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Abstract: The problem of function approximation
to map a set of data with another is challenging
When they are non linearly related. A variety of
solutions based on Neural Networks are found in
the literature. In this paper, a new class of
Artificial neural networks with differential
feedback are introduced. The different orders of
differentials form a manifold of hyperplanes [2].
The spectral properties of these hyperplanes are
explored

Figure.1. Artificial neural network

1 INTRODUCTION
Artificial neural network systems (ANN) are
extremely helpful in modeling a system whose
behaviour is unknown but for the enough non-
linearly related input and output data.The structure
of a simple Artificial neural network with two
inputs is shown in the figure.1.The network has 2
inputs, and one output. All are binary.
The output is
1 if W0 *I0 + W1 * I1 + Wb > 0

0 if W0 *I0 + W1 * I1 + Wb <= 0 (1)

The above network can learn Logical OR: output a
1 if either I0 or I1 is 1. The network adapts by
changing the weight by an amount proportional to
the difference between the desired output and the
actual output.

∆w=ξ.(error).i .(2)

here. i is the input driving the node.,ξ is the
learning rate, The network functions as follows:
Each neuron receives a signal from the neurons in
the previous layer, andeach of those signals is
multiplied by a separate weight value. The
weighted inputs are summed, and passed through a
limiting function ( non linear in general) which
scales the output to a fixed range of values.

A BP network learns by example. That is, a
learning set has to be provided that consists of
some input examples and the known-correct
output for each case, like a look-up table. The
network adapts.

The BP learning process works in small iterative
steps: First, one of the example cases is applied to
the network, and the network produces some
output based on the current weights (initially, the
output will be random). This output is compared to
the known-good output, and a mean-squared error
signal is calculated. The error value is then
propagated backwards through the network, and
small changes are made to the weights in each
layer.(proportional to the error). The whole
process is repeated for each of the example cases,
then back to the first case again, and so on. The
cycle is repeated until the overall error value drops
to a predefined value. In section II differential
feedback concept is developed.. In section III The
spectral property of the hyperplanes is explained.
The experimental results are demonstrated in
section IV section V concludes

2. DIFFERENTIAL FEEDBACK METHOD

One of the major drawbacks of the conventional
training methodology is that it is iterative in
nature and takes a large number of cycles to
converge to the prespecified error limit. By
intuition, if more information is made to be
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hidden with the data, it takes less No. of iterations
to get stabilized to the pre defined error limit.
Auto regressive Moving average (ARMA) model
can be conveniently used in this direction. In a
typical ARMA model, the output and input are
related by

y(n)=a0*x(n)+a1*x(n-1)+…+b1*y(n-1)+… .(3)

The differentials of the output (& input) can be
written in to similar linear combinations of
present & previous outputs (inputs).

(dy/dt)=y(n+1)-y(n) . (4)

By (3) and (4) it is clear that

y(n)=f(x(n),x(n-1),..,dy/dtt=n,d2y/dt2t=n,) (5)

where the ANNs are made to learn this function.
Here the ARMA output is subjected to non-linear
function for the same reason as in ANN which
makes it possible to learn non linear functions.
The output y of a neural network but for the
nonlinearities can be written as

y=Σwixi. (6)

Where xi are the inputs wi, the corresponding
weights. The space spanned by weight vector for
different inputs is a hyperplane. The important
factor is weight cannot span the entire input space
[1], whatever may be the training mode. Again
the linearity of the output (1) may be viewed as a
particular case of ARMA

y (n+1)=b0y(n)+b1y(n-1)+…..+a0xn+… (7)

Where b0.. and a0.. are constants. The auto
regressive terms b0…bn may be realized using an
implied differential feedback [3]. With
differential feedback it has been found out[3] that
the no of iterations required for training is
reduced as shown in the table I.XOR gate is
considered for simulation. Gaussian distributed
random input with seed value 1000 is taken as
input. With I order different feedback, the output
may be written as:
Σwixi +b1y1 (8)

y1 being the I order differential. This equation
once again represents a plane parallel to Σwixi.
Thus the set of differentially fed ANNs form a
manifold of parallel planes, with ∞ order
feedback being the plane with zero error.Also,
simulation results of table II show that two terms
of II order differential feedback i.e., y2-y1 and

y1-y0 can be replaced by a single equivalent
plane represented by

Weq=(w1*iextra+w2*iextra1)/y0 (9)

In II order differential feedback system, the two
differential terms can be replaced by a single
term. Extending this principle, the ∞ terms of ∞
order differential feedback can be replaced by a
single term. This is termed as eigen plane which
is the practical way of generating lowest error.
Now the differential feedback becomes

dy/dt+d2y/dt2+… (10)

Taking Z transform, & then the inverse,

yeq=IZT{Y(z)/(1-z)} (11)

3.CONVOLUTION OF HYPERPLANES

Let yk represent the kth hyperplane
corresponding to kth order of differential
feedback. Hence yk= a*y0+b*y1+…
=b1*yk-1+d/dtn(y0) c1 being a constant Here the
incremental portion y∆=c1*d/dt(0) will be
approximated as the convolution of some
function with y0.

Ie y∆=y0*f (12)

F may be found out by pushing both sides of 12 to
frequency domain. k*y(k)=y(k)*F(f) k being the
frequency index of DFT.Thus F(f) should have a
linear response over a range of indices as shown in
fig 2.Its equivalent time domain signal may be
expressed as. F=(sin**2(ax)/Ax *x)*exp-(Nt/2)
since the triangle is delayed by N/2.N being the
no. of points in DFT. The signal is shown in fig 3.
As evident from the figure, over a very small
duration, the result may be approximated to a
Gaussian pulse of scale factor l where the
Gaussian kernel with dilation parameter l is given
by G(l,x) an exponential function. Analytically F
decays as 1/t2 =(1-t*t/k) . A Gaussian pulse exp(-
t*t/k) also may be approximated as (1-
t*t/k).Hence, the envelop of f is Gaussian if the
peaks are too close ie sinc function function is
large.

The table I shows that the gap between the
hyperplanes decreases with increase in the order.
I.e. the information content becomes more and
more abstract. Hence the kernel which is
convolved with the output y is scaled wth
progressively increasing scale factor.



3.1.Working of the model
In the domain of learning, mixtures of Gaussians
is a powerful tool for statistical modeling. Such a
model can avoid the problem of overfitting if care
is taken. For this class of generative models a
complexity control scheme is presented in [4], to
provide an effective means for avoiding the
problem of over-fitting .The model calls for
decrease in the variance at higher levels of
resolution..

This constraint on the model is satisfied with
higher order differential feedback. Table I shows
that the error or variance gets reduced for a given
number of iterations if differential feed back is
given. The initialization problem [5], encountered
with the fitting of Gaussian mixture models is
remedied by choosing the zeroth ordered
hyperplane as the initial approximation and
giving more feedback to lift it towards the eigen
plane or maximum likelihood estimator described
in section I. It gradually deforms the objective
function via deterministic annealing and
progressively tracks the maximum likelihood
solution across the decreasing noise levels as
required by the model. The differential feedback
architecture goes well with the model described
in [4]. There the objective of model fitting is to
exploit some subspace structure within the data,
which often results from their concentration near
some manifold of lower dimensionality. This
gives rise to the following generative model

x=f(z)+u (13)
With an affine mapping F(z)=Az+µ.All
components of x are linear combinations of
Gaussian random variables and thus the
observable can be characterized by a multivariate
normal density
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Since convolution with Gaussian function may be
expressed as a linear combination of scaled and
shifted Gaussians, the hyperplanes are
expressible as a linear combination of Gaussian
variables. Also, in sec II it has been observed that
the hyperplanes are linearly transported.In order
to reduce the complexity of such a model, the
covariance model Σ=ψ+2Iσ is proposed[4].Thus
the model has two parts- a data dependent signal
part and a noise part which corresponds to the
fixed part and differential parts of the proposed
model. In the model in [4] as the variance
reduces, more and more subspaces in the data
become visible. This is true with the proposed

model where outputs corresponding to higher
levels include lower level planes.

To summarize, with differential feedback, the
complexity of the model is automatically
controlled making it resistant for overfitting and
makes the observable data Gaussian.

4. SIMULATION
The differentially fed Artificial neural networks
are made to learn the psd of random data .The
Normal distributed data is generated using
Matlab. The error after learning and the
differentials of the error are stored. The
normalised PSDs of convolution of outputs
without feedback and Gaussian pulse and
normalized PSD of the first derivatives with
feedback are shown in the fig.4..It may be seen
that the derivatives are formed by the convolution
of the output with Gaussian functions of different
scales

5. CONCLUSIONS

Differential feedback, when applied over a neural
networks leads to a manifold of affinely
transported hyperplanes. These hyper planes are
actually formed by the convolution of the non
feedback output with Gaussian kernels of
different scales.
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Table 1.Performance with feedback

Order of differential Square error Iterations
No feedback 18 1156
I order 18 578
II order 18 289

Table 2..Performance with II order feedback

Order of differential Square error Iterations
II order Feedback 18 578
Equivalent Output feedback 18 578

Figure 2.Desired linear response Figure.3. The time domain plot

Legend: - PSD of non FB signal convolved with Gaussian pulse . –. PSD of the I order FB
Figure.4. PSDs of Differential signals and the convolved signals
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