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Abstract 

This paper presents an accurate voiced/unvoiced/ 
transition/silence speech classifier that is used as an 
integral part of any toll quality speech coder. Due to 
ability of wavelet packet in decomposition of time–
frequency plane with high resolution, first five 
discriminate features based on energy concentration of   
wavelet packet coefficients for each speech classes in 
time-frequency plane are extracted. Then a Fuzzy 
ARTMAP neural network classifier, which has been 
shown a powerful tool for non-stationary signal 
classification is employed. Experimental results show the 
proposed approach gives considerable performance 
improvements in some aspects with respects to the 
conventional methods 

1. Introduction 

In recent years emerging application for toll quality 
speech coder at low bit rate such as third generation of 
wireless networks has encouraged a lot of research in this 
area [1], [2]. Aim is to achieve a toll quality, and low bit 
rate speech coder simultaneously. Unfortunately, the two 
objectives are in contrast with each other. To cope with 
this dilemma, an adaptive hybrid-coding algorithm must 
be implemented for each speech class. Therefore, speech 
classifier is an inseparable part of any toll quality speech 
coder. Whatever a classifier is more accurate, more 
quality is achievable. Mainly low bit rate speech coders 
classify speech segments into voice/ unvoice source and 
encode each class with different methods, resulting in low 
bit rate vocoder especially below 2.4 kbps [3],[4]. 
However in order to preserve speech quality a more 
accurate classification than rough classification into 
voiced /unvoiced (V/U) is needed. Degradation of quality 
in low bit rate vocoder is mainly due to assumption of 
simple model for speech signal. Commonly, speech 
segments that have strong periodicity are identified as 
voices and unvoices are represented by noise model. 
Nevertheless transitional speech [6], [7], such as non 
periodic glottal pulse, onsets (transition from unvoice to 

voice) and plosives (b,t,g,k,q) don’t follow these 
characteristics, and usually are misclassified by a speech 
classifier. Consequently need for an accurate multi speech 
classifier is manifested. Like other pattern recognition 
systems, speech classifiers consist of two parts, a feature 
extractor and a classifier. The most commonly speech 
classification features are zero crossing rates, first auto 
correlation coefficient, first LPC coefficient, speech 
peakiness and signal energy, which has been extensively 
used and developed by researchers [12].[22]. These 
parameters work properly when high level voice or 
unvoice are to be classified, but fail for transitional 
speech. Especially when auto correlation coefficients are 
used as classification parameters, non-periodic glottal 
pulses due to weak periodicity are classified as unvoiced 
but in fact the vocal cord is involved during constructing 
these sounds. Beyond these features, recently, 
multiresolution analysis with wavelet transform has been 
used widely, owing to its potential for dealing with non-
stationary signal. Application of wavelet transform in 
speech classification and pitch detection was first 
introduced by Kadambe [18] who was inspired by Mallat 
[19] in which signal discontinuity are detected by 
decomposition of signal into wavelet scales and stable 
local maxima across several scales i.e. 3 through 5 are 
determined. These maxima identify edges or discontinuity 
in signals. Recently this approach has been developed by 
other contributions [8], [20]. However, most effort has 
been focused on event based-detection property of 
wavelet in speech signals where instances of glottal 
closure are determined by wavelet transform. Ability of 
wavelet transform in analysis of time-frequency plane has 
not been considered well up to now in speech area in 
compares with short time Fourier transform (STFT) and 
Mel frequency cepstral coefficients (MFCC). Among 
wavelet transform algorithms wavelet packet provides 
better resolution in time frequency domain while preserve 
computational complexity in comparison with MFCC and 
STFT .As will be shown, wavelet packet (WP) 
coefficients energy for each speech class is dispersed in 
different parts of time frequency plane. This favorite 
attribute makes WP coefficients a useful discriminated 
feature in speech classification.  
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 In the second part of system, generally two strategies 
have been introduced. First by presenting a proper 
threshold, speech classes are determined [8], [9]. Second 
a neural network classifier such as Back propagation 
[10][14], self-organized map [11], and recurrent neural 
network [13] are employed to determine the 
corresponding class. Fuzzy ARTMAP neural network 
uses the class of adaptive resonance theory architecture 
designed for supervised learning, first introduced by 
Carpenter [15] and develops in other contributions [16], 
[17]. Fast and stable learning of large non-stationary 
databases has made Fuzzy ARTMAP as an outstanding 
candidate for classification problems. 

The remainder of this paper organized as follows. First 
the procedure for extracting features is explained, and 
then a brief review of Fuzzy ARTMAP architecture will 
be presented. Finally experimental results are reported 
and compared with the conventional method. 

2-Feature Extraction based on wavelet 
Packet 

Aim of any feature extraction system is to choose 
those features, which are most effective for preserving the 
class separability and to prune non-relevance information. 

As discussed before the objective is to classify each 
sub frame of speech signal (each frame contains 160 
samples and is sampled in 8 KHz) as voice, unvoiced, 
transition, or silence. As it is proved in [21], if the scaling 
function and wavelets form an orthonormal basis (e.g. 
Daubechie mother wavelets), the Parsevall theorem 
relates energy of the signal to energy in each of 
components and their wavelet coefficients: 
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Where the two-dimensional set of coefficients )(kd j ,

are the discrete wavelet transform (DWT) of )(tg .

According to this fact, we have a framework for 
describing the signal by wavelet coefficients in different 
parts of joint time-frequency domain of time frequency 
plane. We use dyadic wavelet packet transform, because 
the flexible tree structure makes it possible to have 
equivalent sub bands in the whole time frequency plane. 
In the corresponding wavelet packets situation, each detail 
coefficient vector is also decomposed into two parts using 
the same approach as in the approximation vector 
splitting. This offers the richest analysis of each frame. 
After examining various speech frames, we found the 
following partitioning of time frequency appropriate for 
our purposes. The time frequency plane is divided into 
different cells as illustrate in Fig 1. 

Figure 1-The time frequency plane is divided into 
different cells 

Then the density of energy in each region is obtained 
by WP coefficients, and finally five sets of features are 
determined as follows.  Decomposition of the wavelet 
packet tree is obtained in level three. After applying of 
wavelet packet with Daubechie 8 mother wavelet, the WP 
coefficient in level three i.e. 8 bands, with 

1608× coefficients, are obtained. We use the wavelet 
packet because it provides much finer and adjustable 
resolution. The features are extracted as follows. The term 
E() hereafter means the energy of WP coefficients in one 
of the indicated region in Fig 1, and is computed as 
follows 
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2-1 Voiced /Unvoiced/Silence Classification

As shown in Fig 2 (a) and (b), most parts of WP 
coefficients energy for a voiced frame are placed in low 
frequency part of time frequency plane and evenly 
distributed in time. In other hand, energy distribution for 
an unvoiced frame is evenly distributed in all over the 
time frequency plane. Therefore, we can define feature 
one by 

E(Top)

E(Bottom)
feature1=                            (3) 

Where for example, E(Top) means the WP coefficients 
energy in band 4through8 (2000Hz to 4000Hz).This 
parameter is especially useful to discriminate a reliable 
voiced subframe from unvoiced sub frame. In [8], they 
have proposed a similar parameter and introduced the 
threshold to make the relevance decision. However using 
the threshold solely provides good results, only when a 
reliable voice is to be classified. The term reliable voiced 
speech here means a voiced segment with strong 
periodicity and high energy. So, in order to separate 
unreliable voiced sub frame from unvoiced one, we 
consider the second feature that is defined by  
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If the value of feature 1 is not too high to make an 
explicit decision, then if the value of the second feature is 
high, the sub frame is voiced speech otherwise it is 
classified as unvoiced. 

The above features perform well at distinguishing 
between voiced and unvoiced speech.  However they do 
not enable to separate silence sub frames from voiced or 
unvoiced speech. A simple investigation shows the energy 
value of silence frame is too low in comparison with 
voiced/unvoiced speech. Thus the total energy of a frame 
is an appropriate feature to distingue silence segments as 
is expressed in equation 5. 

E(Total)feature3 =                          (5) 

2-2 Transitional Classifications 

Mainly transitional speech segments occur in the 
following situations: 

First, in onsets where an unvoiced speech is ended and 
a voiced speech is started. Second, when a plosive sound 
is uttered such as p, t, b, q. The analysis of transitional 
speech, especially for onsets shows a transition occurs 
when a more rapidly waveform with low amplitude (i.e. 
with weak low frequency components) is followed by a 
slow varying waveform with high amplitude, (i.e. with 
dominant low frequency components). The above 
explanation makes clear that a transitional segment can be 
distinguished from a voiced or unvoiced speech by 
comparing the differences between the energy 
concentrations in bottom-left of time frequency plane to 
bottom-right of time frequency plane as has been 
illustrated in Figure 2 (c). Therefore we introduce the 
forth feature as: 

E(Total)

Left)-E(Bottom-Right)-E(Bottom
feature4 =      (6) 

However, this criterion does not work well for all 
plosive sounds in which a transition happens during 
passing from a rapidly varying waveform to other rapidly 
varying waveform with a sudden change in amplitude. In 
these situations the differences between energy 
concentrations in top-left region to the top-right of the 
time frequency plane is a discriminated feature to classify 
these kinds of transitional sounds, as it has been 
illustrated in Figure 2 (d) and is expressed in equation 7. 
Table 1 illustrates the typical value of selected features 
for each class. 

E(Total)

Left)-E(Top-Right)-E(Top
feature5 =          (7) 

(a) 

(b) 

(c) 

(d) 
Figure 2: Energy distribution of WP coefficients for 

(a) voice (b) unvoice (c), (d) transitional segment; 
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Table 1: Typical value of proposed features for 
voiced/unvoiced/transition/silence segments 

Feature Silence Voice Unvoice Transition 
1 2.2983 9.2805 1.59 3.8321 
2 1.757 1.5729 1.1686 2.2777 
3 24.392 8055.94 623.903 4061.16 
4 .1045 .07277 .027082 .82063 
5 .1019 .029257 .078936 .075245 

3. The Fuzzy ARTMAP Neural Network 

A detailed description of the fuzzy ARTMAP neural 
network can be found in [15]. Here just a brief review is 
presented. The fuzzy ARTMAP neural network consists 
of two fuzzy ART modules, (ARTa, ARTb) as well as an 
extra inter ART module, shown in Figure 4. Each fuzzy 
Art is an extension of ART1 system to enable the network 
to handle the continuous inputs through the use of fuzzy 
AND operator ( ∧ ), instead of the logical intersection 
( ). In order to prevent category proliferation [15], input 
vectors are normalized by complementary coding where if 

[ ]Ma 1,0∈ denotes original input, then the new F0 layer 

input vector I ( [ ] McaaI 21,0),( ∈= ,

where }{ c
i

c aa = and i
c
i aa −=1 ) is fed into network.

Figure 4: Fuzzy ARTMAP architecture 

Thus, the complement coded input and Wj are of 
dimension 2M. During learning, the adaptive weights or 
the long term memory (LTM) are adjusted according to 
the winner take all rule i.e. at most one F2a node can 
become active at a given time. Map field realizes the 
match-tracking rule, whereby the vigilance parameter for 
ARTa increase in response to a miss match at ARTb. 
After each input in ARTa find a proper output in ARTb, 
the Map field weights and LTM in ARTa are trained. 
Thus the number of outputs nodes in ARTa, i.e. F2a, can 

be increased to some extends, while the number of the 
Map filed nodes are constant and are equal to the number 
of output classes. This property of Fuzzy ARTMAP is 
especially interesting when two input segments with 
different features belonging to one class are classified. 
Thus while we preserve generality, the error rate 
decreases too. 

4. Experimental Results 

In order to obtain a proper set of training data, twenty 
sentences from 10 male and 10 female of popular TIMIT 
database are selected. The sentences are divided into 10 
msec  (80 sample) sub frames and then are manually 
labeled as voice, unvoice, transition, and silence. The 
result of manual class decision is shown in table 2. Each 
entry shows the percentage of manual class decision.  

Table 2: Manual Class decision 

Voice Unvoice Transition Silence 
45 35 16.25 3.75 

Then Daubechie 8 wavelet packet transform was 
performed on each frame. For restricting the effect of 
boundary at the frame edge, we extend each frame from 
left and right to 8 msec, however this amendment 
introduces 8 msec delays into system. In next step, five 
features are computed as discussed in pervious section. 
The features are normalized according to complementary 
coding as was discussed in section 3. Thus 10 inputs are 
fed into network. Fuzzy ARTMAP parameters are set as 
follows: choice parameter is set to zero, the ARTa based 

lined vigilance parameter, aρ  is set to zero, the learning 

rate, β is set to one i.e. fast learning. Epsilon is set to 
0.001, this value is added to ARTa vigilance parameter 
when a mismatch happens in Fab , so a reset does not 
occur in ARTa. And finally the MAP field vigilance 

parameter abρ  is set to 0.95. The number of Fa
2 output 

nodes is initially set to 20. However due to representing 
the discriminating features just 12 nodes are used at the 

aF2  output layer. In order to examine the reliability of 

features, a fixed set of 4000 chosen exemplars was 
normalized and presented to the Fuzzy ARTMAP system. 
After training the system, we test validation of the 
approach by presenting 4000 test samples. The neural 
network classification confusion matrix on the test 
database is presented in table 2 In order to evaluate the 
accuracy of method, five features (the signal energy, the 
first reflection coefficient, the rate of zero crossing, the 
first coefficient of the 10th order LPC and the peak 
amplitude of signal) that are extensively used in other 
contributions  [12], [14], [5] are extracted from the 
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training data set (4000 exemplars as mentioned later) and 
fed into a back propagation neural network with 10 
hidden layers and 4 outputs. After training, the confusion 
matrix is obtained by introducing of the test samples to 
the back propagation classifier. The method that is 
denoted by (a) in Table 3 demonstrates the results taken 
from WP-Fuzzy ArtMap classifier and the method (b) 
indicates the results from the Back propagation classifier. 
Each entry in the confusion matrix shows the percentage 
of the automatically detected class in comparison with 
manual class decision. As it is clear from the table 3, the 
error rate in the method b is somehow higher than those 
of the method a, especially for transitional speech. It must 
be mentioned here, in classifying the speech segments 
manually, the non-periodic glottal pulses were considered 
as an voiced speech rather than transitional speech, 
because naturally vocal cord is exited during the 
construction of non-periodic speech, although their 
residual signal exhibits weak periodicity, but the 
experiments show [6] when the non-periodic sounds are 
classified as voiced sounds, there is no or only slight 
degradation of perceived quality as long as the estimated 
pitch is not extremely high or low.  

Table 3:Matrix confusion for proposed (a) WP-
FuzzyArtMap classifier and (b) Back propagation  
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5. Conclusion 

In this research, a more accurate speech classifier was 
presented. In comparison with other proposed methods, 
this approach uses a new set of features that appropriately 
characterize speech classes. 

Moreover, instead of using the thersholding to make the 
decision, like what was done in [9], a fast and stable 
neural network was employed to classify the proposed 
features. Flexibility of partitioning time-frequency plane 
into finer cells in addition to low computational 
complexity in comparison with short time Fourier 
transform and MFC coefficients, makes wavelet packet a 
powerful tool for the classification purposes. Furthermore 
reported results show that the accuracy of this model is 
comparable with other conventional model, and this 
method also performs a finer classification more than the 
voice/unvoice classification, that has been extensively 
used in other approaches. In the next step of this research 
we are going to evaluate the model accuracy in noisy 
environment.  
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