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Abstract

In this paper, we employ a new adaptive basis of func-
tions — brushlets for extracting texture properties. Brush-
lets are functions which are well localized with only one
peak in the frequency domain. Hence, a representation of
texture in terms of spatial frequency distributions can be
constructed. The Brushlet features are used in texture im-
age retrieval experiments to assess its effectiveness by com-
paring with retrieval results obtained using other commonly
used wavelet and Gabor based representations. Experi-
ments using the Brodatz texture database indicates that the
brushlet features achieve a very good retrieval compara-
ble to and slightly better than that using Gabor features
and better than the wavelet features. The advantage of the
brushlet features is that they require far less computation to
extract than the Gabor features for achieving comparable
performance.

1. Introduction

Texture can be found on many types of objects, such as
woods, fabrics, and in natural scene. In a digital image li-
brary, images containing various types of textures are also
often found. Texture is also one of the key descriptors for
representing image content in the proposed MPEG-7 stan-
dards. The ability to efficiently describe and analyze tex-
tured pattern is then of fundamental importance to image
analysis as well as to general image retrieval.

Many tools can be used to describe textures. In im-
age retrieval, wavelet basis and Gabor basis functions have
been used to represent textures. Wavelets provide an oc-
tave based decomposition of the Fourier plane with a poor
angular resolution. Wavelet packets make it possible to
adaptively construct an optimal tiling of the Fourier plane
and have been used in texture classification [5]. However
the tensor product of two real valued wavelet packets is al-
ways associated with four symmetric peaks in the frequency
plane. It is therefore not possible to selectively tune and lo-

calize a unique frequency. It is also not orientation selective.
Gabor filters are very popular in image analysis [3][4][7]
and they show excellent texture analysis ability. Comparing
to wavelet basis, Gabor basis is both frequency tunable and
orientation selective. However, a filter bank consisting of
many Gabor filters are often constructed to cover the entire
frequency spectrum and the original image must convolve
with all these filters to extract texture features. Obviously,
the computation load is high.

In order to obtain a better angular resolution than the
standard wavelet packets we can expand the Fourier plane
into a set ofbruslets. Brushlets were proposed by F. G.
Meyer and R. R. Coifman and have been applied in image
compression [8]. A brushlet is a function reasonably well
localized with only one peak in frequency. Furthermore,
the brushlet is a complex valued function with a phase.
The phase of the 2D brushlet provides valuable information
about the orientation. These properties make the brushlets
suitable for texture and directional image analysis.

The objective of this paper is to study the use of this
new adaptive basis of functions —brushletsfor extracting
texture properties. This paper is organized as follows. In
section 2, we review the construction of brushlet bases. In
section 3 we describe the image retrieval algorithm based
on a brushlet decomposition of the image. Results of exper-
iments are presented in section 4. Conclusions are given in
section 5.

2. The Brushlet Bases

In signal processing, a local analysis of the Fourier spec-
trum of a signal is often interested. In order to analyze the
local frequency content of a signal, a smooth window func-
tion is used to cut the support of the signal into adjacent
intervals. Then a local Fourier analysis is performed inside
each interval.

Let G = {g(t−m) exp(2iπnt) : m,n ∈ Z} be a collec-
tion of functions inL2(R), whereg is some fixed square-
integrable bump. The Balian-Low theorem [1] states that if
G is an orthogonal basis, then the Heisenberg product ofg



must be infinite! In order to circumvent this obstacle raised
by the Balian-Low theorem, various Wilson bases [2][6]
have been constructed that use sines and cosines rather than
exponentials. Such a mechanism results in basis functions
that contain equal energy at both positive and negative fre-
quencies. However, using exponentials is much preferred
because the phase of the exponentials will provide informa-
tion about the direction of the pattern when describing im-
ages in two dimensions. With thesmooth local periodiza-
tion technique introduced in [9], we can avoid the Balian-
Low phenomenon while using exponential functions that
have all but an arbitrarily small amount of energy localized
in just the positive part of the frequency spectrum.

2.1. Brushlet Fundamentals

Consider a coverR =
⋃n=+∞

n=−∞[αn, αn+1). Let pn =
αn+1−αn, andcn = αn+αn+1

2 . Around eachαn we define
a neighborhood of radiusε. Let r be a ramp function such
that
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Let em,n(t) = 1√
pn

exp
(
−2iπm t−αn

pn

)
the collection of

exponential functions.
By using the FFT and smooth local periodization tech-

nique [9], the 1D brushlet basis{vm,n} can be constructed
[8]

vm,n =
√

pn exp(2iπαnt) exp(iπpnt)[(−1)mpnŵσ

·(pnt−m)− 2i sin(πpnt)pnb̂σ(pnt + m)], (1)

whereσ = ε
pn

is defined as a steepness factor of the window

wn andwσ(t) = wn(pnt) is supported on[− 1
2 − σ, 1

2 + σ].
Bump functionbσ(t) = bn(pnt) is supported on[−σ, σ].
ŵσ and b̂σ are the inverse FFT ofwσ andbσ, repectively.
Note that, in (1),pn appears as a scaling factor of the anal-
ysis, andm is the translation index of the brushlet.vm,n

has an expression similar to a wavelet. However, as op-
posed to a real valued wavelet,vm,n is a complex valued
function with a phase. The phase encodes the orientation
of the brushlet pattern in the two-dimensional case. The
functionvm,n is composed of two terms, localized around
m
pn

and around− m
pn

, that are oscillating with the frequency

cn = αn+αn+1
2 . The first term is an exponential multiplied

by the windowŵσ. Since|b̂σ ≤ σ|, the second term can be
made as small as possible.

2.2. The 2D Brushlets

In the two dimensional case we define two partitions of
R,

⋃j=+∞
j=−∞[αj , αj+1) and

⋃k=+∞
k=−∞[βk, βk+1). Let pj =

αj+1 − αj , qk = βk+1 − βk, cj = αj+αj+1
2 , anddk =

βk+βk+1
2 . Consider the tiling obtained by the lattice rectan-

gles [αj , αj+1)
⊗

[βk, βk+1). The tensor product of bases
vm,j andvn,k sequence,vm,j⊗vn,k, is an orthonormal basis
for L2(R2).

The tensor productvm,j(x)⊗ vn,k(y) is an oriented pat-
tern oscillating with the frequency(cj , dk) and localized at
( m

pj
, n

qk
).

To illustrate the orientation selective property of the 2D
brushlet, we have calculated the brushlet expansion of the
Brodatz image D047 (see Figure 1). A first expansion was
performed with a partitioning of the Fourier plane into four
quadrants. The four sets of brushlets have the orientation
π
4 + k π

2 , k = 0, 1, 2, 3. A second expansion has been per-
formed using a finer grid. Each quadrant was further di-
vided into four sub-quadrants. The sixteen set of brushlets
have twelve different orientations. The orientationsπ

4 +k π
2

are associated with two different frequencies. The four lat-
tice squares around the origin characterize the DC terms of
the expansion. The other squares correspond to higher fre-
quency textures.

3. Image Retrieval with Brushlet Features

In this section we introduce the feature definitionsbased
on the brushlet decomposition of textured images, and their
use in image retrieval experiments.

3.1. Texture Feature Extraction and Representation

For a given retrieval image sampleI, we extract its tex-
ture feature using a level 2 brushlet decomposition. The
decomposition divides the spectrum into 16 blocks with 12
distinct directions as shown in the bottom right part of Fig-
ure 1. Denote the brushlet coefficients in each blockIi(j, k)
(i = 1, . . . , 16, j = 1, . . . , R, andk = 1, . . . , C, whereR
andC are the number of rows and columns in each block,
respectively.), then we use the meanµi and the standard
deviationσi (i = 1, . . . , 16) of the brushlet coefficients to
represent the blocks for retrieval purpose:

µi =
1

RC

R∑

j

C∑

k

|Ii(j, k)|, (2)
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Figure 1. Brushlet decompositions (imaginal
parts) of Brodatz texture D047 and their asso-
ciated directions

and

σi =

√√√√ 1
RC − 1

R∑

j

C∑

k

(|Ii(j, k)| − µi)
2
. (3)

A feature vector is now constructed usingµi andσi as fea-
ture components

F = [µ1 σ1 µ2 σ2 . . . µ16 σ16] . (4)

3.2. Distance Measure

Consider two image patternsm andn, and letF (m) and
F (n) represent the corresponding feature vectors. Then the
distance between the two patterns in the feature space is
defined to be

d(m,n) =
16∑

i

di(m,n), (5)

where

di(m,n) =

∣∣∣∣∣
µ

(m)
i − µ

(n)
i

α(µi)

∣∣∣∣∣ +

∣∣∣∣∣
σ

(m)
i − σ

(n)
i

α(σi)

∣∣∣∣∣ . (6)

α(µi) andα(σi) are the standard deviations of the respec-
tive features over the entire image database, and are used to
normalize the individual feature components.

3.3. Texture Retrieval Algorithm

Upon presentation of a query pattern, the pattern is pro-
cessed to compute the feature vector as in Equation 4. The
distanced(m,n), wherem is the query pattern andn is a
pattern from the database for all images in the database, is
computed. The distances are then sorted in ascending order
and the closest set ofN patterns are then retrieved.

4. Experimental Results

In this section, we present our experimental results. The
texture database used in the experiments consists of the 112
texture classes from the Brodatz album. Each of the512 ×
512 images is divided into 16 non-overlapping sub-images
of size128 × 128, thus creating a database of 1792 texture
images. All 1792 images are used as query. When an image
is used as a query, it is removed from the database. The
performance is measured in terms of the average retrieval
rate which is defined as the average percentage number of
patterns belonging to the same image as the query pattern
in the topN = 45 most similar images.

To assess the usefulness of brushlets, we compare the
retrieval results obtained by brushlet features with those ob-
tained by Gabor and wavelet packet features. For the sake
of fairness, the decomposition levels performed in brush-
let and wavelet packet expansions are set to 2 and number
of scales in the Gabor filtering is also set to 2. In our tex-
ture retrieval application, a pair of two distinct directions,
which have a difference ofπ, have the same effect on the
experimental results. Therefore, the number of directions
of the Gabor filters are set to 6. The wavelet packets used
in the experiments are 4-tag Daubechies wavelet functions.
The texture feature extraction and representation, and dis-
tance measure used in wavelet packet and Gabor based re-
trieval algorithms are same as those used in brushlet based
retrieval algorithm. The average retrieval rates for the 112
texture image classes in the database are shown in Table 1.
The overall retrieval rates and standard deviations for the

entire image database are shown in Table 2. From Table 2,
we can see the overall retrieval of brushlet based algorithm
is the best because that the distribution of the retrieval rates
of brushlet based algorithm is also the mostcompactone as
well as the marginally higher averages than the Gabor based
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algorithm. The computation times for extracting features of
one texture on aPENTIUM 533 CPU usingMATLAB 5.3.1
are shown in Table 3. From Table 3, we can see the brushlet
feature extraction is significantly faster than the Gabor fea-
tures. Hence, the brushlet features can be considered better
than the compared features for this texture image retrieval.

However we also note that there are several individual
image classes bear very low retrieval rate. For example, the
rate of D043 is 20.70% and the rate of D044 is 24.22%.
This is due the big variation in the original images, i.e the
texture is non-homogenous. We divided a big image into 16
small images and consider these images formed an image
class in the image database. Therefore, the images in one of
these 2 image class do not resemble each other.

5. Conclusion

In this paper, a new texture analysis tool, the brushlet, is
used to decompose a texture and represent the texture. Ex-
perimental results show that these brushlet features are quite
effective. Comparisons show the brushlets based features
perform better than Gabor based features and much better
than wavelet packets features in the terms of retrieval rates
and their distributions. This can be explained as follows:
The Gabor filters used in our experiments are complex func-
tions. They also provide excellent frequency localization
ability. Besides, in a Gabor based system, arbitrary number
of directions and scales can be used. This indicates that the
analysis ability of Gabor can beinfinite. However, all these
come at the expense of computation burden; wavelet pack-
ets of real functions cannot localize a unique frequency in
the Fourier spectrum. The angular resolution of brushlets
is better than that of wavelet packets too. The main advan-
tage of brushlets is less computation required for achieving
comparable retrieval performance as using Gabor features.

References

[1] I. Daubechies. Ten lectures on wavelets.CBMS-NSF Confer-
ence Series in Applied Mathematics, SIAM Ed. 1992.

[2] I. Daubechies, S. Jaffard, and J. L. Journé. A simple Wil-
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Table 1. Average retrieval rate for the 112
texture image classes in the database (B:
Brushlet features, G: Gabor features, and W:
Wavelet packet features)

Class Rate (%) Class Rate (%)
B G W B G W

D001 99.22 95.70 95.70 D057 100.0 100.0 100.0
D002 88.28 75.39 64.84 D058 32.42 30.86 27.34
D003 82.03 95.70 93.75 D059 49.61 55.08 53.13
D004 100.0 100.0 77.84 D060 69.92 89.84 68.36
D005 89.84 75.00 52.73 D061 75.39 63.28 69.14
D006 100.0 100.0 100.0 D062 96.09 70.31 81.64
D007 64.45 56.25 48.44 D063 62.89 54.30 61.33
D008 97.66 95.70 91.41 D064 100.0 100.0 100.0
D009 100.0 100.0 85.16 D065 100.0 100.0 100.0
D010 82.03 80.08 76.56 D066 94.53 97.27 98.44
D011 96.88 100.0 84.77 D067 75.00 94.53 67.97
D012 90.63 87.50 64.06 D068 100.0 100.0 100.0
D013 59.77 63.28 43.36 D069 65.63 59.38 65.23
D014 100.0 100.0 100.0 D070 68.75 61.72 64.06
D015 59.38 63.67 69.92 D071 92.97 95.31 95.31
D016 100.0 100.0 99.22 D072 73.44 62.50 70.31
D017 100.0 100.0 93.36 D073 62.89 52.73 47.66
D018 93.75 97.27 78.13 D074 98.05 90.63 91.41
D019 93.75 89.84 73.83 D075 100.0 100.0 100.0
D020 100.0 100.0 100.0 D076 82.81 100.0 88.67
D021 100.0 100.0 100.0 D077 100.0 100.0 96.88
D022 58.20 56.64 53.52 D078 99.61 98.05 90.63
D023 93.75 84.77 78.22 D079 92.97 98.83 89.45
D024 96.48 98.83 97.66 D080 79.69 92.97 83.59
D025 60.55 85.94 68.36 D081 92.58 99.22 91.80
D026 97.66 100.0 97.66 D082 99.22 100.0 99.61
D027 95.70 93.36 92.58 D083 100.0 100.0 99.61
D028 100.0 99.22 98.83 D084 100.0 100.0 100.0
D029 100.0 98.83 94.92 D085 100.0 100.0 100.0
D030 81.64 76.56 82.03 D086 80.08 99.61 73.83
D031 92.97 57.81 60.16 D087 100.0 99.61 88.67
D032 100.0 100.0 100.0 D088 96.88 53.52 86.72
D033 100.0 95.31 98.44 D089 60.55 46.09 46.09
D034 100.0 94.14 91.02 D090 56.64 63.28 57.42
D035 93.36 97.66 91.02 D091 54.69 67.58 69.14
D036 78.91 75.00 67.19 D092 100.0 98.44 95.31
D037 95.31 90.63 68.36 D093 86.33 99.22 68.36
D038 75.78 69.92 61.72 D094 92.19 98.44 75.39
D039 53.91 50.78 48.44 D095 100.0 100.0 97.66
D040 82.03 73.44 72.27 D096 90.63 95.31 80.86
D041 92.97 77.34 73.83 D097 66.02 67.58 49.61
D042 51.17 35.16 44.92 D098 73.83 66.41 80.47
D043 20.70 18.36 13.67 D099 66.02 62.11 71.88
D044 24.22 21.48 20.70 D100 57.03 52.30 31.64
D045 32.03 23.05 25.00 D101 100.0 100.0 100.0
D046 65.63 60.94 71.48 D102 100.0 100.0 100.0
D047 100.0 100.0 100.0 D103 91.02 100.0 100.0
D048 100.0 100.0 100.0 D104 88.28 100.0 100.0
D049 100.0 100.0 100.0 D105 100.0 100.0 100.0
D050 62.89 73.83 69.14 D106 99.22 98.83 100.0
D051 100.0 92.97 93.75 D107 99.61 76.56 88.67
D052 53.13 49.61 44.92 D108 65.23 62.11 51.95
D053 100.0 100.0 100.0 D109 91.41 87.89 80.47
D054 59.38 51.95 37.89 D110 98.83 99.22 95.70
D055 100.0 100.0 99.61 D111 96.88 88.28 79.69
D056 100.0 100.0 100.0 D112 95.31 68.36 69.53

Table 2. Overall retrieval rates and standard
deviations for the entire database

Brushlet Gabor WP
Overall Retrieval Rate (%) 84.76 83.02 78.97

Standard Deviation (%) 18.52 21.00 21.24

Table 3. Average computation time for extract-
ing features of one texture

Brushlet Gabor WP
Computation Time (Sec) 0.439 0.600 0.276

Ratio 1.000 1.366 0.629
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