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Abstract

When viewing a scene through a turbulent
atmosphere, received images will be non-uniformly
distorted. A major component of this distortion is a
random x and y shift at each point in the received image.
A motion blurred but geometrically accurate prototype is
obtained by averaging a large number of individual
frames. Previous efforts to remove the motion blur
utilised cross-correlation techniques to estimate a
warping function for each individual frame, allowing the
random shifts to be removed. We are currently
investigating the implementation of an alternative method
where gradient techniques are used to estimate the
warping function. Results obtained from both simulated
and real data are presented. Current activities are
refining the implementation of the gradient techniques
and evaluating the performance of the gradient based
approach against the cross-correlation approach.

1. Introduction

There exist a number of situations where a sequence of

images will be subjected to non-uniform, random

distortions, for example, in the fields of terrestrial and

wide-area astronomical surveillance. When a scene is

viewed through the atmosphere, it is in reality being

viewed through a boiling mass of different "atmospheric

cells", resulting in a non-uniform distortion of the

received image. A major component of this distortion is a

random x and y shift at each point in the received image.

The point-spread function for each image approximates a

position-dependent, randomly displaced delta function. A

motion blurred but geometrically accurate prototype can

be obtained by averaging a large number of individual

frames. Previous efforts have attempted to estimate a

warping function for each individual frame via an iterative

cross-correlation technique between points in the

individual frame and the prototype [1-5]. The individual

frames are restored using the estimated warping functions

and, by averaging the restored images, an updated

prototype is generated. The updated prototype provides a

geometrically accurate representation of the scene, with a

reduction in the motion blur. The residual blurring due to

instantaneous speckle or instrument blur has been

ensemble averaged in the final, motion-blur-restored,

prototype [2], and can be removed using standard

deconvolution techniques. The results of this work,

previously published in [2], show a significant

improvement in the quality of the restored image over the

original.

The process of restoring the individual frames can be

viewed as an attempt to estimate the optical flow in an

image sequence where the prototype is the first image in

the series and the individual frame is the subsequent

image. In an effort to reduce the computational effort and

time required to estimate the warping function, and

improve the accuracy, we are investigating an alternative

method where gradient techniques are used to estimate the

optical flow rather than the cross-correlation techniques

previously implemented. In this approach, the prototype

and the individual frames are decomposed into a multi-

resolution stack of images. The shifts are estimated for

each point in the lowest resolution level of the stack

producing a dense vector field estimate of the shifts. This

is considered to be the initial estimate of the optical flow.

This estimate is used to warp the next level in the multi-

resolution stack and the "restored" image is used to

calculate a "refinement" vector field that is added to the

current optical flow estimate to create a refined estimate.
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The process repeats until all the layers except the highest

resolution in the multi-resolution stack have been

processed and a completed estimate of the warping

function obtained. The motion blur present in the

prototype at the highest resolution introduces a significant

amount of noise into the calculation and degrades the

result if the highest resolution is included in the process.

This implementation of the gradient techniques is

similar to implementations used in other applications

involving these same techniques. The primary difference

in this instance arises from the noise that is introduced by

the motion blur in the prototype. Ideally, in attempting to

map the shifts between the geometrically correct prototype

and an individual frame, the prototype would contain no

noise or blurring. Unfortunately, as a motion blur

removed prototype is the result we are hoping to obtain,

such a prototype is unavailable for use in the calculation.

Instead we use the motion blurred average of a large

number of frames that have been individually warped. The

motion blur introduces additional noise into the process

and, due to the instability of gradient techniques in the

presence of noise, this causes problems in the accurate

estimation of the warping functions.

To date, the gradient techniques have been evaluated

primarily with simulated data, although initial results

obtained from the de-warping of real turbulence-degraded

data are also presented. Current activities are refining the

implementation of the gradient techniques, particularly in

regards to handling the noise introduced by the motion

blur and reducing the time required for the estimation of

the warping functions, and evaluating the performance of

the gradient based approach against the cross-correlation

approach.

2. Optical Flow

Optical flow is the estimation of the apparent motion

in a series of time varying images. This apparent motion

may be identical to the actual motion that is occurring,

but not necessarily. One common example where the

apparent motion and the actual motion are not identical is

a rotating barber pole. In this case the actual motion is

horizontal (i.e. rotating around the axis) and the apparent

motion is vertical (i.e. up the pole).

Numerous techniques have been developed over the

years for estimating optical flow but most can be grouped

into one of four general types: correlation, gradient,

spatiotemporal filtering, and Fourier phase or energy

techniques. Correlation is the most common technique,

but gradient implementations are often more efficient and

can provide greater accuracy. The gradient method is

capable of providing sub-pixel displacement estimates

without first enlarging the images being operated on.

However, the gradient techniques are only useful in

situations where small displacements are expected [6].

All four of the general types rely on a basic

assumption that there is a constant moving brightness

pattern. In other words, the change in brightness at a

particular point in an image is due solely to a shift in the

pattern at that point. Other aspects such as the lighting

and reflectance of the object are assumed to remain

constant.

2.1. Estimation of Optical Flow via a
Gradient Technique

Calculation of optical flow via a gradient technique

captures the basic assumption of a constant moving

brightness pattern in a common constraint known as

Horn s Eq. [7]:
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where I is the image intensity. Re-arranging Eq. (1) gives

us what is known as the Image Brightness Constancy Eq.

[8]:

∇( )⋅ + =I Itv 0 (2)

where the subscript t indicates a partial derivative with

respect to time. The values for the spatial and temporal

derivatives required by Eq. (2) can be obtained by direct

observation of a point, p, in an image sequence. However,

due to the two unknowns in v (the velocity in the x
direction and the velocity in the y direction), we are not

able to find a solution for v based upon a single point in

an image sequence. An additional constraint is required.

By assuming that neighbouring points in an image will

have experienced similar displacements and evaluating

Eq. 2 over a patch , P, of N by N points centred on the

point of interest, we are able to find a solution for v by

minimising the total error. The total error over a patch is

given by:

E I x y I x yi i t i i
p x y Pi i
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( )∈

∑ , ,
,

2
(3)

and we minimise the error using a least squares

minimisation algorithm:

v A A A b= ( )−T T1
(4)

where A and b are given by:
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2.2. Limiting Factors in the Gradient
Techniques

Despite the advantages of the gradient techniques in

calculating the optical flow, particularly in regards to

accuracy, there are a number of inherent limitations. One

of these is instability in the presence of noise, where

noise is any factor that causes a divergence from the basic

assumption of a constant brightness pattern. If we re-

arrange Eq. (2) to obtain an expression for v we get:

v = −
∇

I

I
t (5)

Upon the introduction of noise, Eq. (5) becomes:

v v+ = − +
∇

∆ I n

I
t (6)

where ∆v is the error in the calculated vector, and n is

the noise in the image sequence. Using equations (5) and

(6), we can show that the error in the calculated vector is

given by:

∆v =
∇
n

I
(7)

and as the spatial gradient of an image goes to zero,

the error in the calculated vector approaches infinity. It is

clear that the best results will be obtained in areas of high

spatial gradients.

In addition to the errors introduced by noise, it can

also be shown that gradient techniques will fail in areas

where the image motion is parallel to the image gradient

over the entire patch. This failure is commonly referred to

as the aperture problem [8,9], and arises as a result of the

property of the techniques that only motion normal to the

spatial gradient can be estimated. To correctly estimate

the shift for a given point therefore, a multifaceted edge

must be present within its neighbourhood.

In order to ensure that a multifaceted edge is present in

the neighbourhood of a point, the neighbourhood can be

enlarged, but this increases exposure to another difficulty.

One of the assumptions made in solving Horn s equation

over a patch is that all the points in the patch will have

experienced a similar shift. The larger the patch, the

greater the possibility that this assumption will be

invalid. Any deviation from the assumption introduces

noise into the process.

We can partially compensate for the variation in the

shifts that occur over a patch by applying a weight to the

error that is obtained when evaluating Eq. (2) at each

point in the patch. These weights are used to emphasize

errors in the centre of the patch, i.e. close to the point of

interest, over those towards the edges of the patch. When

weights are applied, a modified form of Eq. (3) gives the

total error:

E w I x y I x yw i i i t i i
p x y Pi i

v v( ) = ∇ ( )( ) ⋅ + ( )[ ]
( )∈

∑ , ,
,

2
(8)

where wi is the weight for a given location in the patch.

The least squares minimisation of the error now becomes:

v A W A A W b= ( )−T T2 1 2
(9)

where W is the weight matrix.

Before
Shift

After
Shift

X1 X2

Fig. 1. These curves show potential problems
that occur when using gradient
techniques in the presence of relatively
large scale shifts.

Another major limitation of the gradient techniques is

their failure due to aliasing problems in the presence of

large shifts. An example of the potential problems caused

by large shifts is clearly represented in one dimension in

Fig. 1. Here the second curve has been shifted to the right

of the first. At X1 the value of the curve has increased.

The gradient of the curve at this point before the shift

indicates that a small shift to the right had occurred. The

gradient of the curve at the same location after the shift

indicates that a small shift to the left had occurred. We

might avoid the problem of which gradient to use by

taking the average of the two. However, in this case, the

average of the gradients is approximately zero, indicating

a near infinite shift.

Alternatively, at X2 in Fig. 1, the value of the curve at

this point after the shift is identical to what it was before
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the shift. In this circumstance, the gradient techniques

described will indicate that no shift has occurred.

The difficulties associated with large shifts are avoided

if the change in slope over the extent of the shift is

negligible.

The current implementation of the algorithm attempts

to avoid the problems caused by large scale shifts by

taking an iterative approach to computing the optical

flow. The images involved in the computation are first

decomposed into a multi-resolution stack and the optical

flow is calculated on the coarsest image. The resultant

vector field is used to warp the image in the next layer of

the stack and the optical flow is calculated using the

warped image. The resultant vector field is added to all

previous vector fields as a refinement to the optical flow

estimate. The process iterates until the optical flow has

been computed at the second highest resolution. At the

highest resolution, the noise introduced by the motion

blurring in the prototype is too significant to allow any

significant improvement on the vector field generated

from the lower resolutions. In fact, including the highest

resolution in the process is likely to be detrimental to the

final result.

4. Results using Simulated Data

Initial investigations into the viability of the gradient

techniques have been carried out using simulated data.

The first stage of these investigations was to take a

known image and distort it in a manner so as to simulate

the effects of a turbulent atmosphere. Then, using the

known image as the prototype, the warping function used

to distort the known image was estimated using the

gradient techniques. Example results from these initial

investigations are shown in Fig. 2. Cross-sections of the

original and recovered warping functions are shown in

Fig. 3.

These results show that the gradient techniques have

recovered a large proportion of the detail in the x and y
shift maps, however it is obvious there is considerable

room for improvement.

The second stage of the testing of the algorithm

involved the generation of fifty "received" images by

warping a source image according to randomly generated x
and y shift maps. These received images were averaged to

provide a prototype and then estimations of the warping

functions were calculated between each image and the

prototype. The received images were restored according to

the calculated optical flow and the restored images were

averaged to provide an updated prototype. Examples of

the results obtained are shown in Fig. 4.

The results in Fig. 4 show that there has been

considerable improvement in the quality of the image

between the initial prototype and the updated prototype.

Details in the hair, the feathers on the hat, and around the

eyes in particular highlight the reduction of the motion

blur in the updated prototype.

(a) (b)

(c) (d)

Fig. 2. (a) The original x  shift map (b) The
original y  shift map (c) Estimated x
shift map (d) Estimated y  shift map

(a) (b)

Fig. 3. (a) Cross-section of the original x  shi f t
map (dark curve) and the estimated x
shift map (light curve) (b) Cross-
section of the original y  shift map (dark
curve) and the estimated y  shift map
(light curve)
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(a)

(b)

Fig. 4. (a) Average of 50 independently warped
images prior to processing (b) Average
of 50 images after the motion blur has
been removed.

5. Results with Real Data

Following the testing of the gradient approach with

simulated data, the method was applied to sequences of

real images captured with an interline-transfer CCD

camera with a resolution of 1K by 1K. Example results

are shown in Fig. 5.

To obtain these results, the source data was passed

through the motion blur removal algorithm three times,

with the results from the first iteration providing the

prototype for the second iteration, and so on. The output

of this process was then passed through a blind

deconvolution process to remove the residual blurring due

to instantaneous speckle effects [10]. The increased detail

in the restored images is clearly visible.

(a)

(b)

Fig. 5. (a) Average of the ‘truck’ image
sequence. The left hand image is prior
to processing and the right hand image
is he final result. (b) Average of t h e
‘industrial’ image sequence. The le f t
hand image is prior to processing and
the right hand image is the final result.

One other result from the application of the gradient

method to real data is shown in Fig. 6.  This figure

shows the estimate of the x and y shift maps in the area

around the cabin of the truck in for one frame in the truck

image sequence. These maps are similar to those obtained

using the cross-correlation method, as shown in [2].

(a) (b)

Fig. 6. (a) Estimate of the x shift map for one
frame in the truck image sequence. ( b )
Estimate of the y shift map for one
frame in the truck image sequence.
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6. Conclusions and Future Direction

The use of gradient techniques to estimate the warping

functions required to restore images degraded by

atmospheric turbulence has been shown to provide

reasonable results for simulated data in cases where the

warping is not overly severe. Problems arise when the

magnitude of the shifts increases, in the presence of

excessive noise, and when the nature of the spatial

gradients in a neighbourhood does not allow an accurate

estimation of the shift to be made. Measures exist in the

current implementation of the gradient techniques to

overcome some of the inherent limitations. Other

measures that may enhance the restoration process are

being trialed, and the outcomes of these trials will feed

into development of the gradient method. In particular,

two options are being investigated. Firstly, we are

investigating the selection of points in the image that are

likely to provide a good estimate of the shift at that

location and interpolating between the selected points.

Secondly, we are testing the performance of the method

when an additional weighting matrix is applied in the

error minimisation process to emphasise the errors at

points of higher spatial gradient.

Results have been obtained using real data and the

intention is to compare these results to those obtained

using cross-correlation techniques. Initial impressions are

that the results obtained using the current gradient method

compare favourably with the results that were obtained

using cross-correlation techniques.  
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