
Efficient Enterprise Integration Solutions Using Web Services
for Hospital Management System

Savitri Bevinakoppa Kaushik Hegde

School of Computer Science and Information Technology, RMIT University

 Melbourne – 3001, AUSTRALIA

savitri@cs.rmit.edu.au khegde@cs.rmit.edu.au

Abstract
Distributed oriented businesses are moving towards merg-
ers and tie-ups with other businesses, so as to provide
value to their customers and thereby increase their revenue
etc. They are facing problems of efficiency in integrating
their heterogeneous software applications with each other.
The evolution of Web services has simplified the problem of
Integrating Enterprise (IE) applications. Web services use
technologies, which are Simple Object Access Protocol
(SOAP), used for messaging, Web Services Description
Language (WSDL) used for description and Universal De-
scription, Discovery and Integration (UDDI) used for dis-
covery. These technologies improve transactional integra-
tion and add value to the business workflow. However the
core technologies involved in Web services like SOAP are
riddled with problems of performance and slow response
time.
This paper gives the development of a Hospital Manage-
ment system, which is dynamically integrated to external
and internal online hospital services. The services include
patient registry, pathology, radiology and radiotherapy,
using web services with SOAP, WSDL and UDDI. The per-
formance and response times are improved by caching
SOAP requests and responses. From the experimental re-
sults, it was found that caching SOAP messages helps in
improving the performance of the web services infrastruc-
ture. This research establishes the fact that web services
can be effectively used for integrating applications dynami-
cally.

1. Introduction
Web Services is a new revolution in the field of enterprise
applications having program-to-program interactions such
as Business-2-Business portals [1]. It reduces the costs for
business moving towards e-business help in deploying ap-
plications very fast and dynamically discovering new op-
portunities. These advantages resulting from web services
are due to the fact, that they are built on commonly used
and emerging standards like HTTP, Extensible Markup
Language (XML) [2], Web Services Description Language

(WSDL) [3] and Universal Description, Discovery and In-
tegration (UDDI) [3]. It allows applications to be integrated
economically, fast and easily because integration of busi-
ness is not based on network protocol semantics, but on
messages generated based on service semantics, thus induc-
ing loose coupling between business applications [4]. It
provides a uniform approach to integrate external applica-
tions as well as internal applications and evolve electronic
business towards just in time integration of business over
the Internet.
The objective of this research is to build efficient web-
based Hospital Management system. This solution enables
doctors to interact with various internal and external ser-
vices that are dynamically integrated using the concepts of
web services. The various services may include patient de-
tails service, pathology service, radiology service and radio-
therapy service. A service provider such as the radiology
department registers a service with the UDDI registry of
hospital management. The service functionality is exposed
using a WSDL file, which is registered in the hospital man-
agement UDDI registry. The performance of transmission
of request and response SOAP messages between the ser-
vice requestor (Hospital Management solution) and the
service provider (radiology etc) is improved by caching
these SOAP request and responses.

2. Web Services
The web services model consists of three main roles namely
service provider, service registry and service requestor and
three main operations namely publish, find and bind. The
conceptual web service stack is made up of 5 layers namely
service discovery, service publication, service description,
XML messaging and network. These layers are guided or
have to satisfy the factors of security, management and
quality of service.
Service Discovery and Service Publication layers of the
web service stack are involved with service discovery and
service publication functionality of the web service model
and they are implemented using Universal Description,
Discovery and Integration (UDDI). It is also responsible for
describing the service operation and also gives binding in-
formation. It is implemented using web services Description
Language (WSDL).

XML Messaging and Network layers of the web service
stack are responsible for transportation of request and re-
sponses between service initiator and service provider. The
XML messaging is implemented using Simple Object Ac-
cess protocol (SOAP), which is transported over HTTP or
SMTP or FTP in the network layer [5].

2.1 Simple Object Access protocol (SOAP)
Simple Object Access protocol is a standardized XML
based object invocation protocol [5]. SOAP [6] was ini-
tially developed so that distributed applications could
communicate with each other over HTTP which is one of
the standard ways to communicate over the internet and
through corporate software security systems like firewalls,
other distributed protocols like RMI, IIOP and COM were
ineffective in these regards. Since SOAP is defined in XML
and is based over HTTP it is platform independent. SOAP
does not define its own application semantics in terms of
programming model and implementation specific semantics
rather it defines a simple mechanism for expressing applica-
tion semantics by providing a modular packaging model
and encoding mechanisms for encoding data within mod-
ules. This enables SOAP to be used in a variety of applica-
tions ranging from messaging and remote procedure calls
(RPC).

3. Hospital Management System
A Hospital Management system has been taken as a case
study in this paper. The solution provided for a Hospital
Management system proves that web services are an effi-
cient integration solution. The Hospital Management solu-
tion shows how caching improves the performance of
SOAP.

3.1 Hospital Management Solution Description
A Hospital Management solution will provide a revolution-
ary single point of access, to many external and internal
Hospital services like radiology service, pathology service,
hospital management service etc, to its clients mainly the
doctors. The doctor will be able to access patient details
such as patient personal information, diagnostic information
etc belonging to various hospitals from a single access
point. The Hospital Management solution will be making
use of functionalities of already existing software solutions

of various departments like radiology department, pathol-
ogy department etc, which may be under different hospitals
to achieve its functionality. An integration framework has to
be applied to the Hospital Management solution for its suc-
cessful interaction with heterogeneous software applications
of various departments. In this minor project a web services
integration framework is selected for the Hospital Manage-
ment solution due to the advantages of web services over
other existing integration solutions.

3.2 Main Functionalities of Hospital Management
Solution
The doctor can view patient contact details of a patient be-
longing to various hospitals that have exposed their services
as a web service to the Hospital Management system. The
doctor records patient clinical exam details using the Hospi-
tal Management system.

3.2.1 Stakeholders involved in the Hospital Management
system
Doctor: -A doctor uses the Hospital Management system to view
and record patient contact details and diagnostic details.
The doctor uses the Hospital Management system to record pa-
tient clinical exam details.
Radiology Department: uses the Hospital Management system to
expose its services such as treatment and its outcome.
Radiotherapy Department: uses the system to expose its services
such as dosage, location etc.
Pathology Department: uses the system to expose its ser-
vices such as MRI, PET images.
Toxic/Follow-up Department: uses the system to expose its
services such as consultation and its outcome. Architectural
view of Hospital Management system is shown in the figure
1.

3.3 Deployment view of Hospital Management sys-
tem
SOAP cache is used to cache SOAP requests and responses.
UDDI registry is used for registration and dynamic discov-
ery of services. The deployment view of Hospital Manage-
ment System is shown in figure 2.

Figure 1 Architectural View of Hospital Management System

Figure 2 A Deployment View of the Hospital Manage-
ment System

The top level indicates the client view of the doctor and the
service provider. The client view interacts with the applica-
tion through the web browser. The domain layer hosts the
UDDI registry, SOAP cache and clinical management com-
ponent of the Hospital Management system. The data server
layer is used to host the database used to store patient clini-
cal details. The protocol used for transmission between the
layers is HTTP coupled with SOAP.

4. SOAP Cache
In Distributed software applications using a web services
infrastructure, the default protocol used for transmission of
requests and responses is Simple Object Access Protocol
(SOAP). The performance of SOAP compared to other Dis-
tributed binary protocols like RMI, IIOP and COM is very
poor. As SOAP is an XML based protocol, assembling and
disassembling a SOAP request and response involves a lot
of overhead. Caching a SOAP request and its corresponding
response locally on the client end helps in improving the
performance of SOAP bypassing the time required to as-
semble and disassemble a SOAP message. Only read SOAP
request are cached as caching of write SOAP request leads
to inconsistency and failure of the entire software applica-
tion. The following section gives details of the architecture
of caching component, design details involved in eviction
of SOAP objects from the cache and maintaining consis-
tency of SOAP messages in the cache, the implementation
of the SOAP cache and the test results regarding the per-
formance of SOAP by caching SOAP requests and re-
sponses locally at the client end [7], [8].

4.1 The Main Components of SOAP Caching Ar-
chitecture

Figure 3 SOAP Caching Architecture

Cache is an abstraction of physical memory used for storing
SOAP requests and responses. In this architecture (figure
3), client is responsible for invoking SOAP requests and
receiving SOAP responses. SOAP Router is responsible for
receiving requests from a client and redirecting these re-
quests to the SOAP cache. The SOAP router receives
SOAP responses from the SOAP cache and the SOAP
router sends the responses to the client. The SOAP router is
also responsible for performing administration functions
like maintaining the size of the cache repository and writing
cache contents from the run time memory in to a persistent
storage on the hard disk when the application server on
which the SOAP cache is mounted is being shutdown.
SOAP Cache Manger is responsible for storing requests and
response SOAP messages in the cache. It is responsible for
generating cache keys, which is used to index cached data.
It is responsible for maintaining consistency of data in the
cache.

4.1 Cache Keys
A cache key is used to easily locate cache data. The use of
cache key simplifies the process of searching data in the
cache and also helps in decreasing the time needed to
search data in the cache. Two types of cache keys have
been used to index cache data in the caching solution pro-
vided in this minor project. They are as follows.
Service Key: - A service key is used to reference data be-
longing to a particular web service. It is extracted from a
SOAP request message. It is made up of the web service
name.
E.g. <SOAP-ENV:Envelope>
 <SOAP-ENV:Body>
 <ns1:getPatientDetailsByURNO
xmlns:ns1="urn:PatientDetails">
 <name
xsi:type="xsd:string">001100006</name>
 </ns1:getPatientDetailsByURNO>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 In the above SOAP message the service key is
“urn:PatientDetails” which is used to reference the web
service named by Patient Details.

Message key: -A message key is used to reference data be-
longing to a particular method in a web service. It is ex-
tracted from a SOAP request message. It is made up of the
method name and the parameter values of that method.
E.g. <SOAP-ENV: Envelope>
 <SOAP-ENV:Body>
 <ns1:getPatientDetailsByURNO
xmlns:ns1="urn:PatientDetails">
 <name
xsi:type="xsd:string">001100006</name>
 </ns1:getPatientDetailsByURNO>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
 In the above SOAP message the message key is “getPa-
tientDetailsBy URNO 001100006” which is used to refer-
ence the function getPatientDetailsByURNO with parame-
ters 001100006 under the web service named by PatientDe-
tails.

4.2 The Hierarchy and Structure of the Cache data
structures
The cache data structure is maintained in the form of a
linked list. The ServiceContainer is a serializable java class
used to store details of all the published web services. The
ServiceContainer is made up of ServiceElements. A Ser-
viceElement is a serializable java class used to store details
of a particular web service. The ServiceElement is made up
of CacheElements. Each ServiceElement is indexed by a
service key. The CacheElement is a seriali zable java class
used to store method details under the particular web ser-
vice and SOAP requests and responses to that particular
method. Each CacheElement is indexed by a message key
(figure 4, 5). Figure 6 indicating the Hierarchy of a Cache
data Structure.

4.2 Basic Workflow of the SOAP Cache
The following sequence diagram depicts the basic workflow
of the SOAP cache.

Figure 4 Example SOAP Cache Hospital Management Linked Figure 5 Sequence Diagram Showing SOAP Cache
List Structure workflow

Figure 6 Hierarchy of Cache Data Structure

��� � ����� �
	���
���	���� ��� �
��� ��� ����� �!#"�$�%& �'� �(�$�)

*
+-,-.0/�1�2�3#1�4�5

6�7�8#9
7�: ;�< =#7?>�7�@

6�7�8�A&7�B�B�C�6�7&>
7�@

D�E�F�G�HID�J�G#E�F�K�F�L�M�N�O P M�Q R

S�T�U�V�WYX Z�[]\ T�U&^
U�[_#` V#U

a�b�c�d�eYf g�h]i b�c�j�c�i b�g�k

l
m-n-o0p�q�r�s�t�u�r�qwv x t�y{z�|�}�~�q

l
m-n-o�x q����#q�r��

l
m-n-o�x q�r�s�t�u�r#q

s�t�s���� |�� q�l
m-n�o�}#|�}�~�q

l
m-n-o�x q�r#s�t�u�r�q

l
m-n-o�x q�r#s�t�u�r�q

l
m-n-o�x q�r#s�t�u�r�q

A client issues a SOAP request to a published service. This
SOAP request is passed to a SOAP router and generates a
service key, which identifies the published service and a
message key, which identifies the method under the particu-
lar published service from the SOAP request message. The
SOAP router invokes a function on the cache manager to
check if a SOAP response is stored for the corresponding
service key and message key. If present the stored SOAP
response is sent to the SOAP router, which in turn is sent to
the client. If not, specific entries of the service key and
message key are made in the cache data structure to identify
the service, the method under the service and a SOAP re-
quest is sent to the corresponding service, the SOAP re-
sponse from the service is stored in the cache data structure
under the corresponding service key and message key of the
SOAP response and the SOAP response is sent to the
SOAP router, which in turn is sent to the client.

4.3 Eviction from the SOAP cache
Eviction from the SOAP cache is carried out to decrease the
size of the cache repository. Decreasing the size of cache
repository results in fast retrieval of required cache objects
and also prevents from storing invalid cache objects.
The Eviction policy used in the caching component of this
minor project is Least Recently Used (LRU) policy and size
policy. When cached SOAP objects have to be evicted, the
cache repository is initially searched for cached SOAP ob-
ject, which have been used less frequently used, and these
cached SOAP objects are evicted. If two or more cached
SOAP objects have the same least frequency of usage, then
the sizes of the cached SOAP objects are compared. The
cached SOAP object having the maximum size is evicted
from the SOAP cache repository.

4.4 Maintaining Consistency of the SOAP cache
Figure 7 depicts, the workflow consistency of SOAP cache
is maintained by using time policy. The administrator of the
SOAP cache sets the expiry time for the SOAP objects to
be cached. When a new SOAP object is cached, the last
access time attribute of the SOAP cache object is set to the

current time. When a cached SOAP object is fetched from
the cache repository the difference between the current time
and the last access time is calculated and compared to ex-
piry time. If the difference is greater than the expiry time a
fresh SOAP response is fetched from the web service. This
SOAP response is cached. Setting the time attributes of the
cached SOAP object to current time and the SOAP re-
sponse is returned to the client or if the difference is less
than the expiry time the cached SOAP response is returned
to the client (figure 5.6.b, 5.6.c).

6. Experimental Results
The test environment consisted of three terminals. The first termi-
nal hosted the client. The second terminal acts as an intermediate
between the client and the web service. The cache module is
loaded on the second terminal. The third terminal hosted the web
service. The three terminals were connected in a local LAN net-
work. The three terminals communicated with each other over
HTTP. The three terminals run on a Pentium 3 500MHZ proces-
sor and a 256 MB RAM.

6.1 Testing Approach
Two types of testing methodologies were used. The first
test procedure involved comparing response times for re-
trieving a character array of varying sizes with and without
cache. The second test procedure involved comparing re-
sponse times for hospital management web services work-
flow with and without cache. For each test data, the re-
sponse time of 1000 SOAP messages were tested with and
without a cache, so as to minimize the effect of external
factors like network latency, IO latency etc.
The fig 8 indicates the test results for a varying size charac-
ter array with and without cache. The fig 9 indicates the test
results for a varying size SOAP inputs in kilobytes with and
without cache. The graphs in 8 and 9 indicate that the per-
formance of SOAP improves drastically by the use of
cache. By caching SOAP requests and responses locally on
the client side the overhead time involved in the construc-
tion and parsing SOAP message is avoided.

Figure 7 Consistency of SOAP Cache Activity Diagram

Performance of SOAP cache for character array

0
50

100
150
200
250
300
350
400

ch
ar

[5
00

0]

ch
ar

[4
50

0]

ch
ar

[4
00

0]

ch
ar

[3
50

0]

ch
ar

[3
00

0]

ch
ar

[2
50

0]

ch
ar

[2
00

0]

ch
ar

[1
50

0]

ch
ar

[1
00

0]

chracter array

ti
m

e(
m

s) w ithout caching

w ith caching

Figure 8 SOAP Performance Graph 1

Performance of SOAP cache for Input in KB

0

2000

4000

6000

8000

10000

12000

60 120 180 240 300 360 420 480 540

size varying inputs(kb)

ti
m

e(
m

s)

without caching

with caching

Figure 9 SOAP Performance Graph 2

6. Conclusion
This paper dealt with how caching SOAP messages can help im-
prove the performance of SOAP. The architecture of the
SOAP caching component is used in hospital management
system. The data structure is used to cache SOAP objects.
The eviction and consistency policies used in the SOAP
cache and the testing methodology and results used to
gauge the performance of SOAP by using caching.

References
[1] Meng, J. Krithivasan, R. Su, Helal, S.Y.W. S.: Flexible
Inter-enterprise Workflow Management Using E-services,
Advanced Issues of E-Commerce and Web-Based Informa-
tion Systems, 2002. (WECWIS 2002). Proceedings. Fourth
IEEE International Workshop on , 2002

[2] Garshol, L.: Definitive XML Application Development,
Prentice Hall, 2002.

[3] Walsh, A. E.: UDDI, SOAP, and WSDL: The Web Ser-
vices Specification Reference Book, Prentice Hall, 2002.

[4] Aoyama, M. Sullivan, K.: Web services Engineering
promises and challenges, University of virgina USA, IEEE
publication March 2002

[5] Chester, T. .M.: Cross-platform Integration with XML
and SOAP, IT Professional, Volume: 3 Issue: 5, Sept.-Oct.
2001,IEEE.

 [6] Box, D. Ehnebuske, D. Kakivaya, G. and et al: Simple
Object Access Protocol, W3C Note 08 May 2000

[7] Davis, D. and Prashanth, M.: Latency Performance of
SOAP Implementation, Cluster Computing and the Grid
2nd IEEE/ACM International Symposium GRID2002.

[8] Chiu, K. Govindaraju, M. and Bramley, R.: Investigat-
ing the Limits of SOAP Performance for Scientific Comput-
ing, Bloomington, Indiana University.

[9] Chandra, S.: Performance Analysis of Soap, New Jersey
institute of technology, March 2002.

	P247:
	Numb:
	Numbx:
	C: 247
	L:
	R:

	P248:
	Numb:
	Numbx:
	C: 248
	L:
	R:

	P249:
	Numb:
	Numbx:
	C: 249
	L:
	R:

	P250:
	Numb:
	Numbx:
	C: 250
	L:
	R:

	P251:
	Numb:
	Numbx:
	C: 251
	L:
	R:

	P252:
	Numb:
	Numbx:
	C: 252
	L:
	R:

