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Abstract
In this paper we concentrate on the field of physiological
signal processing and demonstrate how non-linear
processing techniques, in particular wavelet transforms,
can be applied to physiological signals. We have chosen
also to focus upon two commonly used and studied
physiological signals; namely the Electrocardiogram and
Electroencephalogram.  These physiological signals are
commonly recorded in continuous monitoring conditions
and require relatively high sampling rates to accurately
record their high frequency components. This results in
large volumes of data being acquired which presents
problems for storage, retrieval and transmission of the
electronic recordings.

1 INTRODUCTION

Patient monitoring via the internet is quickly becoming a 
reality with new technologies being created to allow 
patients to be continuously monitored from home [1].  This
ease of access and low cost of the technology also implies
that large numbers of patients will be able to be monitored
by a single hospital system which would have to cope with
enormous amounts of data being continuously collected and
stored.  Therefore a vital requirement of any such patient
monitoring system would be the efficient storage of this
data.  This study investigates the compression, recognition
and simulation of two of the most commonly used 
physiological signals, Electrocardiogram (ECG) and
Electroencephalogram (EEG).  ECG and EEG are recorded
over extended periods of time at high sampling frequencies
therefore requiring large databases for storage. A suitable
compression algorithm will minimise the storage while not
compromising the characteristics of the signals and the 
reduction in file size also means that speed retrieval and
transmission of the recordings will be increased.
The compression of both ECG and EEG signals has been a 
topic of research for the past 20 years. In recent years new
life has been given to the topic by the application of
wavelet transforms to the problem.  Wavelet processing of
ECG and EEG signals has proven quite flexible and along
with compression has been adapted to perform not only
compression of the signals but feature detection  [2] and 
classification [3].  Previously the ECG/EEG compression
problem had been approached using classical direct data
compression methods such as linear prediction and
interpolation, these gave way to direct ECG and EEG data

compression algorithms such as FAN, AZTEC, Turning 
Point, and peak picking which were variants on classical
data compression modified specifically for the ECG signal
[9].
Large amounts of data can also present problems to analyse
and classify. The signals are frequently analysed via visual
inspection by a cardiologist or electroencephalographer.
This imposes considerable time constraints upon reviewers
and how many patients they can assess within a given
timeframe. Therefore automated recognition of the
waveforms would be valuable in the scoring procedure.  To
do this an understanding of the signals must first be
achieved.
A subset of physiological signals from the human body can
be measured via surface electrodes.  For example the ECG 
and EEG are indirect measurements of the electrical activity 
produced by the heart and brain respectively.

1.1 Electrocardiogram - ECG 
The Electrocardiogram is a recording of the electrical 
activity in the heart.  It is typically represented by 12 
perspectives called leads that are recorded and derived from 
10 electrodes placed around the torso and limbs of the
patient.  The ECG is comprised of several characteristic 
waveforms which represent the various stages of
conduction of electrical activity through the myocardial
tissue.  This gives rise to a series of 6 potentials labelled
with the letters P through U. Atrial depolarization is
represented by the P wave, Ventricular depolarization by
the QRS complex and repolarization of the ventricles by the
T wave, the exact origin of the U wave is unknown.  The
ECG data used in this study was in MIT-BIH format,
available from Physionet, sampled at 360Hz and also 
provided by the Griffith University School of Applied
Psychology EEGLAB, which is sampled at 500Hz with a
16bit precision.

1.2 Electroencephalogram - EEG
The Electroencephalogram (EEG) measures the electrical
potential between different locations on the scalp [4] or
between cortical locations and a neutral reference.  The
electrical potential observed on the scalp is generated by
population of neurons, and transmitted through the
intervening tissue.  As the signal is not taken directly from 
the brain, and brain activity itself is a low-power signal, the 
voltage measured at the various locations on the scalp is
typically in the range of 1-300 V [5].

cfookes
Wavelet Based Techniques for the Processing of 
Physiological Signals



1.3 Wavelet Transform
In this study the wavelet transform is used to compress and
perform recognition on the physiological data.  The
Wavelet Transform (WT) is a very powerful time-
frequency analysis method, because it provides excellent
control of time frequency trade-off compared to traditional
techniques such as the Short Time Fourier Transform
(STFT) [6], [7], [8].  The Fourier Transform gives a
representation of all the frequencies present in a signal, for 
the entire duration of the signal being analysed however,
the temporal resolution is fixed by the selected frequency
resolution.  The Wavelet Transform is similar to the Fourier
Transform in that it gives a representation of all the
frequencies present in a signal; however it also shows at
what times in the signal the frequency was present [6] and
indicates that this varies across the frequency spectrum.  A 
wavelet is defined in time as a small, narrow band, multi
frequency waveform, the wavelet is said to be supported for
the interval in which the majority of the energy of the 
wavelet is contained. If the entire wavelet energy is 
contained within that interval the wavelet is said to be
compactly supported, this property also allows for the
perfect reconstruction of a decomposed signal, which will
be discussed in more detail later.

1.4 Mother Wavelet 
The Mother Wavelet is the initial characteristic wavelet
type and shape from which the wavelet family or basis set
is derived. The set of wavelets used to represent the 
original signals (also known as basis functions), “ga,b(t)” is 
defined by Eq. 1.

a
bt

g
a

tg ba

1
)(,

Eq. 1 Derivation of basis functions from mother 
wavelet

The scaling factor “a” dilates or compresses each basis
function, hence focusing on a particular bandwidth with a
centre frequency related to the scaling factor. The
translation factor “b” shifts each function in time. The 
power of the mother wavelet is maintained throughout the
basis set by the normalization factor; “1/ a ”.  The basis 
set is then used to perform wavelet transformation, as can
be seen in Eq. 2 and is shown in figure 3 of [6].
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Eq. 2 Continuous Wavelet Transform of E(t) 

In Eq. 2 “ca,b” represents the continuous wavelet
coefficients and “E(t)” is the temporal signal being
transformed.  The choice of Mother Wavelet for the
transformation of the physiological signals is based upon
the characteristic shape of the signals.
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Eq. 3 Reconstruction of Signal E(t) 

The choice of mother wavelet can have dramatic effects on
the results achieved as will be shown later for the case of
the processing of the EEG.

1.5 Discrete Wavelet Transform DWT
The Discrete Wavelet Transform (DWT) is similar to CWT
in that it generates coefficients based on the correlation
between the wavelet of certain scales and the original
signal. However, DWT uses orthogonal wavelets, such that
a signal can be represented by a number of wavelet
coefficients generated by distinct scales [6], respecting the 
number of degrees of freedom in the sampled signal.  The
mother wavelet is used as the original scale of the wavelet,
with each level of decomposition representing a doubling of 
the scale.  DWT also requires a companion function called 
a scaling function, which is "a combination of mother
wavelets from all DWT scales larger than the scale of the
first detail function" (Samar et al., 1999, page 23) [6].

2 REVIEW

To ensure that this study was not simply repeating work
previously completed by other studies, an extensive review
of applicable techniques for compression, recognition and
simulation was undertaken.

2.1 Compression
In general ECG compression techniques may be classified 
as one of three types [9]; significant feature extraction,
linear predictive coding or orthogonal transform.  It is in the
latter of these three that the wavelet based transform
methods fall.  Typical results for linear prediction and
significant feature extraction methods range between
Compression ratios of 2.0/2.5 (Turning Point/DPCM Linear
Prediction) – 10 (AZTEC) with NRMSE values of 5.3%
and 28.0% respectively.  Several Orthogonal transform
based ECG compression algorithms are compared in Table
1.  The methods discussed in [10] & [11] are for all
intensive purposes the same with the only difference being
the number of bits allocated to the ECG recording.

The algorithms discussed in [12] make use of standard
image processing methods and transforms in this case a 2
dimensional discrete cosine transform.  The method from
[13] is our won which makes use of a biorthogonal wavelet
transform, zero-run length coding and recursive splitting
Huffman Coding [20].  The advantage of the wavelet
transform over the discrete cosine transform is its superior
resolution at lower frequency levels which enables further
dimensionality reduction but eliminating extraneous low 
frequency components which might not be resolved by the
DCT.  The advantageous properties of recursive Huffman
coding over standard Huffman coding are discussed later.



EEG compression has been performed in many instances,
owever primarily for ambulatory monitoring, not long-
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term storage of sleep signals.  Several different techniques 
have been used to compress EEG data, with varying levels 
of compression ratio (CR) as can be seen in Table 2.

Table 1 Orthogonal Transform based compression 
methods (review section) 

pression CR Sampling 
Frequency 

Precision NRM

Wavelet Base
Transform [

d
10] 

14 500 8 4.85

Wavelet Based 
Transform [11] 

16.8 500 7 5.25

Cut and Align 
Beats approach
[12] 

12 360 12 7.03

As above 24 “” “” 18.14
2D Transforms 12 “” “” 6.16 
[12] 
As above 24 “” “” 10.08
As above 48 “” “” 15.78 
Biorthogonal

Based 
ith

21.42 500 
Wavelet 
Transform w
recursive 
Huffman coding 
[13]

8 2.94

As Above for 14 
MIT-BIH files. 

24.56 360 12 3.56 

T hniques allow perfect reconstruction of the 
ignal after compression, whereas lossy techniques will 
he lossless tec

s
give better compression at the expense of the signal 
integrity.  It is apparent that lossless encoding will give 
lower compression ratios than lossy encoding, as more 
information is retained, however generally, the main limit 
for the lossy compression of a signal is the amount of error 
that can be tolerated. 

Table 2: Compression techniques applied to EEG data 

Technique CR
Lo 8ssless Commercial Arithmetic Coders 2.5 - 3.

DWT [14] 8
Iterative Function System w GA [15] 6.8-13.7

Lossy 

on [16] -3.3AR predicti 2.3

The Discrete  (DWT) was imp d 
 EEG compression, as this study required the signal to 

on
Automated analysis of physiological signals is also of great 
necessity in a continuous patient monitoring environment.   

CG occurs with relation to the QRS 

ied 
 detection problem 

els, Matched Filters 

Onc he
beat clas
and mea

 Wavelet Transform lemente
for
have only the same sleep stage classification after 
compression as before, not a set limit of error.  This meant 
that compression could be improved by removing the 
frequencies that are not needed for sleep stage classification 
(generally frequencies above 32Hz), which is simple using 
DWT denoising. 

2.2 Recogniti

Most analysis of the E
complex as it is the most characteristic and easily 
identifiable wave in the ECG.  QRS complex detectors can 
be described as either syntactic or non-syntactic.  Syntactic 
detectors require an analysis of the entire data record from 
which an average beat template is derived.  These methods 
can be slow and are susceptible to noise and changes in beat 
morphology.  Non-syntactic methods do not generate 
average beat models but rely on heuristic criteria to identify 
the QRS; they also employ some form of preprocessing 
transformation or paradigm.  Approaches to QRS by 
software algorithms were well summarized in [17] which 
compares the preprocessing stages of many QRS detection 
algorithms.  The categories of algorithms include: 

Signal derivative and Digital Filter approaches
Wavelet Based Algorithms
Neural Network Approaches  
Additional Approaches; which covers many var
approaches to the QRS
including Hidden Markov mod
and Genetic Algorithms. 

e t  QRS complexes have been identified then specific 
sification can be performed.  The variety, number 
ns of classifying cardiac arrhythmia would require 

a much more in depth discussion then can be afforded here. 

Table 3 Comparison of QRS detection methods 

System False + False - False Detection 
Wavelet 0.056% <0.001% 0.152% 
Based 
[18] 
Syntactic 
Template
[19] 

0% 0.577% 0.577% 

D  the sition within a  ECG 
re n be of great diagnostic benefit by providing an 
c e measure of the heart rate and providing a beat to 

Compression 
e tinuous monitoring means that a lot of 

data is collected quite quickly, therefore the compression 
it gh to work within a real-time 

etection of
cording ca
curat

 po each beat n

a
beat comparison.  Accurate detection is complicated by 
anomalous changes in the morphology of the ECG and 
changes in heart rate.  These two factors are particularly 
difficult for the syntactic detection methods to deal with. 

3 SOLUTION

3.1
Th nature of con

algor hm has to be quick enou
system (compresses data faster than it is collected).  From 
Figure 1 it can be seen that the majority of the ECG’s 
energy is concentrated in the lower frequency levels 
therefore faithful reproduction of these levels is of upmost 
importance.  However it should not be forgotten that 
diagnostically important information is still contained in the 
higher frequency component such that they can not be 
discounted altogether.  The wavelet transform provides an 
excellent platform to address these concerns.  The 



compression method discussed in [13] is our own and
works as follows:
1. The signal is blocked into smaller segments.
2. The blocks are decomposed using a biorthogonal

wavelet transform.
zed and a

4. s are zero-run length encoded.

] is 

3. The individual transform levels are normali
hard threshold is applied to them.
The transform level

5. Each level is assigned a specific quantization precision 
and is quantized.

6. Finally a recursive splitting Huffman Coder [20
applied to the quantized coefficients.

Figure 1 Power Spectral Density of an ECG 

The EEG Form
available z. For
leep stage classification (using only EEG), the information

ut
creasing the error of the compressed signal with respect to 

proach to automated ECG analysis is to
and locating each beat which would
t to beat analysis.  The easiest

ion
velets were used for both ECG and EEG

pression, based on denoising, an intrinsically
 t amount of compression gained is

data processed was in European Data
from Physionet, and was sampled at 100H

at,

s
needed is generally in the frequency range of 0.5-32Hz, so
the data was filtered using finite impulse response
techniques, to fit this range.  If Wavelet Packet Transform
had been used instead of DWT, filtering would have been
performed as part of denoising.  Sleep stage classification is
often performed by analysing epochs of 30 seconds; the
EEG data was therefore compressed in 30 second periods or
windows, to allow precise extraction of the data of interest.
After bandpass filtering and windowing the signal was 
transformed to generate the wavelet coefficients. The
power of the discrete wavelet transform in compression is
its characteristic of breaking up the signal into coefficients
resembling discrete frequency bands. Frequencies that are
characteristic of unwanted information can therefore be
easily removed.  This is called denoising, and uses
thresholding to actually remove the coefficients.
Thresholding was performed on ECG and EEG by zeroing
out the coefficients in the unwanted frequency band less
than a certain magnitude, and then performing Zero Run-
Length Encoding (ZRLE) to reduce the amount of data.

Huffman encoding was performed on top of this reduced
data set to improve the compression ratio again, witho
in
the recorded EEG signal.  The entropic coding scheme
employed was a Huffman coder using recursive splitting,

developed by K. Skretting [20].  The Huffman coder made
use of recursive splitting of the wavelet coefficients so that
greater coding gain, and hence bit rate, could be achieved.
This is due to the fact that the wavelet coefficients aren’t
independent of each other, they infact exhibit some
correlation, and therefore can be split such that each new
sequence of coefficients has statistically different
information. This allows different Huffman coding schemes
to be applied to each sequence which means that code
symbol length is minimized.  For further explanation it is
recommended that the reader refer to the paper by
Skretting, et al. 

3.2 Recognition
The simplest ap
begin by identifying
then allow for bea
characteristic to identify in each beat is the QRS complex,
by locating the position of each QRS complex the R-R 
interval can also be calculated which means that we can 
assess basic heart rate.  The next step is then to examine the 
associated waveforms of every beat.  The relatively high
frequency and energy content of the QRS complex means
that it will be clearly visible in the first few levels of a
DWT, by using a low order DWT we can highlight each
QRS complex and correlate the information from each level 
to produce a robust means of locating the QRS.  This is 
achieved by applying a frame square average to each level
and then searching for the peaks which will correspond to
the high energy QRS complexes. In addition to this a set of
decision rules is used to improve the robustness of the
detector to interferences such as movement artefact.  These
heuristics can be used once each beat is detected and can
also improve the accuracy of the QRS detection.  Typical
rules include defining a timeframe in which only one QRS
complex should occur.  This timeframe can be adaptable to
compensate for changes in heartrate.  Other characteristics
can then be searched for within the defined timeframe,
these can include the P wave and T wave and various
segments of the ECG.

4 RESULTS

4.1 Compress
As wa
com and are 
lossy echnique, the
determined by how much information is lost – that is, less 
data stored will give better compression. Due to this, the
results are shown as compression vs. error, although the
best compression is likely to be irrelevant due to a loss in
signal characteristics of interest.  Two parameters were 
used to evaluate the level of compression of the signal, and
the error caused by compression, Compression Ratio (CR)
and Normalised Root Mean Square Error (NRMSE)
respectively.



4.1.1 Compression Ratio
The Compression ratio is defined as the ratio between the 

mpressed file size.  A higher

ormalized Root Mean Squared Error (NRMSE) indicates
ro f deviation

original file size and the co
compression ratio indicates better compression.

4.1.2 Normalized Root Mean Squared Error
N
the er r in the final signal as a percentage o
from the original signal, as can be seen in Eq 4.  The 
NRMSE is the numerical evaluation of the error of the
signal and is used in this paper to find the maximum
compression ratio possible without loss of vital information
from the signal. This ranges between 0% and 100%.
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Eq. 4 Normalized Root Means Squared Error

4.2 Experim
res  algorithms and comparisons
em ransform based compression

ental results 
The ults of our compression
of th  with other orthogonal t
algorithms are shown below.  In Figure 2 the effect of the 
order used in the DWT on the compression ratio achieved
and the NRMSE suffered is shown, from these results the
effect of changing the global threshold level was
determined using standard 9th order DWT decomposition.
Figure 3 shows the NRMSE and Compression Ratio
achieved using our Wavelet Based compression algorithm
and its performance as the threshold level of the wavelet
transform was varied between 0.2 and 10% of each
transform level’s dynamic energy range, the hard
thresholding method was used.

Figure 2 Compression Ratio and NRMSE vs. level of
DWT decomposition for ECG data.

When wavelet based compression was applied to the EEG
signals, it could be seen that again the error intrinsic in the 

signal was the limit for the compression ratio that could be
achieved. All the results presented for EEG compression
use wavelet techniques, and Huffman encoding.  The
wavelet used generated significantly different levels of
error, with wavelets such as Biorthogonal 5.5 and Symlet
10 giving the best CR/NRMSE ratio, as can be seen in
Table 4 below, while other wavelets such as Haar gave a 
much lower CR/NRMSE.  It can be observed from Figure 4
that the wavelet chosen often has little effect on the 
NRMSE of the generated file, but can increase the CR 
substantially (each point refers to a different mother
wavelet used in the algorithm).  There are however several
exceptions to this rule, with the NRMSE for most 1st order
models of wavelets above 10%.
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Figure 3 Compression Ratio vs NRMSE for ECG using 
Biorthogonal 2.8 with varying thresholds.

Wavelet
Used

CR
NRMSE

(%)
CR / 

NRMSE
Wavelet Used 

Biorthogonal
5.5

7.9 4.9 1.7
Biorthogonal

5.5
Symlet 10 7.8 4.7 1.6 Symlet 10

Daubechies
10

7.8 4.7
Daubechies

1.6
10

Coiflet 5 7.5 4.7 1.6 Coiflet 5
Discrete
Meyer

6.7 4.6 1.5
Discrete
Meyer

Table 4: Effect of Mother Wavelet used on
Compression Ratio and NRMSE for EEG compression
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The hip een error the si
com that can be d be see igh
comp ratios can be ac eved easily by in
level of nd
app let
coefficients as n-bit integers instead of floating point
values, on top of the wavelet techniques.  These techniques
will however increase the error substantially.  Lossless
techniques such as Huffman encoding or arithmetic
encoding may also be applied, and may increase the
compression with no increase in error.  Similar studies have
achieved compression ratios and errors as shown in Table 5.
It should be noted that this table is a composite of ECG and
EEG parameters, and that the amount of compression
possible on both of these is dependent primarily on the
error.  Because of this the results of all the techniques are
presented for a similar level of error where available, as
well as the maximum CR and error reported by those 
studies.

Technique
/ lowest

x.
CR

NRMSE
for Max. 

relations betw the of gnal and the 
pression

ression
 achieve

hi
can n in. H

creasing the
thresholding (retaining less information), a

lying additional techniques, such as storing the  wave

ECG CR with Ma

EEG NRMSE reported CR
Entropic Coding 
(lossless)

ECG 2.6 2.6 2.6

Biorthogonal
DWT with
Recursive
Huffman coding 
[13]

ECG 12.42 
(NRMSE
= 0.93) 

41.38 13.49

2D Transforms 
[12]

ECG 12 
(NRMSE

=6.16)

481 15.78

Table 5: Comparison of this study to compression
results for similar studies

4.3 Recognition
As mentioned previously, the major constraint for EEG 
compression was for the compressed data to receive the
same classification as the original data. A major reason for
this is the development of an automated sleep stage 
lassificc

E
ation program that will ultimately be able to score

well a curr l
scoring following Reschtaffen and Kales criteria.

E n a sm r rang error t is
s e to the wider range of anomalies that can be
id n tom RS on
ro eme lly.  The routine
u T and s veraging over several
tr o improve the accuracy of the detector.
T  on a select of M IH
recordi d
however a small percentage positives still occurred.

EG data as s, or more accurate than, ent manua

CG compressio
uitable du

has alle e of tha

entified, howeve
utine has been impl

tilizes the DW
ansform layers t

r curre tl u
nted successfu
ignal a

y an a ated Q detecti

esting of this
ngs showe

system
 a 100% positive detection accuracy

ion IT-B

of false

1 A compression ratio of 96 was also reported in [12]
however testing results were not complete.

Figure 5 QRS detection via DWT for MIT-BIH 108

5 DISCUSSION

5.1 Compression
The results for the compression investigated in this study
indicate a higher level of compression than achieved in
similar studies.  This study has improved on results from
other studies using the wavelet transform by implementing
entropic coding techniques on top of the denoised wavelet
coefficients.
5.1.1 ECG
As shown in the review section the Orthogonal transform
approaches to ECG compression performed significantly
better than the classical and direct methods.  The
comparison of orthogonal transform methods also showed 
that the Wavelet transform offered an advantage over the
discrete cosine transform due to its superior low frequency
resolution properties. The use of Huffman Coding with
recursive splitting improved compression ratio and bitrate
over the standard Huffman coders used in [10][11].
5.1.2
The m hat

y has identified is the effect of using different
th t is apparent from Figure 4 that the

mother wavelet chosen can effect the level of compression
he r present significantly - two different

ets used for the EEG component of this

is its low incidence of false positive detection.  However

EEG
ain feature of wavelet-based EEG compression t

this stud
mo er wavelets. I

and t amount of erro
wave ts can give differele nt amounts of compression for the
same error.  Additionally, the wavelet suitable for a
particular application will depend on the amount of
computational power available. For instance the higher
order symlets are not suitable for real-time due to their
complexity requiring over 30 times more time than the
average. The wavel
study ere thw e pre-existing wavelets available in the
Wavelet toolbox for MATLAB.

5.2 Recognition
Wavelet based recognitions techniques offer improved
performance over syntactic methods in their robustness
against noise and morphological changes in the QRS.  The
advantage that the syntactic method developed in [19] has



with a thorough set of heuristics the Wavelet transform 
approach can be improved.   

6 CONCLUSIONS

ECG and EEG compression are implemented in this study 
for the storage of data recorded by an automated sleep 
monitoring device that has been developed, and will allow 
long term storage of the ECG and EEG data generated by 
these techniques.  As ECG and EEG have the highest 
sampling frequencies, the compression of this data is most 
crucial.  However, due to the similarities between 
implementation for ECG and EEG, it is believed these 
techniques can be modified slightly for use with other 
physiological signals recorded such as EMG and EOG.  

This study has also shown that it is likely that Wavelet 
based EEG compression is not as powerful as ECG 

re s not unexpected as EEG is such a 
tic parison to the ECG which can be 

the NRMSE may not be as 
suitable in determining the effective error present as a 

fe er's opinion.  For instance, if the 

 to 

comp ssion.  This i
chao  signal in com
generally characterised by an appropriately shaped mother 
wavelet such as the biorthogonal wavelets.  This 
characterisation means that the original signal can be 
efficienctly represented in terms of time-frequency 
coefficients with minimal residual detail coefficients.    As 
EEG for sleep studies are generally only interested in 
frequencies beneath 40Hz, 

pro ssional sleep scor
NRMSE represents primarily higher frequency components 
of the EEG, which are not used for sleep monitoring 
purposes, the effective error of the compression technique 
will be much less than this value.  The error that can be 
tolerated and therefore the maximum possible compression 
ratio will hence depend on the application.

The superior performance of the wavelet based methods 
over classical methods and their ease of implementation 
make them ideal for clinical applications.  The flexibility of 
he discrete wavelet transform is highlighted by its abilityt

be the basis of compression and recognition algorithms for 
physiological signals.  This gives rise to the possibility of 
amalgamating both processes so that, in the case of the 
ECG, beat recognition data could be stored with the 
compressed data.  This would significantly improve 
analysis by aiding the reviewer as well as reducing the time 
for retrieval and transmission.  
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