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Abstract

Automated image interpretation is an important task in
numerous applications ranging from security systems to
natural resource inventorization based on remote-sensing.
Recently, a second generation adaptive machine-learned
image interpretation system (ADORE) has shown expert-
level performance in several challenging domains. Its ex-
tension, MR ADORE, aims at removing the last vestiges of
human intervention still present in the original design of
ADORE. Both systems treat the image interpretation pro-
cess as a finite-horizon non-discounted Markov decision
process guided by a machine-learned heuristic value func-
tion. Therefore, the key task in automated development of
such systems lies with acquiring the optimal control pol-
icy. This paper employs a new leveraging algorithm for
regression (RESLEV) to improve the learnability of the op-
timal value function in MR ADORE. Experiments show that
RESLEV improves the system’s performance if the base
learners are weak. More surprisingly, empirical evidence
indicates that reducing the regression error can lead to
worsening the overall performance of the system. We dis-
cuss this phenomenon thereby opening an exciting novel re-
search direction.

Keywords: adaptive image interpretation system, boosting,
leveraging for value function regression, sequential decision
making, reinforcement learning.

1. Introduction

Image interpretation is an important and highly challeng-
ing problem with numerous practical applications. Hand-
crafted image interpretation systems suffer from an expen-
sive design cycle, a high demand for human expertise in
both subject matter and computer vision, and the difficul-
ties with portability and maintenance. Over the last three
decades, variousautomatedways of constructing image in-
terpretation systems have been explored [7].

One of the promising approaches to automatic acquisi-

tion of image interpretation systems lies with treating com-
puter vision as a control problem over a space of image pro-
cessing operators. Early attempts used the schema theory
[2, 3]. While presenting a systemic way of designing image
interpretation systems, the approach was stillad-hocin its
nature and required extensive manual design efforts [9].

In the 1990’s the second generation of control policy
based image interpretation systems came into existence.
More than a systematic design methodology, such systems
used theoretically well-founded machine learning frame-
works for automatic acquisition ofcontrol strategiesover a
space of image processing operators. The two well-known
representatives are a Bayes net system [21] and a Markov
decision process (MDP) based system [8].

The latter system ADORE (ADaptive Object REcogni-
tion) [8] and its extension MR ADORE (Multi-Resolution
ADaptive Object REcognition) [17] learn dynamic image
interpretation strategies for finding target objects in images.
As with many vision systems, they identify objects in a
multi-step process. The input is a raw image, and the output
is an interpretation identifying target objects in the image;
in between, the data can be represented as intensity images,
probability images, edges, lines, or curves. The systems
model image interpretation process as a Markov decision
process, where the intermediate representations are continu-
ous state spaces, and the vision procedures are actions. The
goal is to learn a dynamic control policy that selects the next
action (i.e., image processing operator) at each step so as to
maximize the quality of the final interpretation. Instead of
learning the policy directly, the systemlearns the optimal
value function as the heuristic for the MDP-based policy.

In this paper we consider the problem of ensemble learn-
ing (in particular, leveraging [20]) for the value function in
MR ADORE. The task of recognizing tree canopies from
aerial photographs (i.e., labeling pixels belonging to tree
canopies in an input image) is used as the testbed.

The rest of the paper is organized as follows. Section 2
reviews the requirements and design of MR ADORE. Sec-
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Figure 1. Artificial tree plantations result in
simple forest images. Shown on the left is
an original photograph. The right image is its
desired labeling provided by an expert as a
part of the training set.

2. MR ADORE Overview

2.1. Design Objectives

MR ADORE [20] was designed with the following ob-
jectives as its target: (i) rapid system development for a
wide class of image interpretation domains; (ii) low de-
mands on subject matter, computer vision, and AI expertise
on the part of the developers; (iii) accelerated domain porta-
bility, system upgrades, and maintenance; (iv) adaptive im-
age interpretation wherein the system adjusts its operation
dynamically to a given image; (v) user-controlled trade-offs
between recognition accuracy and resources utilized (e.g.,
time required).

These objectives favor the use of readily available off-
the-shelf image processing operator libraries (IPL). How-
ever, the domain independence of such libraries requires an
intelligent policy to control the application of library oper-
ators. Operation of such control policy is a complex and
adaptive process. It iscomplexin that there is rarely a one-
step mapping from image data to image label; instead, a se-
ries of operator applications are required to bridge the gap
between raw pixels and semantic objects. Examples of the
operators include region segmentation, texture filters, and
the construction of 3D depth maps. Figure?? presents a
partial IPL operator dependency graph for the forestry do-
main.

Image interpretation is anadaptiveprocess in the sense
that there is no fixed sequence of actions that will work well
for all/most images. For instance, the steps required to lo-
cate and identify isolated trees are different from the steps
required to find connected stands of trees. Figure 3 demon-
strates two specific forestry images that require significantly
different operator sequences for satisfactory interpretation
results.

The success of adaptive image interpretation systems
therefore depends on the solution to the control problem:
for a given image, what sequence of operator applications
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Figure 2. Data types (the boxes) and im-
age processing operators (the arcs) in MR
ADORE. Representatives of data tokens of
each types are shown next to the nodes.

will most effectively and reliably interpret the image?

2.2. Operation

MR ADORE starts with the Markov decision process
(MDP) as the basic mathematical model by casting the IPL
operators as the MDP actions and the results of their appli-
cations as the MDP states. In the context of image inter-
pretation, the formulation frequently leads to several chal-
lenges absent in the standard heuristic search/MDP domains
such as the grid world, the 8 puzzle [22], etc. (i) Each
individual state is so large (on the order of several mega-
bytes), that we cannot use standard machine learning algo-
rithm to learn the heuristic function. Selecting optimal fea-
tures for sequential decision-making is a known challenge
in itself. (ii) The number of allowed starting states (i.e., the
initial high-resolution images) alone is effectively unlim-
ited for practical purposes. In addition, certain intermedi-
ate states (e.g., probability maps) have a continuous nature.
(iv) There are many image processing operators (leading to
a large branching factor); moreover, many individual op-
erators are quite complex, and can take hours of computa-
tion time each. (v) Goal states are not easily recognizable
as the target image interpretation is usually not knowna
priori . This renders the standard complete heuristic search
techniques (e.g., depth-first, A*, IDA* [19]) inapplicable
directly.

In response to these challenges MR ADORE employs the
following off-line and on-line machine learning techniques.
First, we can use training data (here, annotated images) to
provide relevant domain information. Each training datum
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(a) Input image (b) Desired output

Figure 1. The left image is an original pho-
tograph. The right one is the corresponding
desired labeling provided by an expert as a
part of the training set.

tion 3 gives a brief overview of boosting/leveraging meth-
ods. Section 4 presents and discusses the experimental re-
sults. Finally, section 5 concludes the paper and points out
several interesting future research directions.

2. MR ADORE design

MR ADORE was designed with the following objec-
tives: (i) rapid system development for a wide class of im-
age interpretation domains; (ii) low demands for subject
matter, computer vision, and AI expertise on the part of the
developers; (iii) accelerated domain portability, system up-
grades, and maintenance; (iv) adaptive image interpretation
wherein the system adjusts its operation dynamically to a
given image; (v) user-controlled trade-offs between recog-
nition accuracy and resources utilized (e.g., time required).

2.1. Overview

The objectives above favor the use of readily avail-
able off-the-shelf image processing operator libraries (IPL).
However, the domain independence of such libraries re-
quires anintelligent policyto control the application of li-
brary operators. Operation of such a control policy is a com-
plex and adaptive process [5]. It iscomplexin the sense that
there is rarely a one-step mapping from input images to their
interpretations; instead, a series of operator applications are
required to bridge the gap between raw pixels and semantic
objects. Examples of the operators include region segmen-
tation, texture filters, and the construction of 3D depth maps
(see Figure 2 for a simplified example).

Image interpretation is anadaptiveprocess in that there
is no fixed sequence of actions that will work well for most
images. For instance, the steps required to locate and iden-
tify isolated trees are different from the steps required to
find connected stands of trees. Figure 3 demonstrates two
specific forestry images that require significantly different
operator sequences for satisfactory interpretation results.

The success of MR ADORE therefore depends on its
control policy: given an input image, how to select a se-
quence of operators to interpret the image most effectively?
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Figure 2. Data types (the boxes) and im-
age processing operators (the arcs) in MR
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2.2. Learning control policies

MR ADORE starts with the Markov decision process
(MDP) as the basic mathematical model by casting the IPL
operators as the MDP actions and the results of their appli-
cation as the MDP states. Then it learns an approximation
to the optimal value function.

First, it uses training data (here, annotated images) to
provide relevant domain information. Each training da-
tum is a source image, annotated by an expert with the de-
sired output. Figure 1 demonstrates a training datum in the
forestry image interpretation domain.

Second, during the off-line stage the state space is ex-
plored via limited depth expansions of training images.
Within a single expansion, all sequences of IPL operators up
to a certain user-controlled length are applied to the train-
ing image. Since training images are user-annotated with
the desired output, terminal rewards can be computed based
on the difference between the produced labeling and the de-
sired labeling. Then, dynamic programming methods [4]
are used to compute the optimal value function for the ex-
plored parts of the state space. Note that MR ADORE does
not use a discounting factor, making the entire problem a
finite horizon non-discounted MDP. We represent the value
function asQ : S × A → R whereS is the set of states
(image tokens) andA is the set of actions (IPL operators).
The optimalQ(s, a) computes the maximum cumulative re-
ward the optimal policy can expect to collect by taking ac-
tion a in states and acting optimally thereafter [24]. As
the raw state descriptions are on the order of mega-bytes
each, we first abstract each states into a set of featuresf(s)
using an abstraction functionf(·). Then supervised ma-
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Figure 3. Adaptive nature of image recognition: two different input images require significantly
different satisfactory operator sequences. Each node is labeled with its data type. Each arc between
two data tokens is shown with the operator used.

chine learning extrapolates the sampleQ∗-values computed
by dynamic programming on the explored fraction of the
state space onto the entire space.

Finally, when presented with a novel input image to
interpret, MR ADORE first computes the abstracted ver-
sion f(s), then applies the machine-learned approxima-
tion to the value functionQ(·, ·) to computeQ(f(s), a)
for each IPL operatora; it then performs the action
a∗ = arga max Q(f(s), a). The process terminates when
the policy executes actionsubmit( 〈labeling 〉) where
〈labeling 〉 becomes the system’s output.

3. Boosting and leveraging methods
Boosting and leveraging have their roots in the PAC

(Probably Approximately Correct) [25] learning model. A
learnerLs for concept classC is a (strong) PAC learner, iff
with anarbitrarily high probability,Ls produces a hypoth-
esish with arbitrarily high accuracy. The requirement of
being arbitrarily accurate with an arbitrarily high probabil-
ity is removed for weak learners. For example, a learner
that produces hypotheses a little better than random guess-
ing is a weak learner. An algorithm has thePAC-boosting
property iff it can boost any weak PAC learner to a strong
PAC learner [11].

Both boosting and leveraging methods work by repeat-
edly producing base hypotheses with modified training data,
then using them to extend and modify the training data set,
and then combining them into a final hypothesis that are

better than any individual base hypothesis. While boosting
methods provably have the PAC-boosting property, leverag-
ing methods may or may not.

Since Schapire proposed the first provable polynomial
time boosting algorithm [22], a number of boosting and
leveraging algorithms have been developed [6, 10, 12, 13,
14, 16]. They are conceptually gradient-descent algorithms
that iteratively increase the accuracy of the final hypothe-
sis by decreasing some associatedpotential functions. Re-
cently a simple and straightforward leveraging algorithm
called RESLEV (Figure 4) [19] has demonstrated the abil-
ity to improve the accuracy of a hypothesis by iteratively
learning the previous ensemble hypothesis’ residuals (i.e.,
errors) of predictions on training data. Experiments on the
Friedman datasets [15] indicate the algorithm’s effective-
ness [18, 19].

Definitions: Given a hypothesish and a set of training data

S = {(x1, y1), (x2, y2), · · · , (xN , yN )}

thesample errorof h onS is defined as:

êrrS(h) =
1
N

N∑
i=1

[yi − h(xi)]2

Let P be a probability distribution on the whole instance
space, thegeneralization errorof h with respect toP is
defined as:

errP(h) = EP [y − h(x)]2

3
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ResLev (S, R, Tmax)

Input: A set of training samples
S = {(x1, y1), (x2, y2), · · · , (xN , yN)};

A base regressor R;
Maximum number of iterations Tmax

1. Initialize ensemble hypothesis H0 ≡ 0

2. For t = 1, · · · , Tmax Do

(a) Apply R on S and produce a base hypothesis ht

(b) Ht = Ht−1 + ht

(c) Modify data in S: ∀i, yi = yi − ht(xi)

3. Output final ensemble hypothesis HTmax

1

Figure 4. RESL EV: Residual Leveraging

where(x, y) is drawn randomly according toP.

The following theorem gives asufficientcondition under
which RESLEV will decrease the sample error, based on the
relation between the training data and the sample error.

Theorem 1 [19] Given any training set T =
{(u1, v1), (u2, v2), · · · , (uM , vM )}, if the learner L
produces a hypothesish that satisfies

M∑
i=1

v2
i >

M∑
i=1

(vi − h(ui))2 = M · êrrT (h) (1)

thenRESLEV reduces the sample error with the learnerL.

RESLEV reduces sample error by repeatedly reducing
the residuals of predictions over the training data. Assum-
ing that the training data and test data are both drawn from
an unknown distributionP, it is expected that a small sam-
ple error implies a small generalization error [1], provided
that the ensemble hypothesis is sufficiently simple1.

4. Empirical evaluation

We applied RESLEV to learning the optimal value func-
tion Q(·, ·) in MR ADORE. Multi-layer feed-forward neu-
ral networks were used as the base learners/regressors.
Common sets of features including RGB-HISTOGRAM,
HSV-HISTOGRAM, HSV-MEAN, textural features, etc.
were used. Experiments were run with combinations of dif-
ferent features and neural network topologies, as shown in
Figure 5 and 6. Three measures: sample and generalization
errors in the Q-function and the value of the resulting MR
ADORE control policy were computed.2

Thirty two forestry aerial images with user-annotated la-
beling were used in our experiments. Since the training data

1The risk of overfitting increases with the complexity of the hypothesis.
2The control policy value was computed as the ratio of the cumulative

reward collected by the resulting control policy to the optimal reward.

are quite limited, leave-one-out cross-validation was em-
ployed for evaluation. In each run, one image was selected
for testing while the other thirty one images were used to
train MR ADORE (i.e., to learn the functionQ(·, ·)). The
three performance measures were then averaged over all the
thirty two runs.

Figure 5 shows the experimental results3. For compar-
ison, experiments with the random policy (i.e., the system
randomly selects an operator to apply on the current token)
were tried and an average relative reward of26.3% was at-
tained. Obviously, learning in all experiments increases the
system’s performance: the average relative reward ranges
from 53% to 85%.

Several observations are in order. First, the leverag-
ing process reduces the regression errors in theQ-function
when the base learners are weak (e.g., SET#4). On the other
hand, it can actuallyincreasethe errors when the base learn-
ers are strong to begin with (e.g., SET#3 and #5). An inves-
tigation of this phenomenon revealed that with stronger base
learners condition (1) of Theorem 1 is often violated.

Second, leveraging can often improve the value of the
policy while decreasingthe regression accuracy (e.g., with
SET#2). The reverse phenomena takes place as well. Fur-
thermore, such a divergence between the effects of leverag-
ing on regression errors and the performance of the control
policy was recorded even with boosting algorithms such as
SQUARELEV.R [12] [18]. These observations provide em-
pirical support for the following claim:

Claim: decision-making problems behave differently from
regression problems in terms of boosting/leveraging meth-
ods applied to the value function.

Note that if the optimal value function can be learned
with an arbitrary precision then the resulting control policy
can be made arbitrarily close to the optimal policy (cf. [23]
for an analysis of discounted cases). In practice, however,
the complexity of sequential decision-making frequently
does not allow to learn the optimal value function arbitrar-
ily well. This paper demonstrate that in such cases and in
the absence of discounting leveraging/boosting methods can
have opposite effects on regression error vs. value of the re-
sulting control policy. Therefore, it is of interest to develop
leveraging and boosting methods that optimize the control
policy valuedirectly.

5. Conclusions and future directions

Future Work: As discussed in previous sections, primary
future directions include: (i) employing other base regres-
sion algorithms so that the condition (1) in Theorem 1 is
satisfied and thus RESLEV can be of help; (ii) investiga-
tion of the generalization error of RESLEV, and whether
it has the PAC-boosting property. (iii) comparing the ef-

3Detailed and up-to-date results are available at [18].
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Figure 5. Experiments on MR ADORE us-
ing RESL EV. Different combinations of fea-
tures and neural network topologies were
tried, and three performance measures (sam-
ple/generalization errors and average relative
reward) were adopted.
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suggest the different behaviors between a
regression problem and a decision-making
problem in terms of boosting/leveraging
methods applied to the value function.
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fectiveness of RESLEV to that of other boosting/leveraging
algorithms; (iv) developing new boosting/leveraging algo-
rithms that directly optimize theoverall decision-making
performance as opposed to the regression error (such as
sample/generalization errors) of the value function.

Contributions: In this paper we consider a state-of-the-art
adaptive image interpretation system that casts vision as a
non-discounted finite-horizon MDP control problem over
a library of image processing operators. The key learning
task in such systems is automated acquisition of the optimal
control policy. We apply two recent leveraging algorithms,
RESLEV and SQUARELEV.R, to learning the optimal value
function. Experiments in the real-life domain of forest im-
age interpretation indicate that (i) leveraging is indeed use-
ful in improving complex sequential decision-making poli-
cies, and (ii) reducing the regression error in the value func-
tion can actuallydecreasethe overall interpretation perfor-
mance (i.e., the value of the resulting control policy). Con-
sequently, the paper opens a novel research direction of de-
veloping boosting/leveraging algorithms that target reduc-
ing the control policy value directly.
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