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Abstract

We propose a generalized kernel PCA which provides
much more accurate information of kernel space. Calcu-
lating partial derivatives of eigenvalues with kernel param-
eters, we can obtain the optimal kernel parameters. The
criterion for optimal parameters are given by a quadratic
cost function with respect to eigenvalues. We compared our
method with SVM for face recognition, and showed that our
method works efficiently as expected.

1. Introduction

Kernel based methods work by mapping data into a high
dimensional feature space defined by the kernel function
that computes inner product of two input images. There
are several related methods such as support vector machine
(SVM)[1], kernel principal component analysis (KPCA)[7]
[6], and kernel Fisher’s discriminant analysis (KFDA)[3].

Kernel based methods potentially provide a proficient
approach to pattern recognition. KPCA proposed by
Schölkopf [7] [6] can extract nonlinear component by per-
forming PCA on the kernel feature space. It is expected
for effective application to pattern recognition, and recently
draws intensive attention in the face recognition society [9]
[8].

A particular application generally requires sensible
choice of a specific kernel function, and in pattern recogni-
tion the classification performance largely depends on this
choice. In some application such as face recognition, radial
basis function is in popular use, and so the choice of ker-
nel function reduces to the problem of choosing of kernel
parameters. If the parameters are appropriately chosen, one
can extract optimal performance. Unfortunately there have
been no effective methods so far for this issue.

Usually the parameters are determined empirically, or
with auxiliary experiments, but in some cases such as multi-
class problems and multi-parameter cases, it would be un-
reasonable for huge computational effort. In this paper we

generalize Schölkopf’s method and apply it to automatic de-
termination of semi-optimal parameters for Gaussian ker-
nel. The method makes use of the derivatives of kernel
matrix eigenvalues to obtain iterative methods for optimal
values using.

The following notation of the gaussian kernel is used
through this paper

K(x,z) = exp

(

−
‖x− z‖2

2σ2

)

(1)

where σ is called kernel parameter.

2. Generalization of kernel PCA

As was mentioned in Introduction, KPCA proposed by
Schölkopf performs PCA for features on the kernel space.
PCA usually put the median point at the average vector of
features. Since Schölkopf performed the analysis assuming
that the fiducial point is at the origin in the kernel feature
space, but it does not reflect the true distribution of vari-
ances in the kernel space. In this section we review his
analysis setting the fiducial point at the average vector of
features. We call this generalized KPCA.

2.1. Kernel method

Let x = (x1, . . . , xn)t be an observed feature vector,
and let the set of vectors be S = {x1, . . . ,xl}. We assume
that x is mapped to p dimensional kernel feature space F by
φ(x) ∈ F .

x = (x1, . . . , xn)
t 7→ φ(x) = (φ1(x), . . . , φp(x))t (2)

Kernel method computes inner product

k(x,z) = 〈φ (x) ,φ (z)〉 = φ(x)tφ(z) (3)

without referring the feature φi (i = 1, . . . , p) directly. Let
K be Kij = 〈φ (xi) ,φ (xj)〉 = k(xi,xj), then K = ΦtΦ
with Φ = (φ (x1) , . . . ,φ (xl)) (sample matrix).
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Figure 1. KPCA Figure 2. GKPCA

2.2. Kernel PCA with fiducial point at the mean
vector

There are two methods for determining principal compo-
nent axis : variance maximization criterion and mean square
error minimization criterion. In this paper we adopt the for-
mer criterion. This criterion maximize the variances in fea-
ture space which is linearly transformed by some orthonor-
mal system.

Performing PCA in kernel space, we assume that
p dimensional linear space is transformed to d dimen-
sional linear space. Let ai be an orthonormal vec-
tor of the d-dimensional linear sub-space, and let A =
(a1, . . . ,ad). We assume φ(x) is transformed to ψt (x) =
(ψ1(x), . . . , ψd(x)) by a (i = 1, . . . , l), where

ψ (x) = At
(

φ (x) − φ̄
)

(4)

and where φ̄ = 1
l

∑l
i=1φ (xi) (see Figure 2). Let 1 be the

l × 1 vector, where all entries equal unity. Now let p × p

covariance matrix in kernel space be Σφ. Then

Σφ =
1

l
Φ

(

Il −
1

l
11

t

)(

Il −
1

l
11

t

)

Φt. (5)

Σψ is d×d covariance matrix in the d-dimensional subspace
given by eq. (4) or

Σψ = AtΣφA. (6)

Because orthonormal bases ai (i = 1, . . . , d) that
we want to obtain are in the kernel space, we can rep-
resent them as a linear combination of

(

φ (xi) − φ̄
)

∈

F, (i = 1, . . . , l). Assuming bi = (bi1, . . . , bil)
t be the

coefficient vectors

ai =

l
∑

j=1

bij
(

φ (xj) − φ̄
)

. (7)

Further B = (b1, . . . , bd)

A = Φ

(

Il −
1

l
11

t

)

B. (8)

Now we can formalize PCA as an optimization problem.
Let G =

(

Il −
1
l
11

t
)

ΦtΦ
(

Il −
1
l
11

t
)

. Then maximizing

sum of variances in subspace using orthonormal bases is

maximize : tr (Σψ) =
1

l
tr
(

BtG2B
)

(9)

subject to : AtA = BtGB = Id. (10)

To obtain the solution, We can use Lagrangian function

L(B,Λ) =
1

l
tr
(

BtG2B
)

− tr
((

BtGB − Id
)

Λ
)

. (11)

Then setting

∂L

∂B
=

2

l
G2B − 2GBΛ (12)

be zero, we obtain Karush-Kuhn-Tucker(KKT) condition

1

l
G2B = GBΛ (13)

BtGB = Id. (14)

Solving this KKT condition for B, we can obtain the solu-
tion.

Let the ith eigenvalue of G be µi with corresponding
eigenvector vi. Assume that vtivi = 1 (i = 1, . . . , l), and
µ1 ≥ . . . ≥ µd ≥ 0. Since G is a symmetric matrix, eigen-
vectors constitute orthonormal set. Thus letting bi = 1

√
µi
vi

, we obtain btiGbj = δij which satisfy eq. (14). We denote
V = (v1, . . . , vl), the diagonal matrix M as Mii = µi ,
and M−

1

2 as

[M−
1

2 ]ij =

{ 1
√
µi

if i = j

0 if i 6= j
. (15)

Then

B = VM−
1

2 . (16)

And eq. (13) can be transformed to

(left side) =
1

l
G2B =

1

l
V M2M−

1

2 (17)

(right side) = GBΛ = VMM−
1

2 Λ (18)

by using GV = VM . Since V,M are non zero matrix ,

VM

(

1

l
M − Λ

)

M−
1

2 = O (19)

results in Λ = 1
l
M or λi = µi

l
(i = 1, . . . , d).

One can easily check Σψ = Λ is substituting B and Λ
into Σψ and using eq.(6) , eq.(8). This means the variance
on ith axis in the d-dimensional subspace is λi, and each
axes are uncorrelated.



Figure 3. Linear
PCA 1st principal
component

Figure 4. Linear
PCA 2nd principal
component

Finally ψ(z) is represented by

ψ(z) = At
(

φ(z) − φ̄
)

= Bt
(

Il −
1

l
11

t

)

Φ

(

φ(z) −
1

l
Φ1

)

= M−
1

2V t
(

Il −
1

l
11

t

)(

k(z) −
1

l
K1

)

(20)

using k(z) = (K(x1, z), . . . , K(xl, z))t.

2.3. Illustration via artificial data

Now we illustrate the generalized KPCA using artifi-
cial data. Consider a data of Figure 3 and 4 which shows
stellately distributed data on two dimensional space having
three actinoid wings.

If we apply linear principal component analysis for this
data, we obtain only two principal components which are
clearly unable to represent the data. The results are shown
in Figure 3,4. Thus KPCA would be an efficient tool in this
example.

Figure 5 shows the result of applying the generalized
KPCA for this data. In this example one can see that a small
parameter can give only features neighbor of the data, and
large parameter is too crude to represent precise features.
In a later section we will see that the optimum parameter in
this case is σ = e0.7.

In Figure’s 6, 7 the landscapes of variance for each prin-
cipal component axis scanned with kernel parameter are
shown for KPCA and the generalized KPCA (GKPCA),
respectively. From Figure 7 (GKPCA), one can see that
small parameters give equal variance for each axis, thus
each component is equally important. On the other hand
the large parameters give zero variance for each axis mean-
ing the distribution of data is concentrated on data points.
KPCA (Figure 6), on the other hand, can not represent this,
because the center point is not appropriately set.

Figure 5. Kernel parameter and principal com-
ponent of GKPCA
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Figure 6. Variance
vs. principal com-
ponent and kernel
parameter (KPCA)
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3. Automatic parameter tuning

As was mentioned in the previous section, when the ker-
nel parameter is too large, each axis in the kernel space has
similar variance. On the contrary when the kernel param-
eter is too small, all axes have zero variances losing data
information. The optimal parameter should be in the mid-
dle of these extremes. Thus the optimal kernel space should
consist of a few principal component axes with large vari-
ance and remaining large number of principal component
axes with small variance. This is illustrated in Figure 8. We
require that the optimal kernel parameter should be maxi-
mizing the deviation of variances distribution.

Let kernel parameter be θ, and let variance of ith prin-
cipal component axis be λi. According to our request, op-
timal kernel parameter maximizes following cost function
(see Figure 8).

E (θ) =
1

l

l
∑

i=1

(

λi − λ̄
)2
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Figure 8. Deviation of variances

=
1

l
λt
(

Il −
1

l
11

t

)

λ (21)

Eq.(21) can be optimized by the following steepest descent
gradient method:

θt+1 = θt + η
∂E

∂θ
. (22)

In eq.(23), the derivative of cost function with θ is given by

∂E

∂θ
=

2

l
λ

(

Il −
1

l
11

t

)

∂λ

∂θ
(23)

=
2

l3
µ

(

Il −
1

l
11

t

)

∂µ

∂θ
. (24)

To obtain ∂µk

∂θ
, we apply the implicit function the-

orem and the derivation of determinant. Since µk is
an eigenvalue of G(θ), it satisfies characteristic equation
det (µkIl −G (θ)) = 0 . Thus there exists implicit func-
tion fµk

(·) such as fµk
(θ) = µk. Let C be the transposed

cofactor matrix of µkIl −G. Then if
∑l

i=1 Cii 6= 0,

∂fµk

∂θ
= −

∂ det(µkIl−G)
∂θ

∂ det(µkIl−G)
∂µk

(25)

=

∑l
i=1

∑l
j=1Cij

∂Gij

∂θ
∑l

i=1 Cii
. (26)

To avoid much computational effort for calculating the
transposed cofactor matrix, we refer the following theorem
without proof.

Theorem 1 Let eigenvalues and eigenvectors of G be
µi, vi (i = 1, . . . , l), respectively. Then transposed cofac-
tor matrix of (µkIl −G) is given by

l
∏

i=1

i6=k

(µi − µk)vkv
t
k. (27)

This theorem can be proved by a regularization method of a
cofactor matrix and inverse matrix.
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Figure 9. Cost function
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Figure 10. Derivative of cost function

Using Theorem 1, ∂µk

∂θ
is calculated

∂fµk

∂θ
=

∏l
i=1

i6=k
(µi − µk)

∑l
i=1

∑l
j=1(vkv

t
k)ij

∂Gij

∂θ

∏l
i=1

i6=k

(µi − µk)
∑l

i=1[vv
t]ii

=

∏l
i=1

i6=k

(µi − µk)v
t
k
∂G
∂θ
vk

∏l
i=1

i6=k
(µi − µk)

= vtk
∂G

∂θ
vk . (28)

The following Learning algorithm gives the optimizing
procedure.

· t = 1, θt := θ0

· repeat

· G :=
(

Il −
1
l
11

t
)

K(θt)
(

Il −
1
l
11

t
)

· ∂G
∂θ

:=
(

Il −
1
l
11

t
)

∂K(θt)
∂θ

(

Il −
1
l
11

t
)

· µ := eigenvalues of G

· V := eigenvectors of G

· for i := 1 to l

· ∂µi

∂θ
= vti

∂G
∂θ
vi

· ∂E
∂θ

:= 1
l3
µt
(

Il −
1
l
11

t
) ∂µ
∂θ

· θt+1 := θt + η ∂E
∂θ

· until (θt+1 ' θt)

Figure 9, 10 illustrate the cost function and its derivative
as functions of the kernel parameter for the data used in
section 2.3. One can easily see that the cost function gives
its maximum at σ = e0.7 where the derivative is zero.
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4. Experimental results

4.1. Learning with GKPCA-plus-perceptron

Since PCA is the preprocessing step for classification
task, we use perceptron(single layer) as a classifier. Because
GKPCA prepare powerful nonlinear mapping and enabling
appropriate dimensionality reduction, such simple classi-
fier is sufficient for classification tasks. To enable to learn
weakly nonlinearly separable problem, we employ the sig-
moidal function for the output function.

f (u) =
1

1 + exp (−u)
,
(

u = wtx+ b
)

(29)

Perceptron has only one parameter called learning rate
η. Since perceptron learning approximately converges to
the same solution without regard to a value of the learning
rate, it has no heuristic parameters. Optimizing the kernel
parameter by our method, ”GKPCA-plus-perceptron” also
has no heuristic parameter. (see Figure 11).

4.2. Face recognition

To test our method, we applied it to face images of
the HOIP database 1 . The data consist of 300 images
of 150 males and 150 females, and each image is nor-
malized to 46 × 44 pixels having real number from 0
through 1. Thus the input vector has 2024-dimensions. We
classified male and female into two categories (see Fig-
ure 12). We performed 10-fold-cross-varidation with ran-
domly divided data, and took average of five 10-fold-cross-
validations. Perceptron’s learning rate was set to η = 0.1.
The landscape of variance for each principal component
axis scanned with kernel parameter σ are shown in Figure
13.

1The facial data in this paper are used by permission of Softopia Japan,
Research and Development Division, HOIP Laboratory. It is strictly pro-
hibited to copy, use, or distribute the facial data without permission.

Figure 12. Face images used in experiment
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Figure 13. Variances scanned with kernel pa-
rameter

In Figure 14, 15, the training error and the testing er-
ror are shown for the parameter and the number of princi-
pal components. The experiments were done for each pa-
rameter σ, changing the number of principal components
(Note that principal components are sorted in descending
order). Optimal parameter determined by our method is
near σ = e1.8 in this case (see Figure 13). One can observe
that both errors become small near the optimal parameter,
although we use only few principal component axes (see
Figure 16). The minimal value of average testing error was
7.53% for the optimal parameter and for the number of prin-
cipal component d = 155. The true minimal value of av-
erage testing error was 6.13% obtained for the parameter
scan with σ = [e−5, e−4.8, . . . , e9.8, e10] for d = 155 (see
Figure 15, 16). Both errors were averaged over 50 times
simulation-runs.

The optimal parameter was computed by eq.(22) setting
η = 10000, and setting σ0 randomly from [1.0, 20.0]. The
average computational time for the optimal solution is 8.01
sec. 2

We compared our method with support vector machine
using gaussian kernel. SMO algorithm [5] was used for
training SVM. We performed exhaustive search for the op-
timal parameters σ and C , setting σ = [e−5, e−4, . . . , e10] �

C = [e−5, e−4, . . . , e10]. Note that to find out the optimal
parameter, we need to take an average of several experi-
ments, e.g. of 50 times. The average computational time for
the search was 39.58 sec / experiment, and totally it takes

2The programs were run on Pentium4(2.53GHz) with 512MB RAM.
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Figure 14. Average training error
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Figure 15. Average testing error

1979 sec to obtain the optimal kernel parameters. The mini-
mal value of average testing error is obtained as 5.86% with
σ = e5, C = e7.

We conclude from the experiments that the kernel pa-
rameter is near optimal. Although, we employ the percep-
tron algorithm, generalization errors are different only 2%
from SVM.

We characterized the relationship between kernel pa-
rameter and eigenvalues about the data sets (iris, wine,
glass, baberman, bupa-liver-disorders, ionosphere, breast-
cancer-wisconsin, vehicle, vowel, segment) collected from
UCI Repository of machine-learning-databases(http://
www.ics.uci.edu /˜mlearn /MLRepository.html). Therefore
the data set which has distribution of eigenvalues similar to
Figure 7 or Figure 13 seems to avoid the local minimum
problem with our optimization method. All of the data sets
indicates that each distribution of the eigenvalues resembles
the used face data.

5. Conclusion

In this paper, we proposed a method which can tune the
kernel parameter automatically. Furthermore the merit ap-
plying GKPCA-plus-perceptron is that we can solve any
classification problem without heuristically determined pa-
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Figure 16. Average testing error

rameters. We showed GKPCA-plus-perceptron can attain
enough classification performance which is comparable to
SVM.

The extention to the multi-class problem would have
some merits because each class can have different param-
eter by our method.
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