
The Parameter-Less SOM algorithm

Erik Berglund
Smart Devices Lab, QUT

e.berglund@student.qut.edu.au

Dr. Joaquin Sitte
Smart Devices Lab, QUT

j.sitte@qut.edu.au

Abstract

One of the biggest problems facing practical applica-
tions of Self-Organising Maps (SOM) is their dependence
on the learning rate, the size of the neighbourhood func-
tion and the decrease of these parameters as training
progresses, all of which have to be selected without firm
theoretical guidance. This paper introduces a simple
modification to the SOM that completely eliminates the
learning rate, the decrease of the learning rate and the
decrease of the neighbourhood size. This is done by making
the learning rate and neighbourhood size dependant on
a variable calculated from the internal state of the SOM,
rather than on externally applied variables.

Keywords: Self-Organising Map, SOM, Parameter-Less,
PLSOM, learning rate, neural network, neighbourhood
function, neighbourhood size, unsupervised learning.

1. Introduction

Training of many Artificial Neural Networks, includ-
ing the SOM [6], depends on learning rates to converge.
The learning rate is a variable that governs how much the
weights of a network are altered in response to an input.
For SOMs the learning rate must be decreased according to
some algorithm as learning progresses, this process is re-
ferred to as annealing in this document. The update of the
weight vector in the standard SOM depends on the error
of that particular weight vector, but to make sure the SOM
converges towards a stable state a learning rate is required.
The learning rate is large in the beginning of the training,
when the map is unordered and fits the input space poorly,
and small the end of the training when there is only need for
small changes to the map.

Learning rates present a two-sided problem to users and
researchers of Self-Organising Maps:

1. There exists no theoretical way of estimating the start-
ing learning rate, nor the rate at which it should decline

(the annealing scheme). There exist general guidelines
and heuristics, but in the last instance the learning rate
has to be adapted to a specific task by empirical meth-
ods.

2. Explaining the learning rate from the perspective of the
SOM as a model of biological neural networks is dif-
ficult: While the human brain loses some of its flexi-
bility over time, learning is much more rapid than the
reduction of flexibility and learning is still possible af-
ter the reduction. Even complex neural networks like
mammalian brains are capable of drastically changing
their mapping if the input changes suddenly, such as
after an amputation [5].

The choice of learning rate and annealing schemes greatly
affects the network’s ability to reach a stable and well-
ordered state and the time it takes to reach this state [8].
This led to the search for a method by which the optimal
learning rate and decay can be determined with mathemati-
cal certainty given a specific problem, for example [7]. Un-
fortunately, this has not produced a universally valid, sim-
ple and computationally effective algorithm. Some previous
works include the Generative Topographic Mapping (GTM)
algorithm [1, 2] which eliminates the neighbourhood func-
tion entirely, but relies on other variables and choice of prior
distribution and basis functions. The Maximum Entropy
learning Rule (MER) algorithm [4] achieves global order-
ing without use of a neighbourhood at all, but is slower
and still relies on a learning rate. The Growing Neural Gas
(GNG) algorithm [3] is similar to the algorithm proposed
in this paper in the way it computes the error and in that
it eliminates the annealing schemes, but instead of scaling
neighbourhood size and learning rate with the error, it uses
the accumulated error per neuron to determine where to in-
sert a new cell in the network, in addition it introduces new
variables that must be pre-determined with no firm theoret-
ical grounding. Many supervised learning algorithms fea-
ture the idea of scaling the learning rate according to the
error (Newton’s method could be seen as an early example
of this) - however the error in a supervised learning scheme
is readily available, which is not the case in unsupervised

learning schemes like the SOM. This still leaves us with a
SOM algorithm that relies on empirical testing to determine
the annealing scheme - a poor choice of learning rate, learn-
ing rate annealing scheme or neighbourhood size annealing
scheme can result in knotting, folding, a poor input space fit
or later inputs destroying what was learned by earlier inputs.

The solution we propose in this paper is to let the scaling
of the weight vector update function and/or the size of the
neighbourhood depend on internal conditions in the map,
instead of or in combination with externally enforced scal-
ing variables such as the learning rate. The internal condi-
tion we selected for scaling these variables is the least error
ε, i.e. the normalized euclidean distance from the input to
the closest weight vector, see Section 3.1. It is intuitive that
if this variable is large, the map needs to change more to
accommodate future inputs of this class, but if it is small
the fit is already good and there is no need for large alter-
ations of the map. In this paper we will examine two vari-
ants of the standard SOM algorithm, we will demonstrate
the Parameter-Less SOM (PLSOM) and compare its perfor-
mance to the performance of a widely used SOM algorithm,
namely the variant implemented in the Matlab neural net-
working package, and discuss some of their relative merits.

2. Background

2.1. The standard SOM algorithm

The SOM we will be modifying in this paper is the
gaussian-neighbourhood, euclidean distance, rectangular
topology SOM, given by equations (2)-(5). The algorithm
is, in brief, as follows: An inputx(t) is presented to the
network at epoch (or timestep, iteration)t. The ’winning
neuron’, i.e. the neuron with the weight vector that most
closely match the input, is selected using equation (1).

c = arg min
i

(||x(t)− wi(t)||2) (1)

wi(t) is the weight vector of celli at epocht. ||.||2 denotes
thel2-norm or n-dimensional Euclidian distance. There are
other ways of computing the distance than the Euclidian dis-
tance given in equation (1) that can be used in the SOM, for
example Manhattan or link distance. The weight update is
calculated using equations (2) and (3).

wi(t + 1) = wi(t) + α(t)hci(t)[x(t)− wi(t)] (2)

hci(t) = e
−d(i,c)2

β(t)2 (3)

hci(t) is referred to as the neighbourhood function, and
is a scaling function centred on the winning cellc decreas-
ing in all directions from it.d(i, c) is the euclidean distance

from cell i to the winning cellc. α(t) is the learning rate at
epocht, β(t) is the neighbourhood size at epocht.

Lastly the learning rates are decreased in accordance
with the annealing scheme. We have chosen the annealing
scheme given by equations (4) and (5) for the decrease of
the learning rate and the neighbourhood size, respectively.

α(t + 1) = α(t)δα, δα < 1 (4)

β(t + 1) = β(t)δβ , δβ < 1 (5)

Hereδβ andδα are scaling constants determined before-
hand, typically around 0.9999.

These steps are repeated until some preset condition is
met, usually after a give number of epochs or when some
measurement of error reaches a certain level.

It should be noted that one of the most widely used im-
plementations of the SOM algorithm differs in some re-
spects from this. The overall algorithm is the same, but the
annealing scheme is different: It is divided into two phases,
phase 1 (ordering phase) and phase 2 (tuning phase). Mat-
lab also uses a step-based neighbourhood function, equation
(6). Equations (7) and (8) govern the annealing by reducing
the learning rate and the neighbourhood size, respectively.

hci(t) =





1 if d(i, c) = 0
0.5 if d(i, c) < β(t)
0 otherwise

(6)

α(t+1) =
{

α(0) + ((α(0)− α(τ))(1− t
τ)) if t < τ

α(τ) τ
t otherwise

(7)

β(t+1) =
{

β(0) + ((β(0)− β(τ))(1− t
τ)) if t < τ

β(τ) otherwise
(8)

τ is the number of epochs in phase 1 (default: 1000),
α(0) is predefined (default: 0.9) andβ(0) is calculated
based on the network size, for the two dimensional case this
is given by (9).α(τ) is predefined (default: 0.02) andβ(τ)
is 1.00001.

β(0) =
√

(w − 1)2 + (h− 1)2 (9)

w andh is the number of cells in the vertical and the hori-
zontal directions, respectively.

The difference between these two variants of the SOM
is that while the Matlab version achieves basic ordering
quicker, it does not fit the data as well as the other variant.

3. The Parameter-Less SOM

The PLSOM relies on the idea that the learning rate and
neighbourhood size should not vary according to the itera-
tion number, but rather vary according to how well the map
represents the topology of the input space.

3.1. Algorithm

The scaling variable depending on how good the fit of
the weight vector of the winning neuron is to the last input,
ε, is defined in equations (10) and (11).

ε(t) =
||x(t)− wc(t)||2

ρ(t)
(10)

ρ(t) = max(||x(t)− wc(t)||2, ρ(t− 1)),
ρ(0) = ||x(0)− wc(0)||2 (11)

ε(t) is best understood as the normalized euclidean distance
from the input vector at timet to the closest weight vec-
tor. If this variable is large, the network fits the input data
poorly, and needs a large readjustment. Conversely, ifε is
small, the fit is likely to already be satisfactory for that in-
put.

The algorithm for the PLSOM uses a neighbourhood size
determined byε, thus replacing the equation governing the
annealing of the neighbourhood withβ(t) = constant ∀t.
Furthermore it uses equation (14) for weight updates and
equation (13) for the neighbourhood function.

Θ(t) = β(t)ε(t), Θ(t) >= θmin (12)

hci(t) = e
−d(i,c)2

Θ(t)2 (13)

wi(t + 1) = wi(t) + ε(t)hci(t)[x(t)− wi(t)] (14)

As we can see from equation (14) the learning rateα(t)
is now completely eliminated, replaced byε(t). All exam-
ples in this paper are based on 2-dimensional input spaces
and maps. Since the Euclidean distance can be calculated in
n-dimensional space it is likely that the PLSOM algorithm
can be adapted to any number of input- and output dimen-
sions.

3.2. Advantages

The PLSOM completely eliminates the selection of the
learning rate, the annealing rate and annealing scheme of
the learning rate and the neighbourhood size, which have
been an inconvenience in applying SOMs. It also markedly
decreases the number of iterations required to get a stable
and ordered map. The PLSOM also covers a greater area of
the input space, leaving a smaller gap along the edges.

3.2.1 Comparison to the SOM variants

We trained the Matlab SOM variant, the SOM and the PL-
SOM with identical input data, for the same number of iter-
ations. The input data was pseudo-random, 2 dimensional
and in the[0, 1] range. This was chosen because a good
pseudo-random number generator was readily available,

Figure 1. Graph of the decrease of uncovered
space as training progresses for the PLSOM,
the SOM and the Matlab SOM implementation.
Note the quick expansion of the PLSOM and
that it consistently covers a larger area than
the SOM variants.

eliminating the need to store the training data. Since the
training data is uniformly distributed in the input space the
perfect distribution of weight vectors would be an evenly
spaced grid, with a narrow margin along the edges of the
input space. That way, each weight vector would map an
evenly sized area of the input space.

In comparing the two SOM implementations we used 3
separate metrics, which are all based on the shape and size
of the cells. A cell is the area in the input space spanned by
the weight vectors of four neighbouring neurons.

Unused spaceWe summarized the area covered by all the
cells, and subtracted this from the total area of the
input space. The resulting graph clearly shows how
the PLSOM spans a large part of the input space after
only a small number of iterations and maintain the lead
throughout the simulation (figure 1). Please note that
this metric will be misleading in situations where cells
are overlapping.

Average skew For each cell we calculate the length of the
two diagonals in a cell and divide the bigger by the
smaller and subtract one, thus getting a number from 0
to infinity, where 0 represents a perfectly square cell.
Again, we see that the PLSOM outperforms the SOM
in the early stages of simulation but after ca. 24000
epochs the SOM surpasses the PLSOM. After 100000
epochs the difference is still small, however. See figure
2.

Deviation of cell size We calculate the absolute mean de-
viation of the cell size and divide it by the average cell

Figure 2. Graph of the average skew for the
PLSOM, the SOM and the Matlab SOM imple-
mentation. For the first 24000 iterations the
PLSOM is more ordered, before the SOM vari-
ants narrowly overtakes it.

size to get an idea of how much the cells differ in rela-
tive size. Here the SOM is superior to the PLSOM af-
ter ca. 10000 epochs, mainly because of the flattened
edge cells of the PLSOM, see figure 3.

If we ignore the cells along the edge, the picture is
quite different: the PLSOM outperforms the SOM
with a narrow margin, see figure 4.

All experiments was carried out using Matlab and the
JRobot package [9]. Thanks to Dr. Mark Hale for his con-
tribution to JRobot, and to Dr. Steffen Log.

3.2.2 Plasticity preservation

The illustrations in this section shows the positions of the
weight vectors, connected with lines, in the input space.
When a SOM has been trained, it will not adapt well to new
data outside the range of the training data, even if a small
residual learning rate is left. This is illustrated by figures
5 and 6, where a SOM has been presented with pseudoran-
dom, uniformly distributed 2-dimensional data vectors in
the [0, 0.5] range for 50000 iterations. Thereafter the SOM
was presented with 20000 pseudorandom, uniformly dis-
tributed 2-dimensional data vectors in the[0, 1] range, after
which the SOM has adapted very little to the new data. In
addition the adaptation is uneven, creating huge differences
in cell size and distorting the space spanned by the weight
vectors. If we subject a PLSOM to the same changes in in-
put range, the difference is quite dramatic; it adapts to the
new input range almost immediately, as seen in figures 7
and 8.

Figure 3. Graph of the absolute mean devia-
tion of cell size for the PLSOM, the SOM and
the Matlab SOM. The PLSOM is more regular
up until ca. epoch 10000.

Figure 4. Graph of the absolute mean devi-
ation of cell size for the PLSOM, the SOM
and the Matlab SOM, excluding the edge cells.
Compare to figure3. The PLSOM outperforms
the Matlab SOM in both adaption time and ac-
curacy, and the SOM needs until ca. epoch
30000 to reach the same level of ordering.

Figure 5. SOM weight vector position in in-
put space after training for 50000 iterations
with uniformly distributed pseudorandom 2-
dimensional input, ranging from 0 to 0.5.

Figure 7. PLSOM weight vector position in in-
put space after training for 50000 iterations
with uniformly distributed pseudorandom 2-
dimensional input, ranging from 0 to 0.5.

Figure 6. Same SOM as in figure 5 after
20000 further training steps with inputs rang-
ing from 0 to 1.0.

Figure 8. Same PLSOM as in figure 7 after
20000 further training steps with inputs rang-
ing from 0 to 1.0. Note the difference between
this figure and figure 6.

Figure 9. PLSOM weight vector position in in-
put space after training for 50000 iterations
with uniformly distributed pseudorandom 2-
dimensional input, ranging from 0 to 1.0.

3.2.3 Memory

If the opposite is the case, that the SOM is presented with
a sequence of inputs that are all restricted to a small area
of the training input space, it would be preferable if the
SOM maintains its original weight vector space, in order to
not ’forget’ already learned data. Figures 9 and 10 demon-
strate what happens to a PLSOM if it is trained with pseu-
dorandom, uniformly distributed 2-dimensional data in the
[0, 1] range for 50000 iterations and then presented with in-
puts confined to the[0, 0.5] range for 20000 iterations. This
leads to an increase of the density of weight vectors in the
new input space, yet maintains coverage of the entire initial
input space, resulting in distortions along the edge of the
new input space. Both these effects are most pronounced in
the PLSOM.

3.3. Drawbacks

The PLSOM is measurably less ordered than a properly
tuned SOM and the edge shrinking is also more marked in
the PLSOM. The PLSOM doesn’t converge in the same
manner as the SOM (there is always a small amount of
movement).

4. Conclusion

The PLSOM provides a simplification of the overall ap-
plication process, since it eliminates the problems of finding
a suitable learning rate and annealing schemes. The PL-
SOM also reduces the training time and preserves general-
ity. This is achieved without inducing a significant compu-
tation time or memory overhead.

Figure 10. Same PLSOM as in figure 9 after
20000 further training steps with inputs rang-
ing from 0 to 0.5. Note that while the weights
have a higher density in the new input space,
the same area as before is still covered, i.e.
none of the old input space has been left un-
covered.

References

[1] C. M. Bishop, M. Svenśen, and C. K. I. Williams. Gtm: A
principled alternative to the self-organizing map.Advances in
Neural Information Processing Systems, (9), 1997.

[2] C. M. Bishop, M. Svenśen, and C. K. I. Williams. Gtm:
The generative topographic mapping.Neural Computation,
10(1):215–235, 1998.

[3] B. Fritzke. A growing neural gas network learns topologies.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,Ad-
vances in Neural Information Processing Systems 7, pages
625–632. MIT Press, Cambridge MA, 1995.

[4] M. M. V. Hulle and K. U. Leuven. Globally-ordered topology-
preserving maps achieved with a learning rule performing lo-
cal weight updates only.Neural Networks for Signal Process-
ing [1995] V. Proceedings of the 1995 IEEE Workshop, pages
95–104, Sep 1995.

[5] J. H. Kaas. Plasticity of sensory and motor maps in adult
mammals.Annual Review of Neuroscience, 14:137–167, Mar
1991.

[6] T. Kohonen.Self-Organizing Maps. Springer-Verlag, 1997.
[7] F. Mulier and V. Cherkassky. Learning rate schedules for self-

organizing maps. InComputer Vision & Image Processing.,
Proceedings of the 12th IAPR International. Conference on,
volume 2, pages 224–228. IEEE, 1994.

[8] D. R. Wilson and T. R. Martinez. The need for small learn-
ing rates on large problems. InNeural Networks, 2001. Pro-
ceedings. IJCNN ’01. International Joint Conference on, vol-
ume 1, pages 115–119. IEEE, IEEE, July 2001.

[9] J. Zhu and E. Berglund. Jrobot.
http://blog.no/erik.berglund/jrobot, 2002.

	P159:
	Numb:
	Numbx:
	C: 159
	L:
	R:

	P160:
	Numb:
	Numbx:
	C: 160
	L:
	R:

	P161:
	Numb:
	Numbx:
	C: 161
	L:
	R:

	P162:
	Numb:
	Numbx:
	C: 162
	L:
	R:

	P163:
	Numb:
	Numbx:
	C: 163
	L:
	R:

	P164:
	Numb:
	Numbx:
	C: 164
	L:
	R:

