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Abstract

This paper proposes a hybrid opto-electronical method
for real-time automatic verification of handwritten signa-
tures. This method combines several statistical classifiers
and consists in three steps being first the transformation
of signatures, then their characterization and finally their
classification. The first step consists in transforming the
original signatures using the identity and four Gabor trans-
forms. The second step consists in intercorrelating the
transformed signatures of the learning database, for each
transformation. Then, the authenticity of signatures is ver-
ified. For each image transform, the signatures are inter-
correlated with the similarly transformed signatures of the
learning database. Finally, the fusion of the decisions re-
lated to each transform is performed to improve the recog-
nition rate of our verification system.

Gabor transforms and image intercorrelations can be
carried out at a frame rate of 1kHz, when using high speed
optical correlators. The statistical classifications and fu-
sion of decisions are performed in real-time on a classi-
cal digital signal processor. The opto-electronic implemen-
tation of the proposed method has been simulated on a
database of 800 handwritten signatures, taking into account
the specific constraints of the optical implementation.

Satisfactory results have been obtained when combining
the statistical classifiers based on the identity and Gabor
transforms: for a tolerance false rejection rate of about4%,
the false acceptation rate is of about1.43% thanks to the
fusion method instead of2.56% when only considering the
identity transformation.

1. Introduction

Human handwritings are among the most complicated
objects to recognize [13]. Handwritten signatures form

a special class of handwriting in which legible letters or
words may not be exhibited. Signatures remain one of to-
day’s most acceptable means of verifying document validity
such as bank cheques. If the signature is found to be false,
the cheque is considered as being false as well. With the
huge amount of bank cheques, a manual verification of sig-
natures is a tedious task to do. This justifies the need of a
fast and automatic processing for the verification of hand-
written signatures.

A signature verification system can be classified as either
on-line or off-line. On-line systems employ an electronic
pen and pad to acquire dynamic information like pressure
and speed of writing, but suffer the need of special acquisi-
tion devices. In this paper, we consider an off-line signature
verification system, in which the signatures are converted
to electronic form using a scanner or a camera. Many tech-
niques, such as geometric moments [13, 1], envelope char-
acteristics [1] and energy measures through wavelet decom-
position [13], have been tested. In 1997, Murshed and al.
[10] compared several methods, showing the high degree
of classification accuracy reached by the currently available
automatic verification systems with a mean false rejection
or acceptation rate of about1 % to 5 %. Due to the fact
that most of shape description techniques are time consum-
ing, the trend is to develop two stages verification systems:
the first stage consists in elimininating obvious forgery sig-
natures, and the second stage deals with the verification of
more complicated cases, as underlined by Sabourin [14].

The objective of this paper is to propose an original real-
time method for the fast elimination of obvious forgery sig-
natures. The proposed method, for this first stage, can be
implemented on high speed optical correlators as those cur-
rently working at a frame rate higher than 1kHz [11, 5], to
reduce the number of forgeries to be processed in the sec-
ond stage. Preliminary tests have been carried out recently
on a small database of 133 handwritten signatures and have
shown the feasability and the potential of our approach [7].
Now, the aim is to perform a large scale evaluation using
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Figure 1: An example of the four kinds of handwritten sig-
natures.

a database of800 handwritten signatures. Moreover, this
evaluation takes into account the specific constraints of the
optical implementation.

In the second section, the specificity of the data is pre-
sented. In the third and fourth sections, the proposed ver-
ification method and its hybrid opto-electronic implemen-
tation are described. Simulation results are detailed in the
fifth section.

2. Data

With respect to a given writerwi, there are two kinds
of handwritten signatures: the genuine signatures, and the
forgeries written by other writers. Among forgeries, we typ-
ically consider [7, 12]:

• Simple forgeries:where the forger makes no attempt
to simulate a genuine signature.

• Random forgeries:where the forger uses his/her own
signature instead of trying to make an imitation.

• Skilled forgeries:where the forger tries and practices
imitating as closely as possible the static and dynamic
information of a signature.

The figure 1 gives an example of these four kinds of sig-
natures. Murshed and al. [10] reported that most forgeries
are random. This justifies the interest of the development of
a two stages verification system, where the first stage deals
with the rapid elimination of forgeries, being mostly ran-
dom, and the second stage is used only for more compli-
cated cases.

3. Method

The principle of the proposed verification method is il-
lustrated by the figure 2. The signatureo to be verified
is presented to the verification system. A one-class ap-
proach has been used to check whether it has really been

Figure 2: Principle of the proposed verification method for
fast elimination of random forgeries.

written by the writerw. The verification is performed
by comparing the characteristics of the signatureo with
those of reference signatures{r1, r2, . . . , rn} of the writer
w. For this purpose, the signatureo is preliminary trans-
formed using the identity transformI and four Gabor fil-
terings{G1, G2, G3, G4} so as to enhance specific infor-
mation. Gabor transforms allow to enhance the underlying
structures of the signatures which are the most predominant
strokes along several predefined orientations. This is justi-
fied by the fact that a signature is characterized by the po-
sition of its different strokes which are supposed to have
a relatively constant width fixed by the pencil used for the
acquisition.

Using these five transforms, the signatureo to be verified
is represented by the set{ot|t ∈ T} of transformed images,
with T = {I,G1, G2, G3, G4}.

Then, for each transformationt ∈ T , the trans-
formed signatureot is characterized by intercorrelat-
ing it with each of the similarly transformed references
{rt,1, rt,2, . . . , rt,n}. For each transformationt ∈ T , we
decide whether the signatureo to be verified really be-
longs to the writerw, by considering the intercorrelations
{C(ot, rt,i)|i = 1, . . . , n}. Finally, we make the fusion by
intersection of the decisions taken for each transformation.

3.1. Gabor transforms

To enhance the constitutive strokes of signatures, we pro-
pose to use, as in our previous work [7], the Gabor wavelet
filters whose real parts are useful tools for orientation and
size sensitive object detection [3, 2]. The real part of the
Gabor wavelet function is defined byg(x, y):
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g(x, y) = exp[−π((
x
′

σx′
)2+(

y
′

σy′
)2)]×cos(2π(xu0+yv0)),

(1)
with u0 = fcos(θ) andv0 = fsin(θ), θ being the direction
of propagation of the wavelet.x

′
andy

′
are defined byx

′
=

xcos(θ) + ysin(θ) andy
′
= −xsin(θ) + ycos(θ). σx′ and

σy′ are the standard deviation along thex
′
andy

′
axis in the

θ rotated basis.

Figure 3: Example of Gabor filter in the spatial domain
(left), and in the frequential domain (right).

The figure 3 displays an example ofg(x, y) and its re-
lated Fourier spectrum which is composed of two gaussian
functions respectively centered at the rotated frequencies
(u
′
0, v

′
0) and(−u

′
0,−v

′
0). The expression of the first gaus-

sian is:

G(u, v) = exp[−π(u
′ − u

′
0)

2σ2
x′ − π(v

′ − v
′
0)

2σ2
y′ )] (2)

By tuning correctly the different parameters of the Gabor
function, the detection of strokes having a specific width
along a specific orientation can be optimized. The parame-
ters to be defined are: the angleθ, the frequencyf and the
standard deviationsσx′ andσy′ .

Casasent [3] has shown that to detect an object of width
d, the optimal values forf andσx′ are:f = 1

2d , andσx′ =
2d. The standard deviationσy′ is linked to the angular step
∆θ = π

n , wheren is the number of orientations chosen for
the decomposition of the signatures (n = 4 in our case). To
ensure the specificity of such a decomposition, the Gabor
filters don’t have to overlap. By taking into account this
constraint, we finally find [7]:

σy′ =

√
ln(2)
2π

f × tan( π
2n )

. (3)

For each signature, the stroke widthd has been estimated
using classical morphological granulometry [6]. Then, the
parameters of the four Gabor filterings have been automati-
cally computed thanks to the previous formula.

3.2. Characterization by intercorrelation

For each transformationt ∈ T = {I, G1, G2, G3, G4},
the signatureo to be verified is characterized by the vec-
tor v of normalized correlation peaks{C(ot, rt,i)|i =
1, . . . , n}, obtained by intercorrelating the considered sig-
nature with each of the similarly transformed references
{rt,1, rt,2, . . . , rt,n}. Hence, the signatureo to be verified is
characterized by then-dimensional feature vectorv whose
ith componentC(ot, rt,i) is theoretically defined by:

C(ot, rt,i) =
max| ∫ ∫

o∗t (α, β)rt,i(α + x, β + y) dαdβ|
Eot

Ert,i

,

(4)
whereEot andErt,i are the energies of the corresponding
transformed signatures.

3.3. Decision criterion and fusion

The verification of handwritten signatures is considered
as a one-class classification problem, as assumed by Mur-
shed and al. [10], because the only reliable knowledges are
provided by the reference signatures belonging to a given
writer.

For each transformationt ∈ T , the signatureo to be ver-
ified is classified by comparing its feature vector with then
feature vectors related to then reference signatures. These
n feature vectors have been obtained by intercorrelating the
n transformed references. This constitutes the learning step
which leads to the obtention of then×n correlation matrix
M whose general term isMi,j = C(rt,i, rt,j). The mean
intercorrelationµt,i related to the rowi is then computed:

µt,i =
1

n− 1

∑

j 6=i

C(rt,i, rt,j). (5)

Finally, for each transformation, a minimum correlation
thresholdτt will then be defined byτt = µt−k×σt, where
µt andσt denote the mean and the standard deviation of the
mean intercorrelationµt,i. The optimal value of the param-
eterk can be experimentally estimated taking into account
the compromise between false acceptations and false rejec-
tions. This ends the learning step.

For each transformationt ∈ T , the classification of the
signatureo to be verified is performed by computing the
intercorrelations{C(ot, rt,j)|j = 1, . . . , n}, and estimating
their mean value:

µot =
1
n

n∑

j=1

C(ot, rt,j). (6)

Then, the signatureo is rejected and considered as a forgery
if µot does not belong to the previously defined minimum
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correlation thresholdτt. Hence, the resultγt(o) of the clas-
sification decision is defined by:

γt(o) = (µot
≥ τt). (7)

This ends the classification step with respect to the given
transformationt.

Finally, the fusion of classifiers is performed by intersec-
tion : if a signatureo to be verified is rejected with respect
to at least one transformation, it is considered as a forgery.

4. Constraints of the optical implementation

The proposed optical processor is an optical correlator
based on the Vander Lugt [15] architecture. Its principle is
given by the figure 4. The input image is loaded on a spa-

Figure 4: Principle of the Vander Lugt optical correlator.

tial light modulator (SLM) in the input plane of the setup.
The SLMs used in optical correlation are typically screens
made of liquid crystals. The first lens carries out the Fourier
transform of the input image. In the Fourier plane, there
is a second spatial light modulator on which we load the
Fourier transform of the filter. We recall that, in our case,
the filters used are Gabor filters and Matched filters corre-
sponding to the transformed reference signatures. Then, the
Fourier transform of the input image and the Fourier trans-
form of the filter are multiplied. The second lens performs a
second Fourier transform of the previous spectrum product,
leading to the correlation image in the output plane.

To carry out the filterings at a frame rate of1 kHz, the
current technological limitations involve that the SLMs are
binary SLMs made of ferro-electric liquid crystals. The cur-
rent high speed CCD cameras enable the acquisition of Ga-
bor filtered images and of correlation images at a frame rate
of 1 kHz. We now describe the specific constraints involved
by the use of these devices.

The optical implementation of the Gabor wavelet has
been discussed by Li and al. [9] in 1992. Due to the dy-
namic of the high speed SLM used in the Fourier plane,
only two grey-levels can be encoded instead of the fully
complex function corresponding to the Gabor filter in the

Fourier domain. Thus, the Gabor transform is implemented
as an ideal bandpass filter obtained by thresholding, in the
Fourier domain, the amplitude of the filter at3db.

The optical implementation of the Gabor filtering
presents a second drawback. In fact, Gabor filters are real
valued filters, composed of positive and negative values.
Thus, the filtered images contain both positive and negative
values.

Due to the quadratic acquisition achieved by CCD detec-
tors, the negative lobes become positive. Thus, by thresh-
olding the optically Gabor filtered image, we detect some
oriented linear segments of the signature surrounded by par-
allel side-lines corresponding to the response of the negative
lobes of the Gabor filter. The figure 5 gives an example of a
handwritten signature filtered by simulated Gabor filters.

Figure 5: Simulation of the optical implementation of the
Gabor filtering: example of the decomposition of a hand-
written signature using four Gabor filters.O: Original hand-
written signature.G1, G2, G3, G4:Gabor filterings of the
original signature, at angleO, π

4 , π
2 and 3π

4 . R: Recon-
structed signature from the Gabor filterings.

As said previously, the fast SLM in the Fourier plane
enables to encode only binary filters. Thus, for intercorre-
lations, the full complex matched filters must be reduced to
binary filters. For matched filtering, we typically keep the
phase information of the filter [8], which contains more in-
formation about the shape of the object than the amplitude
[4]. By thresholding the phase of the filter, it is then possi-
ble to implement intercorrelations on the optical correlator.
Such binary filters are the so-called Binary Phase Only Fil-
ters (BPOF) [8].

In the following section, we present results obtained by
simulating the constraints of the optical implementation of
the proposed verification method.

5. Simulation results

For simulation experiments, a database of800 handwrit-
ten signatures was used. Such a database size is commonly
encountered in the literature. To generate this database,15
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writers signed50 times. For each writer,25 handwritten
signatures are used for learning and25 for evaluating the
false rejection rate (FRR). A database of50 random forg-
eries is used to evaluate false acceptation rates (FARs). In

Figure 6: False acceptation and rejection rates (FAR and
FRR) versus parameterk. These classification rates are
given for each individual classifier based either on the iden-
tity transform (ID ) or on Gabor transforms (GT), as well as
for the fusion method.

our experiments, for a given writer and a given value of the
parameterk, FRRs and FARs have been averaged over100
random choices of25 references chosen among the50 avail-
able genuines signatures. These experiments have been car-
ried out withk ranging from0.5 to 6 by steps of0.1. Such
a large interval has been chosen for pedagogical reasons to
fully illustrate the variations of FARs and FRRs with re-
spect tok. Experimental results have confirmed that accept-
able classification rates are obtained whenk varies between
about2 and4.

The figure 6 gives the variations of FARs and FRRs with
respect tok, for each individual classifier based either on the
identity transform or on Gabor transforms, as well as for the
fusion method. The presented results have been averaged
over the15 writers. It is observed that the FRR decreases
and the FAR increases whenk increases, which is logical
because we accept more and more signatures as correct, in-
cluding both genuines and forgeries. We see that, below a
givenk value, the FRR of the fusion method is much higher
than for any other transform. This is due to the fact that
genuine signatures which are rejected by the fusion method
are the union set of the genuine signatures rejected by each
statistical classifier.

The figure 7 illustrates the variation of the FAR with re-
spect to the FRR, for the individual classifier based on the

Figure 7: False acceptation rates versus the false rejection
rates, averaged over the15 writers.

identity transform and for the fusion of classifiers. The fu-
sion of classifiers improves the FAR only above of certain
FRR of about 2.5 % (as shown in table 1). This is due to
the fact that to insure a low FRR for the fusion, we have to
insure a low FRR for each image transform, taking a larger
k.

FRR 0.5 1 2 2.5 3 4
IT: FAR 4.92 3.91 3.21 2.98 2.81 2.56
F: FAR 13.20 7.31 3.58 2.88 2.18 1.43

Table 1: False Acceptation Rates (FAR) obtained for dif-
ferent False Rejection Rates (FRR). Results are given in
the case of the identity transformation (IT) and the fusion
method (F).

As seen in table 1, for a false rejection rate of about3%
(resp.4%), by only considering the classifier based on the
identity transform,2.81% (resp. 2.56%) of random forg-
eries are recognized as genuines. Thanks to the fusion
method, this latter rate decreases from2.81% (resp.2.56%)
down to2.18% (resp.1.43%).

The figure 8 gives some examples of signatures, and their
transformed version, which have been analyzed by the pro-
posed verification system. The line A and B of figure 8
show examples of genuine signatures. The lines C and D are
two random forgeries which have been classified has gen-
uines. Lines E and F present two random forgeries which
have been eliminated with respect to only one transforma-
tion.
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Figure 8: Examples of handwritten signatures which have
been analyzed by the proposed system. The transformation
are the identity transformation (ID), the Gabor transforma-
tion at anglesOo (G1), 45o (G2), 90o (G3), 135o (G4).
A and B: two genuines.C and D: two random forgeries
classified as genuines.E: random forgery eliminated by ID
only. F: random forgery eliminated by G2 only.

6. Conclusion

A hybrid opto-electronic method for the fast elimina-
tion of random forgeries has been proposed. This method
is based on the characterization of handwritten signatures
by their intercorrelations with a reference database. Such
a charaterization has been applied for different transforma-
tions of the signatures including the identity transform and
four Gabor transforms. Then, by carrying out the fusion of
the decisions related to each transform, it was expected that
false acceptation rate would decrease. This approach has
the advantage of being optically implementable on the cur-
rent high speed optical correlators. Nevertheless, such op-
tical correlators have two major drawbacks being the small
encoding dynamic of the filters and the quadratic acquisi-
tion of CCD cameras.

For these reasons, we have proposed to evaluate our ap-
proach by taking into account these two specific constraints.
Simulation experiments have been carried out on a large
database of 800 handwritten signatures, as usually done
in the literature to validate a system for the verification of
handwritten signatures.

These results validate the proposed approach. The
hybrid opto-electronic implementation of this verification
method would enable to test the authenticity of an unknown
signature in about 125 ms (for25 references), which is dra-
matically faster than with any digital processor. The next
step will consist in carrying out these experiments on an
optical correlator.

References

[1] R. Bajaj and S. Chaudhury. Signature verification using
multiple neural classifiers.Pattern Recognition, 30(1):1–7,
1997.

[2] J. Cai and Z.-Q. Liu. Off-line unconstrainted handwritten
word recognition.International Journal of Pattern Recogni-
tion and Artificial Intelligence, 14(3):259–280, 2000.

[3] D. P. Casasent and J.-S. Smokelin. Real, imaginary, and
clutter gabor filter fusion for detection with redeuced false
alarms.Optical Engineering, 33(7):2255–2263, July 1994.

[4] K. R. Castleman.Digital Image Processing. Prentice Hall,
1996.

[5] T.-H. Chao, H. Zhou, and G. Reyes. 512x512 high-speed
grayscale optical correlator.Proceedings of the SPIE: Opti-
cal pattern recognition XI, 4043:40–45, 2000.

[6] Dougherty. An introduction to morphological image pro-
cessing. Spie optical engineering press, 1992.

[7] J.-B. Fasquel, C. Stolz, and M. Bruynooghe. Real-time
verification of handwritten signatures using a hybrid opto-
electronical method.2nd IEEE R8 - Eurasip Symposium on
Image and Signal Processing and Analysis (ISPA’01), June
2001.

[8] B. V. K. V. Kumar and L. Hassebrook. Performance mea-
sures for correlation filters.Applied Optics, 29(20):2997–
3006, 1990.

[9] Y. Li and Y. Zhang. Coherent optical processing of ga-
bor and wavelet expansions of one- and two-dimensional
signals.Optical Engineering, 31(9):1865–1885, September
1992.

[10] N. A. Murshed, R. Sabourin, and F. Bortolozzi. A cogni-
tive approach to off-line signature verification.International
Journal of Pattern Recognition and Artificial Intelligence,
11(5):801–825, 1997.

[11] M. J. O’Callaghan, D. J. Ward, S. H. Perlmutter, L. Ji, and
C. M. Walker. A highly integrated single-chip optical cor-
relator. SPIE Algorithms, Devices and Systems for Optical
Information Processing, 1998.

[12] R. Plamondon and G. Lorette. Automatic signature verifi-
cation and writer identification - the state of art.Pattern
Recognition, 22(2):107–131, 1989.

[13] V. E. Ramesh and M. N. Murty. Off-line signature verifica-
tion using genetically optimized weighted features.Pattern
Recognition, 32:217–233, 1999.

[14] R. Sabourin, editor.Off-line Signature Verification: Recent
Advances and Perspectives, Curitiba, Brazil, 1997. Proc. of
the BSDIA’97. pp. 84-98.

[15] A. VanderLugt. Signal detection by complex spatial filter-
ing. IEEE Transactions on Information Theory, IT-10:pp.
139–145, 1964.

6


