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Abstract 
This paper describes an improved Stochastic Competi-
tive Evolutionary Neural Tree (SCENT). Adaptive Prun-
ing algorithm is introduced. The idea is to construct the 
optimal neural tree structure with a two-phase pruning 
algorithm, which penalise the incompetent clusterer. The 
comparative results suggest that the method is fairly 
efficient in terms of simple structure, fast learning speed 
and relatively high clustering performances. 
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INTRODUCTION 
The original motivation and objective for using the adap-
tive pruning, was mainly trying to optimise the cluster-
ing performance by penalise the insufficient clusterer. 
The improved model is improved the idea of the Sto-
chastic Competitive Evolutionary Neural Tree (SCENT) 
which provides hierarchical classification of unlabelled 
data. The network produces stable classificatory struc-
tures by repeatedly restructuring the insufficient branch 
of the classification tree based on internal relation be-
tween members. 

Stochastic Competitive Evolutionary Neural Tree 
(SCENT) model [7, 8] attempts to combine the advan-
tages of using a tree structure, and of growing the net-
work. SCENT show promise in their ability to produce 
stable yet flexible hierarchical structures.  

The nature of the hierarchical structure and the quality 
of the final classification produced by the networks is, 
however, very strongly influenced by the values given to 
externally set parameters.  The SCENT network does not 
require externally set parameters, it is therefore able to 
explore data sets without external influence. 

STOCHASTIC COMPETITIVE EVOLUTIONARY 
NEURAL TREE (SCENT) 

Top-Level Algorithm 
In SCENT [7, 8], the evolution of the neural tree starts 
the original root node produces a child group which has 
2 randomly positioned children. They have tolerance 
(the radius of its classificatory hypersphere) set to stan-
dard deviation of input vectors and its position is set to 
the mean of input vectors.  

There are two counters, calls inner and outer, which 
count the number time of classified input vector from 
distance of within or outside tolerance respectively. 

These counters defined neural tree should grow children 
or sibling once. It is decisioned that growth is to be al-
lowed. When a node is allowed to grow, then its inner 
counter will be greater than its outer counter and it cre-
ates two children. Otherwise, it produces a sibling node. 
The process of growth is illustrated in Figure 1. 

 
 

Figure 1. The wining leaf node can grow, (a) children 
nodes are growth, called downgrowth and (b) side-

growth in which sibling node is growth. 

 

 
Figure 2. The SCENT models, nodes that are ineffec-

tive can be pruned (on the left) when it is also re-
moved (on the right). 

 

This algorithm is called Top-Level Algorithm which a 
recursive search through the tree is made for a winning 
branch of the tree. Each node which win of branch is 
moved top-down towards from input data using the stan-
dard competitive neural network update rule. The weight 
vectors of leaf nodes provide bottom level code-vectors 
the higher level nodes give representations of the cen-
troids of their corresponding clusters. 

Pruning algorithms are divided that two section, short 
term and long term for efficiently delete. The short-term 
pruning, nodes are immediately deleted when they are 



early life which has error more than set to error accep-
tance. The long-term pruning delete node when has ac-
tivity less than a threshold value, illustrated in Figure 2. 

Stochasticity 
Interest in stochastic method, from the fact that in real 
world problems, the cost function seldom succeed in 
defining precisely the real optimality of the solution. The 
optimality condition is far too complex to be understood 
by any particular formula, in such cases it is desirable to 
have methods, which can suggest a set of goods demon-
strate such behaviour.   

Due to the randomise involved, stochastic method the 
can handle the cost function and can be considered as 
promising candidates for solving real world problems. 

 

 
Figure 3. Decision Based Stochasticity. The probabil-

ity of accepting a decision produced in the left is 
crisp while the probability of accepting a decision in 

the right is fuzzy. 

 

One of the main goals of neural network researches has 
been to build the system the mimic the ability of humans 
to solve the real world problem. Curiously, tradition ap-
proaches in solving have been based on the two valued 
logic. This is a form of hard computing which based on 
precision and certainty. It is in sharp contrast to real 
human reasoning or what is known as common-sense 
which is based on approximate, rather than precise com-
puting methods. 

Adding Stochasticity to a deterministic version (CENT) 
[1, 2] could have some benefit in helping the model 
avoid local minima in its implicit cost function. There 
are two different ways in which stochasticity can be 
added to the model [8].  

Firstly the deterministic decisions relating to growth and 
pruning can be made probabilistic, it is called Decision 
Based Stochasticity. The Decision Base Stochasticty has 
3 procedures which decisions growth allow, grow type 
(downgrowth or sidegrowth) and short-term pruning.  

Secondly the attributes inherited by nodes when they are 
created can be calculated with a stochastic element, it is 
called Generative Stochasticity by changing tolerance 

values from deterministic function that new tolerance is 
same every node are created , to stochastic values is ran-
domness effect to new node more flexibility. 

 

 
    

Figure 4. Generative Stochasticity. In deterministic 
version (CENT) [1, 2] both children have the same 
value of tolerance (in left crisp). In SCENT a Gaus-
sian is superimposed on the deterministic value to 
generate 2 different child tolerances (in right crisp). 

 

To both of these approaches a simulated annealing proc-
ess can be added to mediate the amount of non-
determinism in a controlled way, so that a decreasing 
temperature allows for less randomness later in the life 
of the network.  

The Decision will be deterministic which integration of 
stochastic decision based and simulated annealing. De-
terministic version performed well on artificial training 
set and adding stochasticity still allowed high quality 
trees to be produced. 

AN IMPROVED STOCHASTIC COMPETITIVE 
EVOLUTIONARY NEURAL TREE (SCENT) 
All dynamic networks have to overcome the problem of 
creating too many nodes and over classifying the data 
set. These can potentially be a node produced to classify 
each input vector. In order to prevent over classification, 
the technique of adaptive pruning in order to create op-
timal classification nodes is introduced to the original 
SCENT model.  

The improved SCENT has been reengineered in order to 
improve the clustering performances. There are a few 
changes in an updated SCENT model in which the prun-
ing process is repeatedly applied after the final process 
of the classification has been done.  

Every branches of classification of the final tree is evalu-
ated by a flat clustering measure. The inadequate branch 
is deleted and the process of classification will be re-
peated once to produce a final optimal classification tree. 



Algorithm Description 
There are 4 major phases in the program: initialisation, 
main loop, tidy up loop and adaptive pruning loop. In 
the initialisation phase, the necessary parameters are set, 
data files are read and a root node is created. In the sec-
ond phase, the main loop, the tree is allowed to grow and 
is systematically pruned. The third phase consists of ti-
dying up the final position of nodes in a tree. The final 
phase, the worse branch of the root’s child is deleted and 
the remaining tree is restructured by repeating clustering 
process in order to improve its performance. Each phase 
is described below using pseudocode. 

Initialisation 
1. Set maximum epoch and learning rate 

2. Read parameter file 

3. Set tolerance of a root node using standard devia-

tion of input vectors 

4. Create RootNode and 2 initial children nodes and 

set their tolerance  

Main Loop 
- While epoch < maximumepoch Do  

- Shuffle inputvectors

- For each input vector

- Set CurrentNode      RootNode

 Do 

�  

- Increment time 

- Update weights, activity, and error of 

CurrentNode 

- While CurrentNode      NULL� Do

- Find WinnerNode  from children 

of CurrentNode 

- Update  inner and outer counter 

of WinnerNode 

- Update weights, activity and error 

of WinnerNode 

- If WinnerNode is allowed to 

grow Then 

- If outer > inner Then 

- Create  Side-growth

(WinnerNode) 

- Initialise Winner-Node

 

-  Else               

-  Create  Down-growth

(WinnerNode)  

- Initialise Winner-Node 

- If  child of WinnerNode is not 

NULL Then 

- Increment level of a tree 

- Set 

WinnernodeeCurrentnod �  

- Else    

- Set 

NULLeCurrentnod �  

- EndWhile 

- Calculate Sum of Square Error of a 

tree 

- Update activity and error of a tree 

- EndFor 

- Perform Short-term Pruning(RootNode)  

- Perform Long-term Pruning(RootNode) 

Tidy up loop 
- While epoch < tidyup epoch Do  

- Shuffle inputvectors 

- For each input vector Do 

- Set CurrentNode      RootNode�  

- Increment time 

- Update weights, activity, and error of 

CurrentNode 

- While CurrentNode     NULL 

- Find WinnerNode  from children 

of CurrentNode 

- Update inner and outer counter of 

WinnerNode 

- Update weights, activity and error 

of WinnerNode 

- If WinnerNode’s child is not 

NULL Then 

- Increment level of tree 

- Set 

WinnernodeeCurrentnod �  

�

�

cfookes
Do



- Else    

- Set 

NULLeCurrentnod �  

- EndWhile 

- Calculate Sum square Error of a tree 

- Update activity and error of a tree 

- EndFor 

- Perform Pruning TidyUp(RootNode) 

Adaptive Pruning loop 
- While epoch < adaptivepruning epoch Do  

- Root’s child: Delete the worse branch perform-

ance (minimum Gamma Measure) 

- Repeat Step Main Loop 

- Repeat Tidy up Loop 

- Restructure Tree  

Clustering Measures 
The general goal in many clustering applications is to 
arrive at clusters of objects that show small within-
cluster variation relative to the between-cluster variation 
[4]. Clustering is difficult as many reasonable classifica-
tions may exist for a given data set, moreover it is easy 
for a clusterer to identify too few or too many clusters. 
Suitable cluster criterion measures are therefore needed 
[3, 4, 5]. There are two types of clustering measure: ones 
that variety the flat clustering performance of the leaf 
nodes and ones that variety the hierarchical structure. 

The Gamma method [3] , which measures the flat parti-
tioning performance, and the Hierarchical Correlation 
method [5], that assesses the hierarchical structure in a 
neural tree network. The methods are as follows: 

 

 
 

Figure 5. The distance within and between cluster 
used in calculating Gamma. If D1 is less than D2 

then s(+) is incremented and s(-) represents the op-
posite relationship to s(+). 

Gamma: s(+) is number of times when two points not 
clustered together are further apart than two points 
which are in the same cluster and s(-) is the number of 
times when two point not clustered together are closer 
than two points which are in the cluster. It is compute 
as, 
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The maximum value indicated the optimal solution. This 
technique has an upper bound of +1 and a lower bound 
of -1. 

EXPERIMENT 

Data Sets 
The networks considered in this paper were run over 
nine different types of data, ranging from a small data 
set to a large data set. There are two 2-dimensional and 
two higher dimensional artificial data sets are used. 
These data sets have cluster structure 4 to 27 classes.  

There are nine real world data sets, one example is the 
well known IRIS data set which consists of 150 instances 
of 4 attributes describing sepal length, sepal width, petal 
length and petal width of the iris flower. 

RESULTS 
In order to know how well the improved SCENT per-
forms over SCENT, the comparative results of improved 
SCENT, SCENT and CENT (deterministic model) are 
presented. The corresponding models were applied to all 
nine data sets three times; the resulting trees were evalu-
ated using the cluster measure. 

 

Table 1. Average gamma measures of the classifica-
tions produced by the 3 neural network models 

tested over 9 data sets. The value closed to 1 repre-
senting the best performance. 

 

Neural Classifiers Average Standard Deviation 

CENT 0.827 0.131 

SCENT 0.841 0.171 

Improved SCENT 0.850 0.147 

 

Table 1 represents the average and standard deviation of 
the gamma measure. The performance of the improved 
SCENT was clearly better than other two networks. The 
improved SCENT model produced excellent results in 
terms of flat and hierarchical clustering measures when 
viewed as a straightforward cluster, illustrated in Figure 
6, giving comparable performance to the SCENT and 
CENT. It also produced useful, compact and repeatable 
tree structure so represent any hierarchical information 
in the data. 

 



  
(a) CENT 

  
(b) SCENT 

 

  
(c) Improved SCENT 

 

Figure 6. Leaf node positions of 3 models tested 
over a representative data set. 

 

CONCLUSIONS 
Using neural networks to perform data exploration is 
difficult; most models require the preimposition of a 
maximum number of clusters, and will normally classify 
the data to utilise all classificatory units.  There is a 

question of when to stop training and so when to stop 
pruning.  

Therefore, introducing adaptive pruning by penalise the 
insufficient classification nodes could balance the scale 
factor of the misclassification and it can be controlled 
dynamically.  

Using Adaptive Pruning is an interesting and promising 
approach as a way of taking advantage of the learning 
advantages of larger systems while avoiding their over 
fitting problems. 

The performance of the propose network (improved 
SCENT) over a wide range of data sets has been pre-
sented and it has been shown to provide a good interpre-
tation of the real world data set, and to produce better 
classifications compared to the SCENT and the CENT 
over the nine data sets. The network has shown also that 
it can handle large data sets. 

The improved SCENT model has produced a consis-
tently good performance over all of the data set pre-
sented, has maintained the quality of performance and 
has improved reliability. Further work is being carried 
out to determine the best combination of restructuring 
mechanisms for measuring both flat and hierarchical 
clustering on the stochastic model. 
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