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Abstract

Generation of the ordered set of ICA bases (Indepen-
dent Component Analysis bases) and its applications
to image compression are discussed. The ICA bases
have similar properties to existing orthogonal bases.
Orthogonal bases generate uncorrelated coefficients,
while, the ICA bases bring about independent co-
efficients. The independence is stronger than the
uncorrelatedness. Therefore, the ICA bases can extract
source information better. One difficulty using ICA
is the permutation indeterminacy among these bases.
This paper presents partially supervised learning for
generating self-aligned ICA bases. It is observed that:
(i) Each basis reflects edges and textures like the early
vision. (ii) Bases can be self-aligned in the sense of
spatial frequency. (iii) Coefficients of the bases can
be used for image compression. Experiments show
that (iv) the set of ICA image bases is a well-qualified
alternative to existing orthogonal ones.

1. Introduction

Independent Component Analysis (ICA) [1] is a
method of multivariate analysis to decompose mea-
sured data into independent components. It is a class
of learning algorithms from data. Its application is
wide including images, speech, music signals and so
on. Therefore, ICA has received much attention from
communities of adaptive learning and multimedia pro-
cessing. This paper contributes to these fields by show-
ing a new method to obtain ICA image bases and novel
applications to image compression.

Organization of this paper is as follows. In Section
2, the ICA problem is formulated. The role of the ICA
basis set is elucidated. The permutation indetermi-
nacy, which essentially exists in the ordinary ICA, is
explained. Presentation of the ICA model for image
construction is also given. Then, in Section 3, pre-
processing, orthonormalization, and ordinary ICA al-
gorithms are explained to assist later explanations on
improved methods. In Section 4, The ICA learning
with weak guidance is presented. This partial super-
vision is effective to the reduction of the permutation
indeterminacy, whose step is necessary for the applica-
tion of ICA bases. In Section 5, experiments on digital
images are executed. The ICA image bases are suc-
cessfully aligned by reflecting spatial frequencies. Ex-
periments show that the ICA bases are promising in
the image compression as the theory predicts. Section
6 gives concluding remarks with prospects of future
studies.

2. Problem Formulation of ICA

2.1. Mixture of Independent Components

In the problem of ICA, a vector random variable

x = [x1, · · · , xn]T (1)

is assumed to be generated by another random variable

s = [s1, · · · , sn]T (2)

by the following mixture.

x = As = [a1 · · · , an]s =
∑n

i=1aisi (3)



The matrix A and the vector s are both unknown ex-
cept for the following information.

(a) The components si and sj are independent each
other for i �= j.

(b) The components si, (i = 1, · · · , n), are non-
Gaussian except for at most one i.

Under the above conditions, we want to estimate a
demixing matrix

W = ΛΠA−1 (4)

so that the components yi, (i = 1, · · · , n), of

Wx
def= y = [y1, · · · , yn]T (5)

are independent each other. Here, Λ is a nonsingular
diagonal matrix which decides components’ scale, and
Π is a permutation matrix. These matrices are un-
known too. This property is called the indeterminacy,
which essentially exists in the ICA formulation. In this
paper, such indeterminacy will be carefully avoided.

2.2. ICA bases

Column vectors of W−1 def= U can be interpreted
as ICA bases since the following equality holds for the
observed data x.

x = Uy = [u1, · · · , un]y =
∑n

i=1uiyi (6)

In order to save notational alphabets, U is re-expressed
by A hereafter, and so is y by s. This is applied only
if there is no confusion.

When an ICA basis ai is used in image process-
ing, it is interpreted as a two dimensional patch
{{ai(x, y)}m

x=1}m
y=1. Then, each pixel is modeled by

I(x, y) =
∑n

i=1ai(x, y)si, (7)

where n = m2. Once the ICA bases are learned from
data, they are fixed. Therefore, {si}n

i=1 are subject to
coding for image compression.

3. ICA Learning Algorithms

3.1. Preprocessing and Orthonormalization

Observed data are preprocessed in the following way
so that the estimate of W converges properly.

1. [Mean and variance normalization] Observed data
are normalized to have the zero mean and the unit
variance.

2. [Whitening] Observed data are then transformed
to z = V x so that E [zzT ] = I. Here, E stands for
the expectation. We use V = D−1/2ET in our ex-
periments. Here, D is a diagonal matrix whose el-
ements are eigenvalues of E [xxT ]. E is the matrix
whose columns are corresponding eigenvectors.

3. [Orthonormalization] Another transformation is
the orthonormalization: W ← (WW T )−1/2W .
This is an expensive computation, however, the
merits of U = W T and W T W = I are obtained.

3.2. First-Stage Learning Algorithm

Estimation or learning of W from observed data is
performed by the following iteration:

W new = f(W old), (8)

or equivalently,

W new = W old + ∆W . (9)

The updated vector W new can be obtained by opti-
mizing statistical measures for the independence [2] ∼
[7].

We gave necessary explanations on the first-stage
algorithm for W except for the following. We are
given sample image patches rather than an abstract
random variable in a probability space. Therefore, we
need to write down these samples in matrix forms:
X = [x(1), · · · , x(m)], S = [s(1), · · · , s(m)], and Y =
[y(1), · · · , y(m)]. Thus, the data generation model is
expressed by

X = AS. (10)

Then, the first-stage learning algorithm becomes as fol-
lows.
[First-stage learning algorithm]

[Step 1 (Preprocessing 1)]
Obtain a sample matrix X as a training data set.

Normalize each column vector to be zero mean and unit
variance.
[Step 2 (Preprocessing 2: Whitening)]

Obtain Whitening Matrix V from X, and compute
Z = V X.
[Step 3 (Initialization)]

Choose an orthonormalized initial value for W .
[Step 4 (Update 1)]

Update W by (8) or (9).
[Step 5 (Update 2)]

Orthonormalize the matrix W .
[Step 6 (Convergence check)]



Check to see if convergence is achieved. Otherwise
repeat Steps 4 and 5.

[Step 7 (Resulting matrices)]
Resulting matrices are obtained by

W stage1 = WV , (11)

and
Astage1 = (WV )−1 = V −1W T . (12)

It is necessary to comment here that:

(i) The first-stage algorithm still inherits the permu-
tation indeterminacy. We need further learning
algorithms which does not suffer from this inde-
terminacy.

(ii) In the image compression, the matrix

Y data = W stage1Xdata (13)

is encoded to Ŷ data. Decoded is then

X̂data = Astage1Ŷ data. (14)

4. Learning Under Weak Guidance

4.1. Indeterminacy Reduction I: Topographic
Alignment of ICA Bases

The above Astage1 could be used as a set of image
compression bases, if one would dare to check manu-
ally the whole matrix pattern, and if high performance
is not required. Thus, the bases are more suitable for
the image compression if they have ordered by spatial
frequencies precisely. Therefore, we consider to use the
resulting image bases as an initial set for further learn-
ing modification. This is allowed since the image bases
need not be computed on-line but to be stored in the
encoder-decoder pair. There is one more evidence to
support this: All computation in this paper can be car-
ried out by a conventional personal computer, which
will be understood in Section 5.

The first step to obtain an aligned image basis set is
to modify the matrix W stage1 by using the topographic
ICA [8]. In this case, (9) is used with the following
computation:

∆wi = ηE[z(wT
i z)ri], (15)

ri =
∑n

k=1h(i, k)G′(
∑n

j=1h(k, j)(wT
j z2)). (16)

On the choices of G(y) and h(i, j), readers are re-
quested refer to [8]. Hereafter, the update matrix by
(15) is denoted by ∆W tp.

4.2. Indeterminacy Reduction II: Weak Guidance

Resulting ICA bases as a topographic map show an
intriguing visual pattern. But, a very important inde-
terminacy is not yet resolved. A human can instantly
find the position of the central basis corresponding to
the lowest spatial frequency, however, machines can not
do so instantly. Therefore, we need a further impor-
tant mechanism to reduce such indeterminacy. This is
the method of weak guidance as a partially supervised
learning. Such a method was first used in the distilla-
tion of brain maps from fMRI data [9], [10].

[Weak Guidance]

First, we prepare a teacher signal, or a reference pat-
tern, as a matrix R̄. Then, we compute U = V −1W T .
The increment by the teacher signal is

∆U = V {λ(R̄ − U)}. (17)

Here, λ is a learning parameter. Then, the update term
for the weak guidance is computed by

∆W wg = −W∆UW . (18)

Readers are requested refer to [9] or [10] for the deriva-
tion of (17) and (18).

4.3. Total Learning Algorithm

By the preceding preparations, the total algorithm
to obtain the ICA bases can be described as follows.

[Step 1 (Learning parameters)]
Control rules of the small learning parameters η > 0

and λ > 0 are decided. The rules can be arbitrary as
long as (i) η increases and saturates. (ii) λ decreases.

[Step 2 (Weak guidance)]
Compute the updated matrix with the weak guid-

ance
W ← W + ∆W wg. (19)

[Step 3 (Topographical map)]
Compute the updated matrix with the topographic

constraint
W ← W + ∆W tp. (20)

[Step 4 (Convergence check)]
Check to see if the matrix update is converged. If

not, then the iteration is repeated on Steps 2 and 3
after the update of λ, η, and W .



5. Experimental Results

5.1. ICA Image Bases with Self-Alignment

All necessary tools were given in the preceding sec-
tions. We can now apply them to real images. Training
data for the ICA bases contain many images such as
natural images, screen text images, and animations.
Figure 1 illustrates the ICA bases obtained by the to-

Figure 1. Image bases only by the topo-
graphic method.

pographic method alone, i.e., without the weak guid-
ance. Each basis is of 8 × 8 pixels so that the size is
compatible with usual JPEG and JPEG2000. As can
be observed, the basis of the lowest spatial frequency
is located off-centered in the two dimensional array.
This position can not be specified in advance. There-
fore, the human perception is still necessary to identify
where the exact center is. Besides, the obtained ICA
bases are inefficient since the center is near the corner
of the array.

Figure 2 shows the resulting self-aligned ICA bases
by our weak guidance method. The first basis is lo-
cated at the north west of the four central bases. Low-
frequency bases are concentrated around the center of
the two-dimensional array. High-frequency bases are
located at the corners. This was specified to be so
by virtue of the weak guidance. We call such a class
of bases the ICA ripplet set, or simply the ripplet set.
The ripplet set is readily applicable to the image com-
pression due to the following properties.

(a) Ordering from low to high spatial frequencies is
completed.

Figure 2. Self-aligned image bases by the
weak guidance.

(b) Bases are balanced because of the centering by the
weak guidance.

Item (a) can be observed from Figure 3 which was ob-
tained from Figure 2 by the clockwise spiral sorting
started from the origin, the north west of the four cen-
tral bases. This figure clearly shows a self-aligned or-
dering from low to high spatial frequencies which has
the following merit:

(c) Users of this set can understand the role of each
basis in a linearly ordered sense. High-frequency
bases may correspond to noisy patterns. Such a
merit will be utilized in Section 5.3.

Figure 3. Aligned image bases.



Figures 1 to 3 can claim the similarity to the recep-
tive field properties [11]. Not only appreciating such
an intriguing similarity, but we pay attention to the
self-aligned ICA bases of Figures 2 and 3 on the use for
the image compression.

5.2. Distribution of Coefficients

Source images are reconstructed by using Equation
(7). We remind readers here that the relationship on
the ICA image bases: A−1 ← W . Since the image
bases are not altered any more, they are memorized
in the encoder and the decoder. In the encoder, co-
efficients si are obtained by S = A−1X. Here, each
column vector of X corresponds to an image patch.
Then, encoded values of elements si in S are transmit-
ted (in a two dimensional form, si,j).

The distribution of s is {8 × 8 = 64}-dimensional
which is unable to illustrate visually. But, the flatness
of the distribution can be estimated from the histogram
of si,j . If the distribution of si,j were nearly flat, there
would be very little possibility for data compression be-
cause of high entropy. Therefore, we have to examine
the distribution on real images. Figure 4 is the result-
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Figure 4. Distribution of coefficients to be en-
coded.

ing distribution obtained from an image outside of the
training data. The horizontal axis shows values of si.
The vertical axis shows the number of appearances, i.e.,
the frequency. As can be observed, this distribution
is far from flat. It is highly super-Gaussian reflecting
the nature of the ICA transformation of images. This
means that most of si are centered around zero. Few
important numbers are distant from zero. Therefore,
we can judge that the distribution of s is very sparse.
This property encourages us with the anticipation that
the encoding for data compression will be effective.

5.3. Image Compression

Here, we discuss the case of variable-length coding
based upon the run-length and Huffman coding. The
source to be compressed is the matrix

S = [s1, · · · , sM ]. (21)

Here, si is the vector coefficient for one patch in the
source image. Therefore, M = 3750 for a 600 × 400
pixel image since (600/8) × (400/8) = 3750. The vec-
tor si is quantized in group. The quantization is set to
be granular if a coefficient is for a low spatial frequency.
On the other hand, the quantization is rough if the co-
efficient is for higher frequencies. Quantized zeroes ap-
pear frequently because of the sparseness explained in
Section 5.2. Then, we denote the resulting coefficient
matrix by S̃. We found that quantized zeroes run con-
secutively if we raster scan this S̃ vertically because of
the property explained in Item (c) of Section 5.1: High-
frequency bases correspond to noisy patterns. There-
fore, run-length coding is effective. Huffman coding is
used for non-zeroes.

Figure 5. Uncompressed image.

Figure 6. Compressed image 1.

Figures 5 is a source image selected from [12]. Figure
6 is a compressed image by this paper’s method. The
compressed image has the performance of SNRpp =



Figure 7. Compressed image 2.

35.2 dB at 1.24 bit/pixel. Figure 7 is another com-
pressed image containing charecters. This image is
not a set of outline fonts but is obtained from a com-
puter display. This image has the performance of
SNRpp = 34.8 dB at 1.28 bit/pixel.

More experiments besides Figures 6 and 7 were
tried. We can conclude that the image compression
based upon the ICA bases designed by this paper’s
method shows the excellent performance.

6. Concluding Remarks

The main purpose of this paper was to show that

(i) The permutation indeterminacy of the ICA can be
avoided. The resulting bases can be used in engi-
neering applications, particularlly for image com-
pression.

(ii) The ICA bases learned from images extract im-
portant information. Such bases can be applied to
reconstruct unlearned images.

(iii) Coefficients for the reconstruction can be used for
the image compression.

It was possible to show that the image compression
based upon the ICA bases is promising. We shall have
the immediate sophistication of this paper’s study as
follows:

(a) Incorporation of better lossless coding on coeffi-
cients.

(b) Applications to color image compression.
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