
Parallel Sequence Mining on Cycle Stealing Networks

Calum Robertson
Centre for IT Innovation,

Queensland University of Technology,
Queensland, Australia

cs.robertson@student.qut.edu.au

Shlomo Geva
Centre for IT Innovation,

Queensland University of Technology,
Queensland, Australia

s.geva@qut.edu.au

Wayne Kelly
Centre for IT Innovation,

Queensland University of Technology,
Queensland, Australia
w.kelly@qut.edu.au

Abstract
Cycle stealing networks can convert a network of com-

puters into a virtual supercomputer. However, harnessing
this power for sequence mining is not a simple process.
Most parallel sequence mining algorithms suffer from high
inter-process communication costs which we effectively
eliminate with our data partitioning algorithm. We show
that this solution, running on the G2 [1] cycle stealing
network, offers substantial performance gains, finds nearly
all maximal sequences, with only a small percentage of
false positives.

1 INTRODUCTION

Cycle stealing applications such as SETI@HOME al-
low the unutilized compute power of PCs spread across the
Internet to be exploited. Data mining applications such as
sequence mining are computationally intensive and there-
fore could benefit from parallelisation in such an environ-
ment. Unfortunately, existing data mining algorithms,
such as (CD, DD, IDD) [2], pSPADE [3] and (DPF, STPF)
[4], require all or at least some candidates to be passed
between the nodes. While this works well on a traditional
supercomputer or on a dedicated cluster computer, it
doesn’t work well when utilising PCs spread across the
Internet. This is because direct communication between
fellow “volunteers” is extremely difficult if not impossible,
due to the presence of firewalls and the fact that volunteers
can come and go during the computation without notice.

We propose a new approach to parallelising sequence
mining problems that requires no communication between
fellow volunteers and therefore results in much better per-
formance in an Internet environment. The algorithm is
based on a sampling heuristic and so in general will pro-
duce only an approximation of the results obtained by an
exhaustive approach, but we show that in practice only a
small percentage of incorrect results are produced, which
we believe is acceptable for most applications.

In this paper we will briefly define the sequence mining
problem, and outline our serial algorithm, before intro-
ducing the G2 [1] grid computing environment in Section
4. We will then briefly outline our parallel algorithms,
and evaluate their performance, before presenting our con-
clusions.

2 PROBLEM DEFINITION

The sequence mining problem introduced by Agrawal
and Srikant [5] processes large transaction datasets to find
frequent sequential patterns with minimum support. A
sequence mining dataset contains a history for a number of
customers, each of which consists of a time ordered se-
quence of transactions. Each transaction consists of a set
of individual items. The same items can appear in multi-
ple transactions. An itemset is a subset of the items that
make up a transaction. A sequence is an ordered list of
itemsets that derive from successive transactions of a given
customer. A sequence is said to have p% support if it ex-
ists in at least p% of all customers. A sequence is said to be
maximal if no super-sequence exists with enough support.

3 SERIAL ALGORITHM

Our aim is to divide the sequence mining problem up
into manageable parts and allow each to operate independ-
ently prior to combining results. We decided to partition
the dataset into several small sub-datasets and perform a
complete sequence mining operation on each. This ap-
proach not only reduces the memory requirement but also
reduces I/O costs as the entire dataset doesn’t need to be
shifted in and out of memory. We chose the Apriori [5]
algorithm for processing the data, as it is a widely known
algorithm with well documented performance.

3.1 Apriori

The Apriori algorithm solves the sequence mining by
finding all itemsets, converting the dataset so each trans-
action represents the itemsets it contains, and finally find-
ing all sequences. Itemsets and Sequences are both found
by recursively generating candidates of increasing length,
counting their support and then subsequently pruning all
candidates that don’t have support.

A candidate containing n items/itemsets is called an n-
length candidate. All 2-length candidates are formed by
appending 1-length candidates. As items within an item-
set have to be ordered, items are appended in order, though
itemsets within a sequence can be appended in any order.
A n-length candidate is formed by finding two patterns

with the same (n-1)-length prefix and combining, such
that (0,1,2,3) and (0,1,2,4) make (0,1,2,3,4). Agrawal and
Srikant [6] propose that it is cheaper to validate that
(1,2,3,4) exists than it is to count the support of (0,1,2,3,4),
so we incorporated this into our implementation.

Support for a given itemset/sequence is only counted
once per customer to ensure that the minimum support
requirement is met.

3.2 DPA

The Data Partitioning Apriori (DPA) algorithm divides
the dataset into various equally sized sub-datasets that are
processed independently before all results are combined.
Partitioning is constrained because the size of the dataset
partitions must not be so small that even a single instance
of a sequence satisfies the minimum support constraint.
Therefore there is a strict limit to the number of times the
dataset can be partitioned.

The DPA algorithm requires that a percentage of parti-
tions (β) support a sequence for it to be included. This
condition ensures that sequence that is prominent in only a
minor partition does not appear in the overall results.

4 THE G2 CYCLE-STEALING FRAMEWORK

G2 [1] is an application framework, also developed at
QUT, for creating parallel applications that exploit the idle
cycles of networked PCs. The framework is designed to
make it both easy to develop simple new parallel applica-
tions (such as the sequence mining application described
in this paper) and easy to deploy such applications.

The G2 framework is designed for use on the new Mi-
crosoft .NET platform. This allows application program-
mers to choose from a number of implementation lan-
guages, while still providing a managed runtime environ-
ment in which the operations attempted by user code can
be carefully vetted so as to prevent malicious or accidental
damage to volunteered workstations (this is typically re-
ferred to as “sand-boxing”).

4.1 The G2 Programming Model

The G2 framework presents the application program-
mer with a programming model directly analogous to the
implementation and use of web services using ASP.NET.
To implement a section of code that is to be executed in
parallel, a G2 application programmer simply creates a
method and annotates it with a WebMethod attribute as
shown in the trivial example in Figure 1:

Figure 1: Sample G2 Method

This code is then used as input to a G2 utility program
that generates a proxy class that allows clients to make
multiple invocations of the designated Web Methods in
parallel (on volunteered machines). This is exactly analo-
gous to how proxy classes are generated in ASP.NET from
WSDL specifications. Client programs simply create an
instance of the automatically generated proxy class and
invoke its methods (asynchronously) in exactly the same
manner that they would invoke a regular local method.
The methods are invoked asynchronously in order to pro-
vide the possibility for them to be evaluated in parallel.
The standard .NET design pattern for asynchronous
method invocation is followed, so it should again be fa-
miliar to many .NET programmers.

4.2 G2 Internal Architecture

Each G2 Web Method invocation is transparently con-
verted by the client-side proxy class into a SOAP message,
which is then transported using HTTP to a G2 server ma-
chine. There the SOAP message is stored in a job reposi-
tory (a relational database) until a volunteer machine be-
comes available to execute it (see Figure 2).

Volunteered machines, when they would otherwise be
idle, request a job from the G2 server machine, de-serialize
the SOAP message, execute the method and send a SOAP
encoded result back to the server. The result is then fetched
by the client machine where it is used to provide a result
for the original asynchronous method call.

With the wide spread use of firewalls, we assume, pes-
simistically, that clients and volunteers may be located on
opposite sides of a firewall. We require only that the G2
Server is universally accessible by all clients and volun-
teers. Note that all communication is initiated by either
the clients or the volunteers; the clients push jobs to the
server and pull down results, while the volunteers pull
down jobs and push back results. This arrangement is
mandated by the assumption that the server cannot “push”
data to either the clients or the volunteers.

Figure 2: G2 Internal Architecture

4.3 G2 Application Deployment

Normally with ASP.NET web services, the software
components (referred to as assemblies in .NET) that im-
plement a web service need to be pre-deployed on a web
server. In our case, the “Web Methods” are actually exe-
cuted on a large collection of volunteer machines that are
owned by various individuals that may have no particular
relationship with the people wishing to run client applica-
tions. We cannot therefore hope to pre-deploy all client
applications to all volunteers, so we instead adopt a lazy
(and transparent) deployment strategy. All of the code,
both the portion to execute on the client machine and the
portion ultimately intended to execute on volunteer ma-
chines, initially resides only on the client machine. At
runtime, it is dynamically uploaded to the server machine
(if it is not already present) and from there dynamically
downloaded to the volunteer machines and stored in their
download assembly caches.

4.4 Isolated Storage

The same is true of any large data files that need to be
read by the code executing on the volunteers. They are
lazily uploaded to the server and then downloaded to the
volunteer machines where they stored in a special part of
the volunteer’s local file system called isolated storage that
is strictly managed by the .NET runtime environment.
Application code executing on the volunteer machines is
able to access files in this isolated storage, but are other-
wise unable to read or write to the local file system.

4.5 Volunteer Host

All of the G2 code that executes on the volunteer, in-
cluding the framework code that fetches jobs from the
server is hosted within a web browser. Volunteers simply
need to start their web browser and point it at a G2 Server
and they are instantly volunteering. Absolutely no code
needs to be pre-deployed on the volunteer machines apart

from a web browser and the (free) .NET framework SDK.
All G2 and application code that needs to execute on the
volunteer is automatically downloaded as required inside a
security context set up by the browser. If a volunteer
wishes to stop volunteering, they can simply shutdown or
kill the web browser process. If the volunteer was in the
middle of executing a job, that job will be automatically
picked up and re-executed (from the beginning) by some
other volunteer – i.e. the system is intrinsically fault toler-
ant to volunteers disappearing without notice.

5 PARALLEL ALGORITHMS

The G2 client program for DPA sequence mining will
create a number of jobs to be executed in parallel on the
volunteers. Each job consists of performing the standard
Apriori algorithm on a subset of the customers. Each vol-
unteer needs therefore only part of the total dataset in or-
der to perform its task. We investigate two alternative ap-
proaches to distributing this data to the volunteers.

The first approach involves sending to each volunteer
(using isolated storage) only the part of the data (PDDPA)
that it needs to complete the job it has currently been as-
signed. This requires the client to perform some initial
processing in order to create individual files for each job,
however, it minimizes the amount of data sent over the
network.

The second approach involves sending to each volun-
teer (again using isolated storage) the entire dataset
(EDDPA). This requires a lot more data to be sent over
the network initially, but since this data is cached on the
volunteers, subsequent mining operations on the same da-
taset will require no data to be sent to those volunteers. In
other words, we pay a high once off cost which is then
(hopefully) amortized over a number of sequence mining
operations.

When a volunteer receives the job it initially needs to
pre-process the data to extract the part it needs. In our
implementation we first calculate all items, within the sub-
dataset, with minimum support. We then transform the
data so that each transformed transaction contains at least
one supported item, and each customer contains at least
one transformed transaction. This process effectively re-
duces the search space, as there is no need to search
through items that don’t have support.

In our early work with PDDPA we attempted to transfer
the data to volunteers via a string SOAP variable in the
method call. Whilst this process requires none of the I/O
costs associated with isolated storage, it places unaccept-
able loads on the client, server and volunteer, due to the
serialization process. The variable to be serialized must be
memory resident, as must the generated XML. Deseriali-
zation normally requires the XML to be memory resident,
along with the created variable. For small datasets this is
not a major concern, though our 1,000,000 customer DS4

takes up 350MB in its base format. For a string variable
this effectively means 700MB of data must exist in mem-
ory simultaneously, which caused problems with the
512MB machines we tested on. Therefore isolated storage
is the most efficient solution for transmission of large da-
tasets.

6 RESULTS

The results section is divided into two distinct sections.
The first analyses the loss rate of the DPA algorithm,
whilst the second examines the performance gains ob-
tained on G2.

6.1 Lossy Performance

To analyse the effect of β we produced four synthetic
datasets, using software provided by the IBM Quest group
[5], defined in Table 2 (refer to Table 1 for parameter defi-
nitions). For all our tests we set N = 10,000, NI = 25000,
and NS = 5000.

Table 1: Synthetic Dataset Paramters

D Number of Customers

C Av. Transactions per Customer

T Av. Items per Transaction

S Av. Potentially Maximal Sequence Length

I Av. Potentially Maximal Itemset Length

N Number of Items

NS Number of Maximal Sequences

NI Number of Maximal Itemsets

Table 2: Dataset Definitions

Dataset

Parameter DS1 DS2 DS3 DS4

C 10 10 10 20

T 2.5 5 5 2.5

S 4 4 4 4

I 1.25 1.25 2.5 1.25

The results in Figure 3 show the percentage of maximal
sequences found for 100,000 customer datasets partitioned
100 times at 1% support. This is close to the limit for
partitioning yet it highlights that requiring too many sub-
datasets to support the sequence reduces the number of
maximal sequences found.

On the other hand Figure 4 shows that as β is reduced,
more false positives are found. This in turn reduces the
number of maximal sequences found, as false positives

tend to be supersets of actual maximal sequences. There-
fore, it seems that a value of β=60% is near optimal.

We tried reducing the minimum support requirement
for each partition, in an attempt to find more sequences,
but found that too many false positive results were found.

Figure 3: Results Vs β
Figure 4: False Positives Vs β

1%

10%

100%

1 10 100

Partitions

R
at

io

100k Customers 1m Customers

Figure 5: Candidates Checked Vs Partitions

To analyse the benefits of the DPA algorithm, we ran it
on the four datasets with both 100,000 and 1,000,000 cus-

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%βF
al

se
 P

o
si

ti
ve

s

DS1 DS2 DS3 DS4

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%βM
ax

im
al

 S
eq

u
en

ce
s

DS1 DS2 DS3 DS4

tomers at 1% support. We measured the number of candi-
dates generated, and the number of candidates that were
counted for support (the two major costs in the Apriori
algorithm). The results in Figure 5 show that for more
partitions there is a linear reduction in the number of can-
didates checked for support. This is due to the linear de-
crease in customers.

Figure 6: Candidates Vs Partitions

Figure 6 shows that the number of candidates generated
starts to increase as the data is partitioned more. The ef-
fect on the 100,000 customer dataset is very prominent
because at 100 partitions the 1% support requirement
means that only 10 customers must contain the candidate
for it to be significant. This emphasises our earlier state-
ment that there is a strict limit to the number of times the
dataset can be partitioned.

6.2 Parallel Performance

These algorithms were written in Microsoft C# .NET
using the Microsoft .NET 1.1 Framework. All tests were
performed on 800MHz Intel Pentium 3 PCs with 512MB
of memory. A 100Mb/s switching network was used,
though not exclusively for these tests.

Figure 7: EDDPA Vs PDDPA

The process times in Figure 7, for the 100,000 customer
DS1 at 1% support, demonstrates that, when data has been
pre-deployed, EDDPA is a lot cheaper than PDDPA.
However PDDPA speeds up reasonably well, so if only one

sequence mining operation needs to be performed, PDDPA
is preferable to EDDPA. Note that by speedup we refer to
the time taken to execute the code on a single volunteer
versus multiple volunteers.

Figure 8: Mean EDDPA 100k customer Speedup

Figure 9: DS1 EDDPA 1m customer Speedup

The results in Figure 8 show the mean speedup for all
datasets with 100,000 customers, whilst Figure 9 shows
the speedup for the 1,000,000 customer DS1, with varying
supports. They demonstrate that decreasing the support,
also decreases the speedup, though the effect is less sig-
nificant for larger datasets.

To analyse this effect we recorded the Fixed (candidate
generation, and pruning) and Dynamic (pre-processing,
transmission, support counting, and dataset conversion)
costs for each volunteer. The costs in Figure 10 show that
fixed costs become more significant, as the number of par-
titions increase. The results in Figure 5 highlight that the
support count cost reduces proportionally to the number of
partitions, and obviously the other dynamic costs reduce
with more partitions, as there is less data. Also results in
Figure 6 demonstrate that the candidate generation cost
remains relatively constant.

0

100

200

300

400

0 2 4 6 8 10

Volunteers

T
im

e
(s

ec
o

n
d

s)

PDDPA

EDDPA

0

2

4

6

8

0 2 4 6 8 10

Volunteers

S
p

ee
d

u
p 1%

0.80%

0.60%

0

2

4

6

8

10

12

0 2 4 6 8 10

Volunteers

S
p

ee
d

u
p

1% 0.80% 0.60%

80%

100%

120%

140%

0 20 40 60 80 100

Partitions

R
at

io

100k Customers 1m Customers

Therefore these results indicate that the performance of
parallel DPA algorithms are limited by the ratio of fixed to
dynamic costs. If the fixed costs are equivalent to the dy-
namic costs at a 100,000 customer partition, then there is
no benefit in creating smaller partitions.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10

Volunteers

C
o

st

100k Fixed 100k Dynamic

1m Fixed 1m Dynamic

Figure 10: DS1 EDDPA at 1% Costs Per Volunteer

Figure 11: DS1 EDDPA at 1% Process Vs Produce

However, to verify this effect, we measured the cost of
result processing versus production. Result production
costs are the costs associated with producing all the jobs,
and having the volunteers process them all. Result process
costs are the costs associated with retrieving the volun-
teers’ results, combining them and finally eliminating all
but those with β% support amongst the partitions. The
results shown in Figure 11 indicate that process costs start
to increase with more partitions. This is due to an increase
in the number of results, as each partition, no matter the
size, will produce a similar number of results to that pro-
duced by processing the whole dataset. Of course Figure 6
shows that the more times the data is partitioned, the more

candidates are generated, and therefore there is a higher
chance of there being more results.

Interestingly the result process versus result production
costs is not nearly as severe as the volunteer fixed versus
dynamic costs. This effect can be attributed to the asyn-
chronous nature of the G2 environment, where jobs are not
created simultaneously, and therefore results are not sub-
mitted simultaneously. With this in mind it is possible to
predict when an individual job will be inefficient, though
is it is not as easy to predict when the whole process will
become inefficient.

7 CONCLUSIONS

We have shown that the DPA algorithm can find the
majority of maximal results, with a very small percentage
of false positives. Our results show that substantial per-
formance gains can be achieved for large datasets for
EDDPA, though gains are limited by the complexity of the
dataset. We have also shown that the PDDPA algorithm
offers good gains for situations where EDDPA is not pref-
erable. Though we used the Apriori algorithm, other algo-
rithms could provide better gains, which we hope to estab-
lish in future work.

The G2 framework, outlined in this paper, enables the
power of local intranets, and the internet, to be harnessed
for parallel computing. Its application to the sequence
mining problem has shown its benefits, and in future we
will demonstrate its effect on other problems.

8 REFERENCES

[1] Kelly, W.A., P. Roe, and J. Sumitomo, G2: A Grid Middle-
ware for Cycle Donation using .NET. In Proceedings of The
2002 International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas. June
2002.

[2] Joshi, M.V., E. Han, K. G., and V. Kumar, Efficient Paral-
lel Algorithms for Mining Associations. Lecture Notes in
Artificial Intelligence, 2000: p. 83-126.

[3] Zaki, M., Parallel Sequence Mining on Shared-Memory
Machines. Journal of Parallel and Distributed Computing,
2001(61): p. 401-426.

[4] Guralnik, V. and G. Karypis, Parallel Formulations of Tree-
Projection-Based Sequence Mining Algorithm. Technical
Report 03-0003, University of Minnesota, Minneapolis,
2003.

[5] Agrawal, R. and R. Srikant, Mining Sequential Patterns. In
Proceedings of 11th International Conference on Data En-
gineering, Taipei, Taiwan. 1995: p. 3-14.

[6] Agrawal, R. and R. Srikant, Mining Sequential Patterns:
Generalizations and Performance Improvements. In Pro-
ceedings of 5th International Conference on Extending
Database Technology, Avignon, France. 1996. Springer-
Verlag: p. 3-17.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10

Volunteers

C
o

st

100k Process 100k Produce

1m Process 1m Produce

	P129:
	Numb:
	Numbx:
	C: 129
	L:
	R:

	P130:
	Numb:
	Numbx:
	C: 130
	L:
	R:

	P131:
	Numb:
	Numbx:
	C: 131
	L:
	R:

	P132:
	Numb:
	Numbx:
	C: 132
	L:
	R:

	P133:
	Numb:
	Numbx:
	C: 133
	L:
	R:

	P134:
	Numb:
	Numbx:
	C: 134
	L:
	R:

