 3:The simulation results for the classification
of iris plant using Batch Mode BP, DMF, DLR

methods, Conjugate Gradient ,Steepest Descent and
Levenberg – Marquardt methods.

per iteration than the other methods. The LM gave the
best  performance  (99.90%).  However,  it  involves  a
large  number  of  computations  and  demands  a  huge
storage requirement since it must store the approximate
Hessian matrix. As for the DLR method, it was found
that  the  η values  change  considerably  during  the
learning  process,  providing  the  best  progress  in  the
reduction of the error function.

GENERALIZATION  CAPABILITY  OF  THE
MLP

Generalization is the ability of the network to respond
to inputs it has not seen before and a network is said to
generalize  well  when  the  output  of  the  network  is
correct for input patterns that are never used in training
the  network.  After  being trained  with the batch  BP,
DMF,  DLR, CG,  LM and SD methods  respectively,
the  generalization  capability  of  the  MLPs  on  new
vector pairs was tested. 



The testing set for the breast cancer detection problem
consists  of  50 vector  pairs.  It  should be  emphasized
here that these vector pairs were never used in training
the network.

TABLE 4. Recognition rates of input patterns 
in the testing set.

Algorithm Recognition Rate (%)
Batch BP 96
Dynamic MF 96
Dynamic LR 96
Conjugate Gradient 96
Levenberg-Marquardt 96
Steepest Descent 96

Table  4  shows the recognition rates of the MLP for
input patterns in the testing sets. As can be seen, the
DMF  and  DLR  methods  had  similar  generalization
capability with the batch BP although lesser function
evaluations were necessary to converge. It is important
to  note  here  that  both  the  DMF and  DLR methods
demonstrated similar generalization capabilities when
compared to the CG ,LM and SD methods.

The  MLPs  identified  and  categorized  perfectly  the
input  patterns  on  which  they  were  trained.  This  is
expected since the sum of squared errors for the Breast
Cancer Detection problem, valued at 1*10 -3 is a very
small number. The recognition rate is as high as 96 %
and similar  errors  occurred  for  the  networks  trained
with  the  5  different  algorithms  where  these  input
patterns do not have many features in common with the
input patterns used in the training set. 

CONCLUSION

The  acceleration  methods  namely,  Dynamic  Mo-
mentum Factor  (DMF)  and  Dynamic  Learning  Rate
(DLR), have proven to be very effective and superior
in  terms  of  convergence  when tested  and  compared
with  the  Batch  BP  on  the  Breast  Cancer  Detection
problem. A speed up of up to 97.08 % and 97.27 %
was obtained for the DMF and DLR methods respect-
ively.

The  Dynamic  Momentum Factor  method  assigns  an
optimal value to the momentum factor for each indi-

vidual  weight  at  each  iteration  and  this  greatly  en-
hanced the convergence rate.  The main advantage of
the DMF method is  that  the momentum factor  is  al-
lowed to vary with time in the course of the learning.
This in effect, stabilizes the network at the beginning
of  the  learning  process  and  accelerates  the  learning
when the network is stable.

As  for  the  Dynamic  Learning  Rate  method,  it  was
found that the  η  values changed considerably during
the learning process, providing the best progress in the
reduction of the error function. The conjugate gradient
method has a  much faster  convergence rate  than the
other methods since it uses second order information to
calculate the new direction, hence it entails more com-
plexity and computation. The Levenberg –  Marquardt
method gave the  best  performance  but  it  is  suitable
only  for  moderate  numbers  of  network  parameters
since it involves a large number of computations and
requires a huge storage requirement.

In  terms of  generalization  capability,  both  the  DMF
and DLR showed similar generalization capability to
the batch BP although lesser function evaluations are
necessary to converge. In other words, the capability of
the  networks to  recognize  input  patterns  outside  the
training set is not impaired by the employment of these
acceleration  methods.  Hence,  these  algorithms  are
promising in practical  applications where generaliza-
tion is important.
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