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Abstract

The successful use of the wavelet transform in the
field of texture analysis has been well documented in
literature.  Simple energy features, as well as first and
second-order statistics of the wavelet coefficients, have
both been used successfully for this purpose.  It is our
conjecture that analysing the image with more than one
wavelet will provide additional information about the
texture, thus improving classification rates.
Experimental evidence supports this theory, showing
that for simple energy features error rates are halved
when multiple wavelets are employed.

1. Introduction

Texture analysis is an important field of image
analysis, and plays a role in many tasks, such as medical
imaging, machine vision, and content indexing of large
image databases.  Whilst numerous methods have been
proposed through the last few decades, the problem of
texture analysis remains a challenging area of research.
No single method has yet been shown to perform to a
high level in all situations, over a wide variety of both
natural and artificial textures.  Figure 1 shows an
example of some of these textured images from the
widely used Brodatz album [1].

Much initial focus on texture analysis relied on the
assumption that texture could be characterised by the
local statistical properties of pixels’ grey level values.
First order statistics, such as mean, variance and
histograms, as well as second level statistics such as co-
occurrence matrices have been used with varying levels
of success.  The conjecture that such statistics suff iced
for texture classification was soon rejected, and a variety
of new techniques emerged, such as Markov field
models, fractals, and connected component analysis [2].

A common weakness of all of these methods is that
the texture is analysed on only a single scale, a limitation
that has been quickly overcome by the use of multi -
resolution analysis methods.  This approach is further
justified by studies of the human visual system, which

have shown that certain cells in the visual cortex respond
only to particular spatial frequencies and/or orientations
[3-5].  More recently, Gabor filters have been utili sed in
a variety of ways to solve the problems of texture
segmentation and classification [6, 7].  Typically, a bank
of such filters are constructed, with each tuned to a
specific spatial frequency and orientation.  The energy of
each filter output is then used to either segment or
classify the image.

Figure 1. Example of textured images from
Brodatz album.  Top to bottom, left to right:
bark, brick, bubbles, grass, gravel,
herringbone, hexagon, leather, pigskin, raffia,
sand, straw, wall, water, wood, wool

Over the last ten years, the wavelet representation has
emerged as a more solid, formal mathematical
framework for multi -scale image analysis [8, 9].  One
variation of this transform decomposes an image into
detail images in three directions, and a low frequency
approximation image.  By applying the transformation
recursively to the low frequency approximation, a series
of detail coeff icients are obtained.  Features extracted
from these coeff icients are numerous, including the total
energy, statistical representations such as mean and
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standard deviation, histogram properties, and co-
occurrence matrix features [10].

In this paper, we will expand upon this work, and take
advantage of the extensive work that has been done in
the development of the wavelet transform.  Over the last
ten years, numerous wavelet have been proposed which
possess different properties, and are optimal or near-
optimal in a particular sense.  By combining features
obtained from numerous such wavelets, it is our
conjecture that a more powerful set of classifying
features will be obtained.  To compare our method to
single wavelet methods, wavelet energy features are
extracted from a variety of textured images from the
Brodatz album using both approaches.  Classification
results both are compared, and conclusions drawn.
These results are also compared with more complicated
algorithms, which utili se first and second order statistical
features of wavelet coeff icients.

2. Wavelet Texture Features

When used for the purpose of image analysis, the
wavelet transform is typically computed by applying a
separable filterbank to the image, given by
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where * represents two-dimensional convolution,↓
represents down-sampling by the given factor in each
dimension, and H and G are the low and highpass filters,
respectively.  The approximation image A is obtained by
lowpass filtering in both directions, while the detail
coeff icients Hn, Vn, and Dn are obtained via highpass
filtering in one or more directions, thus providing
information about a particular scale in either the
horizontal, vertical or diagonal direction.  Due to the
subsampling involved in this computation, the total
number of coeff icients is equal to the number of pixels in
the original image, and images at each subsequent lower
resolution level are half the size of the previous level.

A simple and powerful feature extracted from the
wavelet coeff icients is the average energy of each detail
image.  This is defined as the sum of the squares of each
detail image, normalised for the total number of
coeff icients in the image.  Such energy signatures

provide a good indication of the total energy contained
at specific spatial frequency levels and orientations.  In
addition to energy signatures, more complex features
have also been extracted from the wavelet detail
coeff icients.  Such features include histogram parameters
of the individual coeff icients, as well as second order
statistics such as co-occurrence matrix features.  These
methods have shown to provide further classification
accuracy, with error rates as low as 5% reported [10].

3. Multi-Wavelet Algorithm

Typical wavelet texture classification algorithms [10,
11] use a wavelet that is optimal in some sense, such as
the family of bi-orthogonal spline wavelets, which
provide excellent scale separation [12].  Such wavelets
also provide excellent image reconstruction, a property
much valued by researchers in the field as a measure of
the wavelet’s suitabilit y.  However, studies have shown
that for some texture databases, better classification
results are obtained when using the simple Haar wavelet,
which is not optimal in any sense, and provides
relatively poor image reconstruction [2].  One of the
reasons suggested for this is that textured images
respond more strongly to the discontinuous nature of the
Haar wavelet, as many classes of textures contain such
structures themselves.  The Haar wavelet is also shift-
invariant, and this is also thought to contribute to its
surprisingly good performance [13].  Our experiments
have shown that for many textures, the Haar wavelet
provides almost perfect reconstruction, a phenomenon
that is not evident for images in general.

Many textured images contain unique regions with
distinct shapes.  Such regions will naturally respond
more strongly to some wavelets than others.  By
decomposing such an image with two or more wavelets,
particularly wavelets that differ significantly in
waveform shape, vanishing moments, and regularity, a
markedly different response is obtained at each
resolution.  Table 1 clearly shows this, by comparing the
response of 19 different textures to both the Haar and
Biorthogonal wavelets.  As can been seen from this data,
both wavelets produce a similar response in most cases
at the first level of detail , however, are generally
different at the second level.  Furthermore, this
difference does not appear to follow a pattern, with some
textures (brick, roof, wool) exhibiting a significantly
higher response for the biorthogonal spline wavelet,
while others (grass, raff ia, wood, hexagon) showing a
greatly reduced response.  It can also been seen that
many texture pairs are quite closely clustered when only
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Table 1. Average wavelet coefficient energies
for Haar and Biorthogonal wavelets at 2 levels

Texture Haar
1

Bior
1

Haar
2

Bior
2

Bark 9.68 9.88 11.88 8.11
Brick 12.30 12.30 13.53 20.25

Brick-2 10.45 10.54 11.08 13.18
Bubbles 5.55 5.68 9.99 8.13

Grass 7.57 8.00 27.21 16.03
Grass-2 3.77 3.87 10.56 11.33
Gravel 16.49 16.55 3.71 3.77
H-bone 12.44 12.63 14.58 11.87

Hexagon 14.20 15.26 46.07 33.14
Leather 7.15 7.41 29.57 27.35
Pigskin 10.62 10.71 6.38 5.85
Raffia 10.38 10.49 4.45 2.28
Roof 25.36 25.54 24.00 31.79
Sand 10.03 10.15 10.26 8.59
Straw 10.39 10.64 21.01 18.09
Wall 14.14 14.23 7.53 8.02

Water 10.60 10.62 1.28 1.48
Wood 13.11 13.19 2.07 1.42
Wool 8.79 8.86 15.74 19.26

one wavelet type is used (sand and brick-2 when using
Haar wavelet only), but the interclass separation
increases by over 50% when data from the second
wavelet is added.  Figure 2 shows an example of the
increased separation provided by using both the Haar
and biorthogonal spline wavelets, as compared to using
only one or the other.  Using linear discriminate analysis
(LDA) [14], the two most discriminate features are
plotted.  As can be seen, when using two wavelets the
separation between the feature clusters is greatly
increased, without significantly affecting the
compactness of the class.  When using the Haar wavelet
only, there is significant overlap between the bark,
herringbone and grass clusters.  When adding the
biorthogonal wavelet analysis features, this overlap is
virtually eliminated.

Using our algorithm, a total of 12 features are
extracted from each texture sample from each analysing
wavelet.  These features consist of energy signatures
from the three wavelet detail coefficient matrices for
each level of wavelet decomposition, to a total of 4
levels.  This extraction process is repeated for each
wavelet, such that for two wavelets a total of 24 features
are obtained.  Experimental evidence has shown that
after the fourth level of decomposition, very little texture
information is found, and classification rates are actually

(a)

(b)

Figure 2. LDA cluster representation of (a)
Haar only, and (b) Haar and Biorthogonal

feature sets for four texture samples

decreased due to the unwanted influence of image
intensity which is strongly present in such low-frequency
features.  Additionally, the energy signature from the
first decomposition, that is, the highest frequency
components, was also found to contain little information
of value.  However, removing these features did lead to a
slight reduction in classification performance, and thus
they were included.

No feature selection algorithm was applied to this set
of features, in order to provide a valid comparison with
energy signature features obtained from a single wavelet.
Examination of experimental results suggests that proper
feature selection could result in a greatly reduced
feature-set dimensionality, which would likely further
improve classification performance. It can be seen from
Table 1 that the energy signatures at the first level of
decomposition are extremely similar for both the Haar
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and biorthogonal wavelets.  This would indicate that one
of these features could be removed with no adverse
effect on performance.

4. Experimental Results

Texture classification experiments were conducted
using our multiple wavelet algorithm, and compared to
single wavelet methods for comparison.  19 textured
images from the Brodatz album were used for the
experiments, with each image divided into two regions.
The first of these regions was used for training the
classifier, while the second was used for testing.  A
Gaussian Mixture Model classifier (GMM) [15] was
used in these experiments, with 5 Gaussian mixtures
used for each texture model.

Results of these experiments are encouraging, with
classification accuracy significantly improved when
utilising the second wavelet.  Individual classification
rates for each texture and overall performance are shown
in Table 2, compared to those obtained using only a
single wavelet.  It must be noted that no feature selection
algorithm has been employed for these experiments, and
this may improve accuracy further as redundant and
spurious features are removed.  Plotting these
classification scores as a graph as in Figure 3 shows
more clearly the improved performance offered by
utilising two wavelets.  While in some cases the
biorthogonal wavelet significantly outperforms the Haar,
and vice versa, in all cases the combined feature set
performs as well or better than either wavelet alone.

The computational speed of the algorithm is quite
acceptable, with training times of only a few minutes for
2000 training samples.  Classification of a single image
is carried out in less than a second, slightly less than
twice the time of single wavelet energy signature
classification.  Our method is significantly faster to
compute than using the co-occurrence features presented
in [10], and shows similar overall classification accuracy
of ~95%.  Additional experiments were conducted after
adding small amounts of white noise to the input images
with no perceptible effect on the classification accuracy
of all texture classes.

5. Conclusions and Future Research

We have presented a new method for classifying
textured images based on the use of multiple analysing
wavelets.  Experimental evidence has shown this method
to provide substantial improvement over single wavelet
methods, with classification error rates halved for energy
signature features.  Additionally, the method described

Table 2. Texture classification results using (a)
Haar wavelet only, (b) Biorthogonal wavelet
only, and (c) both wavelets

Texture Accuracy
(Haar)

Accuracy
(Biorth.)

Accuracy
(both)

Bark 85% 79% 85%
Brick 100% 98% 100%

Brick-2 88% 75% 87%
Bubbles 79% 83% 83%

Grass 63% 83% 88%
Grass-2 96% 94% 98%
Gravel 96% 89% 97%

Herringbone 97% 97% 97%
Hexagon 100% 100% 100%
Leather 91% 93% 98%
Pigskin 86% 71% 94%
Raffia 83% 92% 98%
Roof 88% 92% 95%
Sand 63% 60% 81%
Straw 95% 87% 96%
Wall 84% 82% 96%

Water 97% 94% 96%
Wood 94% 95% 100%
Wool 81% 89% 94%
Total 88% 87% 95%
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Haar Biorthogonal Combined

Figure 3. Classification accuracy plots for Haar
wavelet, Biorthogonal wavelet, and combined for

each texture class

provides greater class separation in feature space, and
good robustness against noise.  The algorithm is
computationally efficient, taking approximately one-fifth
the time of a method employing wavelet coefficient
histogram and co-occurrence features which obtains
similar classification accuracy.

Future research in this area will concentrate on
finding an optimal wavelet pair for texture classification
using this algorithm.  The technique will also be
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expanded to use a more powerful set of features derived
from wavelet coefficients, such as first and second order
statistics.  Feature selection will also be investigated,
with the aim of reducing the dimensionality of the
feature vector used for classification and improving both
computational efficiency and overall accuracy.
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